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Who is David Wagner?

* Research Interest
- wireless security
- sensor network security.
- applied cryptography.
- software security.

* Publication
- Towards Evaluating the Robustness of Neural Networks
- N Carlini, D Wagner (IEEE S&P 2017)
- Secure routing in wireless sensor networks: Attacks and countermeasures

- C Karlof, D Wagner (Ad hoc network, 2003)
David Wagner - Practical techniques for searches on encrypted data (S&P, 2000)
Berkely - DX Song, D Wagner, A Perrig
- Android permissions demystified (CCS, 2011)
- AP Felt, E Chin, S Hanna, D Song, D Wagner
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Who is Nicholas Carlini?

Research Interest
- Machine learning and computer security

- Neural networks from an adversarial perspective

Publication
- Hidden Voice Commands
- N Carlini, P Mishra, T Vaidya, Y Zhang, M Sherr, C Shields, D Wagner (USENIX Security, 2016)
- Towards Evaluating the Robustness of Neural Networks
- N Carlini, D Wagner (IEEE S&P 2017)
- Adversarial examples are not easily detected: Bypassing ten detection methods
- N Carlini, D Wagner (AlSec, 2017)
- Audio adversarial examples: Targeted attacks on speech-to-text
- N Carlini, D Wagner (SPW 2018)
- The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks
- N Carlini, C Liu, J Kos, U Erlingsson, D Song(USENIX Security, 2017)

Personal Website:
- https://nicholas.carlini.com
- I really enjoy reading his blog :)
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Fun Fact

Top-100 Security Papers

This webpage is an attempt to assemble a ranking of top-cited papers from the area of computer security.
The ranking has been created based on citations of papers published at top security conferences. More
details are available here.

Top 100 papers from 1980 to 2023

Nicholas Carlini and David A. Wagner: I
Towards Evaluating the Robustness of Neural Networks.
IEEE Symposium on Security and Privacy, 2017

7972 cites at Google Scholar 6380% above average of year ~ Last visited: Oct-2023 Paper: DOI

Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters: 2
Attribute-based encryption for fine-grained access control of encrypted data.
ACM Conference on Computer and Communications Security (CCS), 2006

6771 cites at Google Scholar 3269% above average of year Last visited: Oct-2023 Paper: DOI

John Bethencourt, Amit Sahai, and Brent Waters: 3
Ciphertext-Policy Attribute-Based Encryption.
IEEE Symposium on Security and Privacy, 2007

6509 cites at Google Scholar 2947% above average of year Last visited: Oct-2023 Paper: DOI
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Reflecting on “Towards Evaluating the Robustness of Neural Networks”
by Nicholas Carlini 2022-08-17

"It's somewhat strange knowing that my most cited work is behind me,
and nothing | ever do match this paper no matter how hard I try”

Nicolas Carlini



What is adversarial?

Adversarial

EEE—

Perturbation

88 % Tabby Cat 99 % Guacamole
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Adversarial Example

Person with patch does not consider as a person



Adversarial Example

Examples that already covered in the class
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Introduction

Adversary has access to the model parameters
Goal: construct a adversarial example
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KAIST

Goal

Create an adversarial image

perturbation

True label =Tabby Cat Target labelT = Guacamole

(1) Make classifier recognize the fake cat image as Guacamole
(2) Minimize difference of true cat image and fake cat image

Computer Systems
& Networks Lab
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Goal

Create an adversarial image x' by adding small perturbation 6 to the original image x (i.e., x"=x + §),

The classifier should assign the class label T to the adversarial image x', where T is different with the true label

é = perturbation

EEE——

True label =Tabby Cat Target label T = Guacamole

Find § that
Minimize D(x, x')

suchthatC (x) =T

KAIST (SN s
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Challenge

Hidden Layers

Input Layer Output Layer

Find 6 that minimize D(x, x’)
But... C(x' -
suchthatC (x")=T )

Highly non-linear

Key Insight : Gradient descent works very well for training neural networks.
Why not for breaking them too?
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 Gradient Descent

Loss Function

Measure how accurate
the neural network is?
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Challenge




Intial Problem

Change
Problem

New Problem:

