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Introduction

 Goal : Changing the lane detection result to misguide the autonomous vehicle

 Target system & service: Tesla autopilot’s lane detection module (in auto steering mode)

 How: 

 Reverse engineering on the firmware

 Use a fake lane as a perturbation
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Background

 Autonomous driving systems is SAFETY-CRITICAL!

 Tesla autonomous vehicle accidents
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Background

 Autonomous driving systems is SAFETY-CRITICAL!

 Tesla autonomous vehicle accidents
May 2020 April 2021 May 2021
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More than 5 fatal accidents in 2023
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Background

 Autonomous driving systems is SAFETY-CRITICAL!

 Tesla autonomous vehicle accidents1)

51) https://en.wikipedia.org/wiki/Tesla_Autopilot
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Background

 Autopilot : A system used to control an vehicle

 Tesla’s autopilot for lane changing

 Lane changes to optimize the route, and make adjustments

 Automatic steering
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Background

 Autonomous vehicle system overview
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Background

 Lane Detection

Changing the lane detection result can affect the steering decision. 
(i.e., exploiting its over-sensitivity to create a fake lane!)
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Background

 Reverse engineering

 The process of opening up or dissecting a system to see how it works
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Contributions

 Reverse engineering on the firmware of Tesla Autopilot

 Two-stage approach to generate the optimal perturbations

 Extensive experiments on a Tesla vehicle (Tesla Model S)
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 Attacker has an autonomous vehicle with identical lane detection module.

 Attacker aims to add unobtrusive marking on the ground. (keep change the position and shape)

->  very labor-intensive and error-prone

->  better to be done in digital world <- Reverse Engineering!

Threat Model

Lane
Detection
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Two-stage attack
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Challenges

 C1. How to locate the input camera image and output lane image in the vehicle?

 C2. How to add perturbations?

 C3. How to find the best perturbations?

13
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S1. Accessing Data in Tesla Autopilot

C1. How to locate the input camera image and the corresponding output lane image in the vehicle?

Where is it?

14

Where is it?
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S1. Accessing Data in Tesla Autopilot

 Firmware under examination

 Tesla Model S 75, with the Autopilot hardware version of 2.5 and software version of 2018.6.1.

 Running an AArch64 Linux OS and uses NVDIA GPU for deep learning computation. 

 CUDA

 Memory management functions: cudaMalloc, cudaMemcpy, cudaConfigurecall

 Static and dynamic analysis

 Find (1) source address, (2) destination address, (3) data size, and (4) mode of transfer

C1. How to locate the input camera image and the corresponding output lane image in the vehicle?
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S1. Accessing Data in Tesla Autopilot

C1. How to locate the input camera image and the corresponding output lane image in the vehicle?
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S2. Adding Digital Perturbations

C2. How to add perturbations to input camera image?

How?

17
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S2. Adding Digital Perturbations

C2. How to add perturbations to input camera image?
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S2. Adding Digital Perturbations

 Project physical world markings

 Map a physical world coordinate (X, Y, Z) -> image coordinate (u, v)

 Modifying the grayscale value of the corresponding pixels

 Parameterized perturbations

C2. How to add perturbations to input camera image?
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S3. Finding the Best Perturbations

C3. How to find the best perturbations?

Why?
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S3. Finding the Best Perturbations

 Quality of Perturbations: Visibility of lane & Visibility of perturbation

 Optimization problem:

 Heuristic algorithm: BAS, PSO, BSO, ABC, SA

C3. How to find the best perturbations?

21
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Evaluation

Let’s start!
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Evaluation

 RQ1:Efficiency of the heuristic algorithms to find the best perturbation

 RQ2: Effect of the perturbation number and the rotation angle 

 RQ3: Performance with different camera images

 RQ4: Common characteristics of the best perturbations

 RQ5: Effectiveness of the attack in physical world

 RQ6: Feasibility of the attack in physical world

Digital
World

Physical
World
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Evaluation

 RQ5: How effective is the attack in physical world?

 Most effective with below conditions

 Perturbation number: 1 is enough 

 Rotation angle: =0 (straight perturbations)

 Light condition: doesn’t matter

 Longitudinal Distance: from 15m to 3m

24
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Evaluation

 RQ6: Can we misguide the vehicle in physical world?

25



/ 37

 RQ6: Can we misguide the vehicle in physical world?

 Demo Video

Evaluation (Demo Video: https://www.youtube.com/watch?v=aSe2MrjVs)
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https://www.youtube.com/watch?v=aSe2MrjVs
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Defense

 Better lane detection module to distinguish craft perturbations

 Better control policy : more considerable elements, multi-sensor fusion

27



/ 37

Limitations and Discussion

 Limitation

 A physical set up process, and it must be installed at a specific point.

 Cannot be completely invisible (a driver may notice)

 Future works

 Same vulnerability in other autonomous driving systems (e.g., Apollo, Openpilot, etc.)

 Launching attacks on real lanes (e.g., dark markings to cover, etc.)

28
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Conclusion

 Two-stage approach to generate the optimal perturbations

 Reverse engineering to access data

 Misguide the vehicle into oncoming lane

 Extensive evaluation

 Need more reliable self-driving system

 Safety critical system 

 Standards and policies
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Any 
Question?
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