Too Afraid to Drive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous Driving Planning under Physical-World Attacks

> Ziwen Wan, Junjie Shen, Jalen Chuang, Xin Xia, Joshua Garcia, Jiaqi Ma, and Qi Alfred Chen

<u>A</u>utonomous & <u>S</u>mart <u>S</u>ystems <u>Guard</u> Research Group

Who is Qi Alfred Chen?

Research Interest: Al/Autonomous
 Vehicles/Intelligent Transportation Systems

• Publications

- Adversarial Sensor Attack on LiDAR-based Perception in Autonomous Driving (CCS '19)
- Drift with Devil: Security of Multi-Sensor Fusion based Localization in High-Level Autonomous Driving under GPS Spoofing (Usenix Security '20)
- Too Afraid to Drive: Systematic Discovery of Semantic DoS Vulnerability in Autonomous Driving Planning under Physical-World Attacks (NDSS '22)

The rise of Autonomous Driving (AD) vehicles

 High-level autonomous driving vehicles are already providing services without safety drivers.

Current status of AD security research

• We have witnessed security problems in high-level AD systems.

Question: Could planning (critical driving decision-making) also be vulnerable and thus exploitable to external attackers?

Our focus: Semantic vulnerability in AD planning

 Definition: causing planning to change a normal driving decision to an <u>unexpected</u> one

Our target: Behavioral Planning (BP)

• Functionality of BP: Makes mission-critical driving decisions, e.g., collision avoidance, lane changing

Threat model

- Attack vector: *attacker-controllable common* roadside objects
 - $\circ~$ e.g., dumped cardboard boxes, parked bikes on the road side

Consequence of semantic DoS vulnerability

Consequences

experience

Block traffic

Law violation in specific places

Overly-Conservative Behavior

- e.g., unnecessary sharp braking, stopping, giving up mission-critical driving decisions.

Semantic DoS vulnerability demo

As a human driver, how should you react to this scenario at the highway off-ramp?

- > Ignore them?
- Slightly slow down?

Now let's look into a demo we created with Autoware.Al.

Root cause of the DoS vulnerability

Drivable area (minimal value is (3.5 - 2*1.2)) < car width (2.11m) The AD vehicle thinks there is not enough space

PlanFuzz: Design challenges

• We design *PlanFuzz*, a novel dynamic testing tool to automate the semantic DoS vulnerabilities discovery

Solution: Planning Invariant (PI)

- To address challenge 1 (lack of testing oracles for semantic DoS vuln), we design planning invariant
 - Planning Invariants (PI) = planning scenario + desired planning behavior
 + attacker-controllable changes

Solution: Planning Invariant (PI)

 Systematically define PIs under 8 diverse scenarios with <u>temporal logic</u> to constraint static objects, and moving pedestrian/vehicles