KAIST (SN s

Problem Reformulation

Find 6 that minimize D(x, x’)
suchthat C (x") =T

Find § minimize D(x,x’) + f(x')
Where f(x’) is some kind of loss function on how close C(x’) is to target T

For loss function: f(x’) < 0ifC(x") =T, f(x")>0if C(x') =T

Find § such that D(x,x") + f(x") < 0
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New Optimization Problem:

Question:

Candidate loss fucntion:

KAIST (SN s

Loss Function

D(x,x") + f(x) <0

How to choose f(x") ?

f1(z") = —lossp(z') + 1
fala) = (max(F(a')) ~ Fa'))"
f3(z') = oftplus(m;?x(F(x )i) — F(x'):) — log(2)
fa(z’) = (0.5 - F(z"),)"
fs(z') = —log(2F(z'); — 2)
fe(2') = (max(Z(x i) = Z(@))*
(z') =

softplus(m;?x( (z'):) — Z(x")s) — log(2)
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Loss function

 Emperically select the best one

Best Case Average Case Worst Case
Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected
Variable Descent Descent Variable Descent Descent Variable Descent Descent
mean prob mean prob mean  prob H mean prob mean prob mean prob || mean prob mean prob mean prob

fi 246 100% 293 100% 2.31 100% 435 100% 5.21 100% 4.11 100% 776 100% 9.48 100% 7.37 100%
f2 455 80% 397 8% 349 83% 322 4% 899 63% 1506 74% 293 18% 1022 40% 1890 53%
f3 454 T77% 4.07 81% 376 82% 347 44% 955 63% 1584 74% 3.0 17% 1191 41% 24.01 5%
fa 501 86% 6.52 100% 7.53 100% 403 5% 749 7% 760 71% 355 24% 425 35% 410 35%

fo 197 100% 220 100% 194 100% 358 100% 420 100% 347 100% 642 100% 786 100% 612 100%

fe 1.94 100% 2.18 100% 1.95 100% 347 100% 4.11 100% 3.41 100% 6.03 100% 7.50 100% 5.89 100%

17 96— 100762210076 1-94—106% 355100764 1060763 =43—190% 62010096757 10076 ——554—106%
TABLE III

EVALUATION OF ALL COMBINATIONS OF ONE OF THE SEVEN POSSIBLE OBJECTIVE FUNCTIONS WITH ONE OF THE THREE BOX CONSTRAINT ENCODINGS.
WE SHOW THE AVERAGE L2 DISTORTION, THE STANDARD DEVIATION, AND THE SUCCESS PROBABILITY (FRACTION OF INSTANCES FOR WHICH AN
ADVERSARIAL EXAMPLE CAN BE FOUND). EVALUATED ON 1000 RANDOM INSTANCES. WHEN THE SUCCESS IS NOT 100%, MEAN IS FOR SUCCESSFUL
ATTACKS ONLY.
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Box Constraint

Optimization Problem: D(x,x)+f(x)<0
Challenge: Find§,x'=x+6 (0 <x+46<1)

[90, 0, 53] 197 18 |1 [ree 19 10 [z e e rse
T T ws 2 e | e s 0| 7 o |20 o 15
10 (100 | 50| e 0| 1| @i

06 | e s 0 120 (204 (066 | 06| 8 e

14 | @ 137 (290 |27 29 |28 |27 | w7 | |

172 [0S 207 |20 (239 |2 220 28 | W | T4 26

e | 88179 (208 188 (26 (2 ) 19| | 2

19 | 57 [165 | 84| 10 [168 |14 1N | e 2w

199 |68 191 |13 [158 [ 227 (178 [ 143 [ 182 | 206 | 36 |1%0

[ ] 206 |174 158 252 236 |20 |14 @ s |m

249' 215’ 203 190 |06 [176 [ 149 (206 [ 187 | 86 LR REC R

190 224 | 147 |108 |227 {200 127 o2 | 26 265 |24

190 (204 |17 | 66 [100 142 | 96| 50| 2|10 |20 |28

7 19 28 | 78 nla| of s|ny|ms|m

[213’ 60’ 67] 9 202 |27 |1 12 100 |20 4 |2
196 206 |12 |27 17 123 (20 |17 | 13| % [2e

x + 0 need to be inrange [0, 255] or [0,1]
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Optimization Problem:
Challenge:

Solution:

x+6 =)
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Box Constraint

D(x,x") + f(x) <0
Findé,x"=x+6 (0 <x+85<1)

Change the variable!

