It's all in your head(set): Side-channel attacks on AR/VR systems

Yicheng Zhang, Carter Slocum, Jiasi Chen and Nael Abu-Ghazaleh, USENIX Sec'23

> Presented by SeungHyun Lee @ KAIST Hacking Lab

What is **AR/VR**?

- Virtual Reality (VR) / Augmented Reality (AR) / Mixed Reality (MR)

AR/VR Systems

- Various commercial AR/VR devices for consumer & industrial use

Introduction

- User interacts with the AR/VR environment
- Multiple apps run concurrently, each providing a different service
 - Apps downloaded from the App Store, executed on the headset

Background: AR/VR Systems Architecture

Threat Model: Software Side-channel Attack

- A malicious program runs in the background
 - Standard application-level permissions
 - No physical access
 - Periodically probes performance counters & memory allocation APIs

Leakage Vectors

- Rendering Performance Counters:
 - Frame rate: CPU/GPU frame rate, refresh rate, GPU input latency, ...
 - Thread counters: Game/Render thread time, ...
 - Render task counters: Number of draw calls, Vertex count, ...
- Memory Allocation API:
 - App memory usage

Leakage Vectors

- Demonstrate three classes of attacks
 - Scenario 1. Spying on user interactions (Attack 1, 2, 3)

- Demonstrate three classes of attacks
 - Scenario 1. Spying on user interactions (Attack 1, 2, 3)
 - Scenario 2. Spying on concurrent applications (Attack 4)

- Demonstrate three classes of attacks
 - Scenario 1. Spying on user interactions (Attack 1, 2, 3)
 - Scenario 2. Spying on concurrent applications (Attack 4)
 - Scenario 3. Spying on the real-world (AR) / virtual (VR) environment (Attack 5)

Experimental Setup

- Two representative headsets
 - Microsoft Hololens 2 (AR) Windows XR SDK
 - Meta Quest 2 (VR) Oculus XR SDK
- Spy app implemented with both Unity & Unreal Engine
 - Runs as a normal user-space application in the background
- 10 volunteers

Attack Workflow

- 1. Record side-channel leakages from the malicious app
 - Training / Testing = 80 / 20%
- 2. Extract & rank useful statistical features from the time-series data
- 3. Train classifier candidates for inference attack
 - K-Nearest Neighbors (KNN)
 - Decision Tree (DT)
 - Random Forest (RF)
 - Light Gradient Boosting Machine (LightGBM)
 - Weighted Majority Rule Voting (Voting)

Attack 1: Hand gestures inference

- Victim: Interact with digital artifacts via hand gestures
- Spy: Collect signal patterns to infer victim's hand gestures

Attack 1: Hand gestures inference

- "Vertex count" performance counter
 - Number of vertices in existing 2D/3D scenes

Attack 2: Voice commands inference

- Victim: Communicate with the headset via voice commands
- Spy: Collect signal patterns to infer victim's voice commands

Attack 2: Voice commands inference

- "AppMemoryUsage" API
 - Current memory usage of **spy program***

Attack 3: Keystroke monitoring

- Victim: Enters keystrokes through virtual keyboard
- Spy: Monitors performance counters to infer digit inputs

Attack 3: Keystroke monitoring

- "Game thread time" & "Render thread time" performance counter
 - Execution time of game thread & render thread

Victim presses the digit

Attack 4: Concurrent app fingerprinting

- Victim: Launches a concurrent application on the AR/VR device
- Spy: Monitors performance counters to identify launched application

Attack 4: Concurrent app fingerprinting

- *"Frame time"* performance counter
 - Time taken between two consecutive frames

Attack 5: Bystander ranging

- Victim: Bystander steps into the field of view of an AR/VR device
- Spy: Profile leakage vectors to infer bystander distance

Render spatial mesh of surrounding environment*

Attack 5: Bystander ranging

- "CPU frame rate" performance counter
 - CPU time taken between two consecutive frames on the main thread
- The closer the bystander is, the bigger frame rate drop occurs

Evaluation

- All classifiers reach 89.2% ~ 93.9% correctness (F1 score)
 - Example for Attack 1: Hand gestures inference

	Hololens 2			Quest 2		
	F1	Prec	Rec	F1	Prec	Rec
KNN	53.6	55.4	54.2	57.9	58.3	58.8
DT	80.0	80.5	80.0	91.3	91.7	91.3
RF	86.6	86.6	86.7	93.7	93.8	93.7
LightGBM	84.7	86.7	85.0	89.0	91.9	90.0
Voting	89.2	89.3	89.2	91.3	91.9	91.3

Table 3: Hand gesture inference performance: F1 (%), Precision (%), and Recall (%) on Hololens and Quest.

