Software-based Realtime Recovery from Sensor Attacks on Robotic Vehicles

Choi, Hongjun, et al. 23rd International Symposium on Research in Attacks, Intrusions and Defenses (RAID 2020)

Presenter: SangminWoo@Syssec

Introduction

• RVs are becoming an integral part of our daily life.

Introduction

- Previous works only focused on detecting malfunctions.
- Proposed a new technique to recover from the malfunctions
 - Software sensor: Software backup of physical sensors

Background: Multi-sensor RVs

• Heterogeneous Sensor and Sensor Fusion on UAV

Background: Feedback Control Loop

Background: Sensor Attacks

Background: Existing Approaches

Sensor Fusion with Sensor Redundancy (TMR)

- ✤ Hardware Sensor Redundancy
 - Multiple HW sensors
 - Competitive (e.g., voting) or complementary way (e.g., weighted average)
- Heterogeneous Sensor Fusion
 - Use different types of sensors to measure states
 - Extended Kalman Filter
- Limitation
 - Attack resilient only for subset of sensors
 - Difficult to pinpoint the compromised sensor
 - cost

Contribution

- Propose a novel software-based technique: software sensors to recovery from sensor attacks
- ✤ Address prominent challenges:
 - How to generate software sensors using system identification?
 - How to recover from individual sensor failures?
 - How to improve software sensor accuracy considering external disturbances for practical usage?
- Comprehensive experiments on various RVs using attacks on one or multiple sensors

Software-sensor

1 main_loop() {

Control Program

Technical Challenges

- Efficiency: Spatial & Temporal
- ✤ Intrinsic errors
 - Model inaccuracy
 - Conversion errors
 - External disturbances
- Determining parameters

Design Overview

System Identification

System model predicts physical states changes

 $y(t) = \begin{bmatrix} 1.8651 & 16.8655 & 10.0631 \end{bmatrix} x(t) + \begin{bmatrix} 0 \end{bmatrix} u(t)$

Software Sensors

$\boldsymbol{\diamondsuit}$ Conversion Operation

- Convert predicted model states to sensor readings
- Conversion equation for each sensor with coordinate system transformation

Software Sensors

Practical Challenges

- Practical Limitations Inaccuracy
 - Conversion Error
 - Model Inaccuracy
 - External disturbances
- Errors are accumulated over time

Error Correction Techniques

Conversion error correction

Raw measurement

Smooth noise-robust differentiator

Corrected

Error Correction Techniques

Model error correction

Error Correction Techniques

Evaluation: Subject Systems

♦ 6 Vehicles (2 real / 4 simulated vehicles)

Туре	Model	Controller Software	Number of Sensors				
			G	A	M	В	P
Quadrotor	APM SITL	ArduCopter 3.4	2	2	1	1	1
Hexacopter	APM SITL	ArduCopter 3.6	2	2	1	1	1
Rover	APM SITL	APMrover2 2.5	2	2	1	1	1
Quadrotor	Erle-Copter	ArduCopter 3.4	2	2	1	1	1
Rover	Erle-Rover [†]	APMrover2 3.2	1	1	2	1	1
Quadrotor	3DR Solo [†]	APM:solo 1.3.1	3	3	3	2	1

* G: gyroscope, A: accelerometer, M: magnetometer, B: barometer, P: GPS † Real Vehicles

Erle-Rover

Evaluation: Setting

✤ Attack

- Simulate the physical attack with an attack code
- Modify sensor readings in sensor interfaces
- Controlled attack (e.g., random, selected values)
- ✤ Recovery

$$R_{succ} := |Y_t - \bar{Y}_t| \le \varepsilon, t \in [1...k]$$

 Y_t : real state \overline{Y}_t : prediction ε : error margink : time for recovery success

Gyro Attack Recovery on 3DR Solo

Gyro Attack Recovery

Stealthy GPS Attack on Erle-rover

Advanced Stealthy GPS attack: Random/Controlled Attack and Recovery

Attack Combination and Result Highlights

Performance Overhead

6.11

4.11 3.95

Related Work (Previous)

Choi, Hongjun, et al. "Detecting attacks against robotic vehicles: A control invariant approach." Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. 2018.

- Expect state output based on system modeling
- If the accumulated error in monitor window exceed a threshold, alarms the attack attempt.

Related Work (Work after this paper)

Dash, Pritam, et al. "Pid-piper: Recovering robotic vehicles from physical attacks." 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). IEEE, 2021.

- ML-based Feed Forward Controller
- FFC replaces PID controller if an attack is detected

Related Work (Work after this paper)

- Akowuah, Francis, et al. "Recovery-by-learning: Restoring autonomous cyber-physical systems from sensor attacks." 2021 IEEE 27th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA). IEEE, 2021.
 - LSTNet training for prediction model that exploits the temporal correlation among heterogeneous sensors
 - Checkpointer saves normal behavior if no attack detected.
 - If an attack is detected, state predictor generates proper input based on checkpoints.

Conclusion

- They proposed a novel software-sensor based real-time recovery technique for RVs
 - Support heterogeneous multiple sensor recovery
- ✤ The technique can't recover from..
 - Accumulated error during the recovery window
 - Undetectable small error attacks
- Evaluations were not persuasive
 - Why not real attack?
 - The explanation of attacks are not specific
 - Why only hovering?

Thank You!