1
% (tanh(w) +1) wemp 6= 5 (tanh(w) + 1) — x

—1 < tanh(w) <1
0 < tanh(w)+1<2

1
0< > (tanh(w) +1) <1

0 <x+6<1
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Box Constraint

Best Case Average Case Worst Case

Change of Clipped Projected Change of Clipped Projected Change of Clipped Projected

Variable Descent Descent Variable Descent Descent Variable Descent Descent
mean prob| mean prob mean prob || |mean prob| mean prob mean prob || |mean prob| mean prob mean prob
fi 246 100%| 293 100% 231 100% 435 100%| 5.21 100% 4.11 100% 776 100%| 9.48 100% 7.37 100%
f2 455 80%| 397 83% 349 83% 322 44%| 899 63% 15.06 74% 293  18%| 1022 40% 1890 53%
f3 454 T71%| 407 81% 3.76 82% 347 4% | 955 63% 1584 74% 3.09  17%| 1191 41% 24.01 5%
fa 501 86%| 6.52 100% 7.53 100% 403 55%| 749 1% 760 T1% 3.55 24%| 425 35% 410 35%
fs 1.97 100%| 220 100% 1.94 100% 3.58 100%| 4.20 100% 3.47 100% 6.42 100%| 7.86 100% 6.12 100%
fe 1.94 100%| 2.18 100% 1.95 100% 347 100%| 4.11 100% 3.41 100% 6.03 100%| 7.50 100% 5.89 100%
fr 1.96 100%| 2.21 100% 1.94 100% 3.53 100%| 4.14 100% 3.43 100% 6.20 100%| 7.57 100% 5.94 100%

TABLE III

EVALUATION OF ALL COMBINATIONS OF ONE OF THE SEVEN POSSIBLE OBJECTIVE FUNCTIONS WITH ONE OF THE THREE BOX CONSTRAINT ENCODINGS.
WE SHOW THE AVERAGE L2 DISTORTION, THE STANDARD DEVIATION, AND THE SUCCESS PROBABILITY (FRACTION OF INSTANCES FOR WHICH AN
ADVERSARIAL EXAMPLE CAN BE FOUND). EVALUATED ON 1000 RANDOM INSTANCES. WHEN THE SUCCESS IS NOT 100%, MEAN IS FOR SUCCESSFUL
ATTACKS ONLY.
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Initial problem:

Problem Reformulation:

Box Constraint:

Fianl Optimization Problem:

KAIST (SN s

L2 Attack

Find §, Minimize D(x, X + § ), suchthat C (x + §) =T
1 Use Gradient descent, Define Loss function

Find 8, Minimize D(X, X+ 6 ) + f(x + §)
1
o= > (tanh(w) +1) — x

1 Use L2 forD(X, X + &)

2
Find w, minimize ”% (tanh(w) + 1) — x ||2+ f(% (tanh(w) + 1))

21
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LO and Lo Attack

L, attack

- Lo is not differentiable
- Use iterative approach:
-Goal: find pixels that are not important and don’t have much effect on the classifier’s output

- Perform L, attack to find an adversarial example x +
- Identify the least important pixel and remove this pixel from the allowed set

- Iterate until the L, attack fails to find an adversarial example

L., attack

- Lo is not always differentiable
- gradient descent becomes stuck oscillating between two suboptimal point

- penalize § that have large values by introducing T
- iteratively decrease the size of T

minimize c¢- f(z + ) + - Z [(5i - T)+]

KAIST (SN s
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Evaluation

Evaluation #1: Comparing to Other Attacks
Evaluation #2: Breaking Current Defenses