Evaluation

- Most relevant features may differ across devices
 - Example for Attack 1: Hand gestures inference

	Features				
	Hololens 2	Quest 2			
CPU frame rate	approximate_entropy, sample_entropy, permutation_entropy	median			
Number of draw calls	benford_correlation	minimum, quantile			
GPU frame rate	<pre>approximate_entropy, sample_entropy, permutation_entropy</pre>	root_mean_square			
AppMemoryUsage	maximum, abs_energy	sum_values_mean , root_mean_square , abs_energy, c3			
Vertex count	benford_correlation	minimum			

Table 2: Top 10 features for classifying hand gestures on the Hololens and Quest (top 3 features are bolded).

Defense

- Access control on APIs & performance counters
 - Completely block access to potentially leaky APIs & counters (impractical)
 - Limit the precision or rate of performance counters

Defense

- Access control on APIs & performance counters
 - Completely block access to potentially leaky APIs & counters (impractical)
 - Limit the precision or rate of performance counters
 - Permissions-based system

Defense

- Access control on APIs & performance counters
 - Completely block access to potentially leaky APIs & counters (impractical)
 - Limit the precision or rate of performance counters
 - Permissions-based system
- Monitor abnormal monitoring or contention
 - False positives and overheads

Conclusion

- A new software side-channel attack on AR/VR systems
 - First to use rendering performance counters
- Presented a taxonomy of software side-channel attacks on AR/VR devices
- Demonstrated 5 end-to-end attacks against commercial AR/VR devices
- Suggested mitigations
- Future works?
 - Multi-user AR/VR systems
 - Better profiling systems for AR/VR

Limitation

- Only uses functionality exposed by high-level SDKs
 - There may exist low-level functionalities not exposed by high-level SDKs
- Attacks are simply variants of well-known side-channel attacks
 - Naghibijouybari et al., Rendered Insecure: GPU Side Channel Attacks are Practical [CCS'18]

Related Works

- Kohno et al., Display Leakage and Transparent Wearable Displays: Investigation of Risk, Root
 Causes, and Defenses (Microsoft Technical Report, 2015)
 - Headset display leakage to a bystander
- Ling et al., I Know What You Enter on Gear VR [CNS'19]
 - Infer keystrokes via video recording (stereo camera) or motion sensor readings (SW)
- Arafat et al., VR-Spy: A Side-Channel Attack on Virtual Key-Logging in VR Headsets [VR'21]
 - Infer keystrokes via Wi-Fi channel state information (CSI) waveform side-channel
- Reddy et al., Hidden Reality: Caution, Your Hand Gesture Inputs in the Immersive Virtual World are
 Visible to All! [Sec'23]
 - Infer keystrokes via video recording

Related Works

- Meyer-Lee et al., Location-leaking through Network Traffic in Mobile Augmented Reality Applications [IPCCC'18]
 - Location inference attacks on mobile AR apps by probing network traffic information
- Shi et al., Face-Mic: inferring live speech and speaker identity via subtle facial dynamics captured by AR/VR motion sensors [MobiCom'21]
 - Biometrics and content inference from user speech by motion sensor side-channels
- Luo et al., HoloLogger: Keystroke Inference on Mixed Reality Head Mounted Displays [VR'22], Slocum et al., Going through the motions: AR/VR keylogging from user head motions [Sec'23]
 - Infer keystrokes by head motion tracking (+ even when typing by hand)

Related Works

- Future works: Privacy for <u>multi-user</u> AR/VR systems
 - Nair et al., Unique Identification of 50,000+ Virtual Reality Users from Head & Hand Motion Data [Sec'23]
 - Identification attack on 50k+ VR users from biomechanical data
 - Nair et al', Going Incognito in the Metaverse: Achieving Theoretically Optimal Privacy-Usability Tradeoffs in VR [UIST'23]
 - Differential privacy to obscure sensitive attributes on demand, a.k.a. "VR Incognito Mode"
- Microarchitectural side-channel & hardware attacks
 - Low-level hardware performance counters in CPU/GPU
 - Transient execution vulnerabilities
 - Rowhammer attacks on DRAM
 - Bus/Port contention side channels, and many more...

Good Questions

- Considering the potential impact on legitimate applications (precision reduction...), how to balance security measures to avoid interference with legitimate AR/VR applications? Is it still feasible without a real impact? (Valentin)
- Automatic tool to detect misbehavior application running on AR/VR systems? (Hobin)
- Does architectural similarity guarantee the same side-channels? (Dongok)

Best Questions

- For smartphones, app permission management is partly left to the user. What about implementing a similar idea in AR/VR devices? What role can the users have in controlling access to sensitive data and functionalities on their own devices? (Valentin)
- There are many side-channel attacks by monitoring memory consumption or other measurements. In other words, what are the differences in the research except for the target? (Hyeon)
- If two or three of these situations occur at the same time, will it be possible to distinguish the user's behavior? (**Seungmin**)

Thank You!