PI Index Planning Scenario		Object Type	Constraints on Physical Objects	Desired Planning Behavior				PI-C1. Off-road and w/o any violation of the boundaries	
PII	Lane following (single-lane road)	Static obstacles Vehicles Pedestrians	PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on PI-C2. Follow the AD vehicle PI-C3. Drive on reverse lane PI-C445. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle plans to drive on	Keep cruising in the current lane	PI5	Intersection w/ stop sign	Static obstacles Vehicles Pedestrians	of the lanes the AD vehicle plans to drive on and the intersection the AD vehicle is going to pass PI-C2 . Follow the AD vehicle PI-C3 . Drive on other lanes except current and targeted lanes PI-C4+5 . Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle plans to drive on	Pass intersection w/ stop sign following the traffic rule
PI2	Lane following (multiple-lane road)	Static obstacles Vehicles Pedestrians Static obstacles	PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on PI-C2. Follow the AD vehicle PI-C3. Drive on other lanes PI-C4+5. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle plans to drive on PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on	Keep cruising in the current lane	PI6	Intersection w/ traffic signa	Static obstacles I Vehicles Pedestrians	 PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on and the intersection the AD vehicle is going to pass PI-C2. Follow the AD vehicle PI-C3. Drive on other lanes except current and targeted lanes PI-C4+5. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle vehicle vehicle or the innes the drive whice lanes the drive or drive or 	Pass intersection w/ traffic signal following the traffic rule
PI3	Lane changing	Vehicles Pedestrians	PI-C2. Follow the AD vehicle PI-C3. Drive on other lanes except current and targeted lanes PI-C4+5. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle plans to drive on PI-C1. Off-road and w/o any violation of the boundaries		PI7	Bare intersection	Static obstacles Vehicles	PI-C1. Off-road and w/o any violation of the boundaries of the lanes the AD vehicle plans to drive on and the intersection the AD vehicle is going to pass PI-C2. Follow the AD vehicle PI-C3. Drive on other lanes excent current and targeted lanes	Pass the bare intersection
PI4	Lane borrow (due to a blocking obstacle)	Static obstacles Vehicles Pedestrians	of the lanes the AD vehicle plans to drive on SP-PI-CI. On-lane and in front of the blocking obstacle PI-C2. Follow the AD vehicle PI-C3. Drive on other lanes except current and targeted lanes SP-PI-C2. On-lane and park in front of the blocking obstacle PI-C4+5. Off-road and w/o any intention to move towards to be AD arbitle are the larger the AD arbitle larget to drive an	Finish borrowing the reverse lane and pass blocking vehicle	PI8	Parking	Pedestrians Static obstacles Vehicles Pedestrians	PI-C4+5. Off-road and w/o any intention to move towards to the AD vehicle or the lanes the AD vehicle plans to drive on SP-PI-C4. Parked on other parking spots SP-PI-C5. Walking pedestrians moving away from AD vehicle	Park into an empty targeted parking spot
			the AD vehicle of the lanes the AD vehicle plans to three of						

Table IV: Summary of Planning Invariants (PI) identified and used in the paper.

Solution: PI-aware physical-object generation

Solution: BP vulnerability distance

- To address challenge 3 (lack of efficient guidance)
 - We propose **BP vulnerability distance**, which is a **gray-box** guidance.

<u>Key idea:</u> Use the distance between operands in decisionrelated predicates to guide driving decision changes

Offline static analysis:

- Extract control/data dependency
- Generate BP vuln. distance profile for instrumentation

Online dynamic analysis:

- Calculate BP vuln. dist. at runtime

Solution: BP vulnerability distance

Evaluations: DoS semantic vulnerabilities discovery

- **9 previously unknown** semantic DoS vulnerabilities from **3 BP implementations** of Baidu Apollo and Autoware.AI (full-stack open-source AD software)
 - Causes: 1 due to <u>implementation bug</u>, 8 due to overly-conservative <u>planning</u> <u>parameters</u> (e.g., safety buffer, angle threshold) & overly-conservative <u>estimation</u> <u>of surrounding object intentions</u> (e.g., from pedestrians, parked bicycles)
- Diverse driving scenarios
 - <u>28,789</u> BP decision snapshots from <u>40</u> driving traces & <u>8</u> different scenario types

Lane following

Lane changing

Lane borrowing

Intersection passing

More evaluations in the paper...

Exploitation case studies

Fail to change lane (due to following vehicle) Lane-changing scenario

Limitations and Future Work

- Testing Method: E2E vs Module Testing
 - Result from module testing ≠ real-world vulnerability

• Input Generation

- 8 driving scenarios with 40 driving traces
- Uncovered scenario still exists.. (etc. Emergency scenarios in Baidu Apollo)

Conclusion

First to perform AD planning-specific semantic vulnerability discovery with **a domain-specific vulnerability definition** and **a practical threat model**

- Design *PlanFuzz*, a **novel dynamic testing** approach that addresses various problem-specific design challenges
- We evaluate *PlanFuzz* on **two** practical open-source **full-stack** AD systems and discover **9** previously-unknown DoS vulnerabilities
- Perform exploitation case studies of **3 diverse driving scenarios** with simulation and driving traces collected from **a real AD vehicle**
- Inform **24 companies** developing AD vehicles

Thank you!

For more demos, source code release, and other details, Please visit our project website:

https://sites.google.com/view/cav-sec/planfuzz

Scan to visit our project website

AS²Guard

<u>A</u>utonomous & <u>S</u>mart <u>S</u>ystems <u>Guard</u> Research Group