Dataset: MNIST, CIFAR-10, and ImageNet

mmmmmmmmmmmmmmm
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Evaluation

« Evaluation #1: Comparing to Other Attacks

Best Case Average Case Worst Case
MNIST CIFAR MNIST CIFAR MNIST CIFAR

mean prob  mean prob || mean prob  mean prob || mean prob  mean prob

Our Ly 8.5 100% 5.9 100% 16 100% 13 100% 33 100% 24 100%

JISMA-Z 20 100% 20 100% 56 100% 58 100% 180 98% 150 100%

JSMA-F 17 100% 25 100% 45 100% 110 100% 100 100% 240 100%

Our Lo 1.36 100% 0.17  100% 1.76  100% 0.33 100% 2.60 100% 0.51 100%

Deepfool 2.11  100% 0.85 100% - - - - . - - -

Our Loo 0.13 100% 0.0092 100% 0.16 100% 0.013 100% 0.23 100% 0.019 100%

Fast Gradient Sign 0.22 100% 0.015  99% 0.26 42% 0.029 51% - 0% 0.34 1%

Iterative Gradient Sign 0.14 100% 0.0078 100% 0.19 100% 0.014 100% 0.26 100% 0.023 100%

Best Case Average Case Worst Case Untargeted Average Case Least Likely

MNIST CIFAR MNIST CIFAR MNIST CIFAR mean  prob || mean  prob || mean  prob
mean prob mean prob || mean prob mean prob || mean prob mean prob Our Lo 48  100% 410  100% 5200 100%
P JISMA-Z B 0% - 0% - 0%
Our Lg 10 100% 7.4 100% || 19 100% 15 100% || 36 100% 29 100% JSMA-F ) 0% ) 0% ) 0%
Our L2 1.7 100% 0.36 100% || 2.2 100% 0.60 100% || 2.9 100% 0.92 100% Our L 032 100% 096 100% 222 100%
Our L 0.14 100% 0.002 100% || 0.18 100% 0.023 100% || 0.25 100% 0.038 100% Deepfool 0.91 100% - - - -
Our Loo  0.004 100% 0.006 100% 0.01 100%
TABLE VI FGS 0.004 100% 0.064 2% 0%
8 0 A (V] - (4]
COMPARISON OF OUR ATTACKS WHEN APPLIED TO DEFENSIVELY DISTILLED NETWORKS. COMPARE TO TABLE[IV|FOR UNDISTILLED NETWORKS. 1GS 0.004  100% 0.01 99% 003 98%
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Evaluation

« Evaluation #1: Comparing to Other Attacks

Original Previous Attack

CW attack
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DOG

Hummingbird
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Evaluation

Hummingbird
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DOG (83%)
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Hummingbird (98%
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Defending Against
Adversarial Examples

Evaluation #2: Breaking Current Defenses

Huang, R., Xu, B., Schuurmans, D., and Szepesvari, C. Learning with a strong adversary. CoRR, abs/1511.03034 (2015)

Jin, J., Dundar, A., and Culurciello, E. Robust convolutional neural networks under adversarial noise. arXiv preprint arXiv:1511.06306 (2015)

Papernot, N., McDaniel, P., Wu, X., Jha, S., and Swami, A. Distillation as a defense to adversarial perturbations against deep neural networks. IEEE Symposium on Security and Privacy
(2016) Hendrycks, D., and Gimpel, K. Visible progress on adversarial images and a new saliency map. arXiv preprint arXiv:1608.00530 (2016)

Li, X., and Li, F. Adversarial examples detection in deep networks with convolutional filter statistics. arXiv preprint arXiv:1612.07767 (2016)

Wang, Q. et al. Using Non-invertible Data Transformations to Build Adversary-Resistant Deep Neural Networks. arXiv preprint arXiv:1610.01934 (2016).

Ororbia, I. 1., et al. Unifying adversarial training algorithms with flexible deep data gradient reqularization. arXiv preprint arXiv:1601.07213 (2016).

Wang, Q. et al. Learning Adversary-Resistant Deep Neural Networks. arXiv preprint arXiv:1612.01401 (2016).

