anonymous routing and mix nets (Tor)

Yongdae Kim

Significant fraction of these slides are borrowed from CS155 at Stanford

Anonymous web browsing

□ Why?

- 1. Discuss health issues or financial matters anonymously
- Bypass Internet censorship in parts of the world
- 3. Conceal interaction with gambling sites
- 4. Law enforcement

□ Two goals:

- ▶ Hide user identity from target web site: (1), (4)
- ▶ Hide browsing pattern from employer or ISP: (2), (3)
- Stronger goal: mutual anonymity (e.g. remailers)

Current state of the world I

- □ ISPs tracking customer browsing habits:
 - Sell information to advertisers
 - Embed targeted ads in web pages (1.3%)
 - » Example: MetroFi (free wireless)[Web Tripwires: Reis et al. 2008]
- Several technologies used for tracking at ISP:
 - NebuAd, Phorm, Front Porch
 - Bring together advertisers, publishers, and ISPs
 - » At ISP: inject targeted ads into non-SSL pages
- Tracking technologies at enterprise networks:
 - Vontu (symantec), Tablus (RSA), Vericept

Current state of the world II

- □ EU directive 2006/24/EC: 3 year data retention
 - For ALL traffic, requires EU ISPs to record:
 - » Sufficient information to identify endpoints (both legal entities and natural persons)
 - » Session duration
 - ··· but not session contents
 - Make available to law enforcement
 - » ··· but penalties for transfer or other access to data
- For info on US privacy on the net:
 - "privacy on the line" by W. Diffie and S. Landau

Part 1: network-layer privacy

Goals:

Hide user's **IP address** from target web site Hide browsing destinations from network

1st attempt: anonymizing proxy

HTTPS:// anonymizer.com ? URL=target

Anonymizing proxy: security

- Monitoring ONE link: eavesdropper gets nothing
- Monitoring TWO links:
 - Eavesdropper can do traffic analysis
 - More difficult if lots of traffic through proxy
- □ Trust: proxy is a single point of failure
 - Can be corrupt or subpoenaed
 - » Example: The Church of Scientology vs. anon.penet.fi
- □ Protocol issues:
 - Long-lived cookies make connections to site linkable

How proxy works

- Proxy rewrites all links in response from web site
 - Updated links point to anonymizer.com
 - » Ensures all subsequent clicks are anonymized
- Proxy rewrites/removes cookies and some HTTP headers
- □ Proxy IP address:
 - ▶ if a single address, could be blocked by site or ISP
 - ▶ anonymizer.com consists of >20,000 addresses
 - » Globally distributed, registered to multiple domains
 - » Note: chinese firewall blocks ALL anonymizer.com addresses
- Other issues: attacks (click fraud) through proxy

2nd Attempt: MIX nets

Goal: no single point of failure

MIX nets [Chaum'81]

- Every router has public/private key pair
 - Sender knows all public keys
- □ To send packet:
 - Pick random route: R2 → R3 → R6 → srvr
 - Onion packet:

$$E_{pk_2}(R_3, E_{pk_3}(R_6, E_{pk_6}(srvr, msg))$$

Eavesdropper's view at a single MIX

- Eavesdropper observes incoming and outgoing traffic
- Crypto prevents linking input/output pairs
 - Assuming enough packets in incoming batch
 - ▶ If variable length packets then must pad all to max len
- Note: router is stateless

Performance

Main benefit:

Privacy as long as at least one honest router on path

□ Problems:

- High latency (lots of public key ops)
 - » Inappropriate for interactive sessions
 - » May be OK for email (e.g. Babel system)
- No forward security

3rd Attempt: Tor MIX circuit-based method

Goals: privacy as long as one honest router on path,

and reasonable performance

The Tor design

- □ Trusted directory contains list of Tor routers
- User's machine preemptively creates a circuit
 - Used for many TCP streams
 - New circuit is created once a minute

Creating circuits

D-H key exchange

 K_2

 K_2

Once circuit is created

- User has shared key with each router in circuit
- Routers only know ID of successor and predecessor

Sending Data

Complete View

Properties

- □ Performance:
 - Fast connection time: circuit is pre-established
 - Traffic encrypted with AES: no pub-key on traffic
- □ Tor crypto:
 - provides end-to-end integrity for traffic
 - Forward secrecy via TLS
- □ Downside:
 - Routers must maintain state per circuit
 - Each router can link multiple streams via CircuitID
 - » all steams in one minute interval share same CircuitID

Privoxy

- Tor only provides network level privacy
 - No application-level privacy
 - » e.g. mail progs add "From: email-addr" to outgoing mail
- □ Privoxy:
 - Web proxy for browser-level privacy
 - Removes/modifies cookies
 - Other web page filtering

Anonymity attacks: watermarking

- □ Goal: R₁ and R₃ want to test if user is communicating with server
- □ Basic idea:
 - ▶ R_1 and R_3 share sequence: Δ_1 , Δ_2 , ..., $\Delta_n \in \{-10, \dots, 10\}$
 - ho R_1 : introduce inter-packet delay to packets leaving R_1 and bound for R_2 . Packet i delayed by Δ_i (ms)
 - ▶ Detect signal at R₃

Anonymity attacks: congestion

- □ Main idea: R₈ can send Tor traffic to R₁ and measure load on R₁
- Exploit: malicious server wants to identify user
 - Server sends burst of packets to user every 10 seconds
 - R₈ identifies when bursts are received at R₁ Follow packets from R₁ to discover user's ID

Tor Hidden Service

https://www.torproject.org/docs/hidden-services.html.en

