Too Good to Be Safe:

Tricking lane detection in autonomous
driving with crafted perturbations
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e Goal : Changing the lane detection result to misguide the autonomous vehicle
e Target system & service: Tesla autopilot’s lane detection module (in auto steering mode)
e How:
e Reverse engineering on the firmware

e Use a fake lane as a perturbation
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e Autonomous driving systems is SAFETY-CRITICAL!

e Tesla autonomous vehicle accidents

Ehe Washington Post

wocracy Dies in Darkness

TECHNOLOGY

Teslas running Autopilot involved in 273
crashes reported since last year

Regulators released the first batch of data since mandating that companies such as Tesla report on serious crashes
involving their driver-assistance systems

By Faiz Siddiqui, Rachel Lerman and Jeremy B. Merrill
Updated June 15, 2022 at 4:50 p.m. EDT = Published June 15, 2022 at 9:08 a.m. EDT
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e Autonomous driving systems is SAFETY-CRITICAL!

e Tesla autonomous vehicle accidents
May 2020 April 2021 May 2021 More than 5 fatal accidents in 2023

The vehicle was allegedly driving in
when it hit the overturned truck.
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e Autonomous driving systems is SAFETY-CRITICAL!

e Tesla autonomous vehicle accidents?)

1) https://en.wikipedia.org/wiki/Tesla_Autopilot



e Autopilot : A system used to control an vehicle

e Tesla’s autopilot for lane changing
e Lane changes to optimize the route, and make adjustments

e Automatic steering

b e -

6 /30



e Autonomous vehicle system overview
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e Lane Detection
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e Reverse engineering

e The process of opening up or dissecting a system to see how it works
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Black box - we do not White box - we know
know anything everything
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e Reverse engineering on the firmware of Tesla Autopilot

e Two-stage approach to generate the optimal perturbations

e Extensive experiments on a Tesla vehicle (Tesla Model S)
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e Attacker has an autonomous vehicle with identical lane detection module.

e Attacker aims to add unobtrusive marking on the ground. (keep change the position and shape)
-> very labor-intensive and error-prone

-> better to be done in digital world <- Reverse Engineering!

Misguided direction
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e C1. How to locate the input camera image and output lane image in the vehicle?

e C2. How to add perturbations?

e (3. How to find the best perturbations?
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C1. How to locate the input camera image and the corresponding output lane image in the vehicle?
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C1. How to locate the input camera image and the corresponding output lane image in the vehicle?

e Firmware under examination
e Tesla Model S 75, with the Autopilot hardware version of 2.5 and software version of 2018.6.1.

e Running an AArch64 Linux OS and uses NVDIA GPU for deep learning computation.

. cupa <X

e Memory management functions: cudaMalloc, cudaMemcpy, cudaConfigurecall NVIDIA.
e Static and dynamic analysis CUDA

e Find (1) source address, (2) destination address, (3) data size, and (4) mode of transfer
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C1. How to locate the input camera image and the corresponding output lane image in the vehicle?

Starting address in GPU memory
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C2. How to add perturbations to input camera image?
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C2. How to add perturbations to input camera image?
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C2. How to add perturbations to input camera image?

e Project physical world markings
e Map a physical world coordinate (X, Y, Z) -> image coordinate (u, v)

e Modifying the grayscale value of the corresponding pixels

e Parameterized perturbations

D,
Parameters Explanation 1.
r o
. . T P e PP TP RE Rt
len Length of a single perturbation (i Gl T \/_,' 0
: P N
wid Width of a single perturbation P h ~
Longitudinal distance from the vehicle camera ~
Dl . ! P
to the edge of the first perturbation {\"--. ;T
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Dz . e e T
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Increment of grayscale value
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C3. How to find the best perturbations?
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C3. How to find the best perturbations?

e Quality of Perturbations: Visibility of lane & Visibility of perturbation

Parameters Explanation
p One single pixel in the image
lane,(x) Lane pixels in the output image
perturb;(x) Pixels on the added perturbations
G Grayscale value of pixel p

Viane(X) Visibility of the fake lane created by x
Viernarp(X)  Visibility of the perturbations added by x
S(x) Overall score of the parameter x

e Optimization problem:

e Heuristic algorithm: BAS, PSO, BSO, ABC, SA

Vlane(x) — ZpElaneO(x) Gp
Vperturb (x) — ZpEperturbi(x) AG

S(x) — Viane (x>

Vperturb (x)

x" = max S(x)
xeX
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RQ1:Efficiency of the heuristic algorithms to find the best perturbation

RQ2: Effect of the perturbation number and the rotation angle 6
RQ3: Performance with different camera images

RQ4: Common characteristics of the best perturbations

RQ5: Effectiveness of the attack in physical world

RQ6: Feasibility of the attack in physical world
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e RQ5: How effective is the attack in physical world?
e Most effective with below conditions
e Perturbation number: 1 is enough
e Rotation angle: 6=0 (straight perturbations)
e Light condition: doesn’t matter

e Longitudinal Distance: from 15m to 3m
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e RQG6: Can we misguide the vehicle in physical world?

physical oncoming
erturbations .
P : tratfic
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L direction

crossroads
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e RQG6: Can we misguide the vehicle in physical world?
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(a) Vehicle is running on the correct (b) Fake lane is detected and vehicle (c) Vehicle follows the fake lane into (d) Vehicle finally runs in the oncoming
direction. starts to swerve. oncoming traffic. traffic lane!

e Demo Video
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https://www.youtube.com/watch?v=aSe2MrjVs

e Better lane detection module to distinguish craft perturbations
e Better control policy : more considerable elements, multi-sensor fusion
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e Limitation

e A physical set up process, and it must be installed at a specific point.

e Cannot be completely invisible (a driver may notice)

e Future works

e Same vulnerability in other autonomous driving systems (e.g., Apollo, Openpilot, etc.)

e Launching attacks on real lanes (e.g., dark markings to cover, etc.)
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*14 Survey of Remote 15 Jeep Cherokee

13 WTF in my car? 16 CAN Injection

Autonomous Attack hacking
*19 Security assessment ‘18 14 vulnerabilities "17 Remote '16 Remote
on Tesla’s autopilot in BMW Attack on Tesla Attack on Tesla
19 Tesla’s autopilot ‘70 Security assessment . ] 21 Security assessment
& GNSS Spoofing on Lexus 21 This paper on Benz

20 Exploiting Wi-Fi
Stack on Tesla
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11 USENIX 17 CHES 20 ICSE 20 USENIX

Comprehensive lllusion and Dazzle Deepbillboard
experimental analysis of..
21 USENIX ‘21 USENIX
Reverse Engineering This paper

Vehicle Diagnostic Protocols

*22 ACM MultiMedia *22 NDSS
Physical Backdoor Attacks
to Lane Detection

Too afraid to Drive
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20 ICSE 20 USENIX

Deepbillboard

This paper

"22 ACM MultiMedia *22 NDSS
Physical Backdoor Attacks Too afraid to Drive
to Lane Detection
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20 USENIX

Victim hits the stop sigh
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e Two-stage approach to generate the optimal perturbations

e Reverse engineering to access data
e Misguide the vehicle into oncoming lane
e Extensive evaluation

e Need more reliable self-driving system
e Safety critical system

e Standards and policies
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