Grosse, K., Manoharan, P., Papernot, N., Backes, M., and McDaniel, P. On the (statistical) detection of adversarial examples. arXiv preprint arXiv:1702.06280 (2017)

Metzen, J. H., Genewein, T., Fischer, V., and Bischoff, B. On detecting adversarial perturbations. arXiv preprint arXiv:1702.04267 (2017)

Feinman, R., Curtin, R. R, Shintre, S., Gardner, A. B. Detecting Adversarial Samples from Artifacts. arXiv preprint arXiv:1703.00410 (2017)

Zhitao Gong, Wenlu Wang, and Wei-Shinn Ku. Adversarial and Clean Data Are Not Twins. arXiv preprint arXiv:1704.04960 (2017)

Dan Hendrycks and Kevin Gimpel. Early Methods for Detecting Adversarial Images. In International Conference on Learning Representations (Workshop Track) (2017)

Bhagoji, A. N., Cullina, D., and Mittal, P. Dimensionality Reduction as a Defense against Evasion Attacks on Machine Learning Classifiers. arXiv preprint arXiv:1704:02654 (2017)
Abbasi, M., and Christian G.. Robustness to Adversarial Examples through an Ensemble of Specialists. arXiv preprint arXiv:1702.06856 (2017).

Lu, J., Theerasit I., and David F. SafetyNet: Detecting and Rejecting Adversarial Examples Robustly. arXiv preprint arXiv:1704.00103 (2017)

Xu, W., Evans, D., and Qi, Y. Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks. arXiv preprint arXiv:1704.01155 (2017)

Hendrycks, D, and Gimpel, K. A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks. arXiv preprint arXiv:1610.02136 (2016)

Gondara, Lovedeep. Detecting Adversarial Samples Using Density Ratio Estimates. arXiv preprint arXiv:1705.02224 (2017)

Hosseini, Hossein, et al. Blocking transferability of adversarial examples in black-box learning systems. arXiv preprint arXiv:1703.04318 (2017)

Ji Gao, Beilun Wang, Zeming Lin, Weilin Xu, Yanjun Qi. DeepCloak: Masking Deep Neural Network Models for Robustness Against Adversarial Samples. In ICLR (Workshop Track) (2017)
Wang, Q. et al. Adversary Resistant Deep Neural Networks with an Application to Malware Detection. arXiv preprint arXiv:1610.01239 (2017)

Cisse, Moustapha, et al. Parseval Networks: Improving Robustness to Adversarial Examples. arXiv preprint arXiv:1704.08847 (2017).
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KAIST (SN s

29



Evaluation

* Defeat the strongest defense!
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Defensive distillation : Let’s not make our NN has high gradient

0.02

50: Probability Vector Predictions F(X)

0.02

T

DNN F trained at temperature T

!

!

Lt

Training Data X

Training Labels Y

oo =0
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Initial Network

Class
Probabilities
Knowledge

0.03
0.93

0.1 Probability Vector Predictions F*(X)

0.03

DNN F4(X) trained at temperature T

! T

: 0.02
& Training Data X oos Training Labels F(X) i

0.02
Distilled Network
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Evaluation

* Defeat the strongest defense!

Previous Attack CW attack
Original With Defensive distillation With Defensive distillation

KAIST CSML. e



Conclusion

+ Gradient descent work well with the adversarial example
+ Strongest attack ever at 2017

- White box model
- Attack is very slow
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Related Work

* Generative model vs Gradient optimization

» PGD: Towards Deep Learning Models Resistant to Adversarial Attacks
Gradient Descent work just fine!

KAIST

« AdvGan: Generating Adversarial Examples with Adversarial Networks
Use Generative Adversarial Network to generate the adversarial example
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T

Original instance

Real |_|
— D ::|> Lcan
M Adv I_I
g T+ g(.'II) Discriminator
= Perturbed instance / ST
Generator |

I

Target white-box |

.

Eudv

/distilled black-boX s « —— . =

Figure 1: Overview of AdvGAN
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Best Question

* Jio Oh

« Can we use Lagrangian dual to make convex function? Why use change
of variables?

* Taeung Yoon
« Can we use CW attacks refine the defensive distillation approach?

* Seunghyun Lee
 Can we define lower bound of the model roubutness?
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