
BaseComp: 
A Comparative Analysis for Integrity 
Protection in Cellular Baseband Software
Eunsoo Kim*†, Min Woo Baek*†, CheolJun Park†, Dongkwan Kim‡,

Yongdae Kim†, Insu Yun†

†KAIST, ‡Samsung SDS



Baseband Software

Application 
Processor

Baseband 
Processor

Cellular Network Architecture

2



Baseband Software

Application 
Processor

Baseband 
Processor

Base StationRealtime 
Software

Cellular Network Architecture

3



Baseband 
Processor

Realtime 
Software

Application 
Processor

Malicious 
Base Station

Baseband Software
Attack Scenario

4



Baseband Software

Layer 3 Protocol Message

Security Checker

Message Decoder

Message Dispatcher

Handler A Handler B

Baseband 
Processor

Application 
Processor

Protocol Messages and Processing Logic

5

Layer 1 RF Signal



Baseband Software

Baseband 
Processor

Application 
Processor

Specification

6
TS 24.301 / 500 pages

TS 23.501 / 450 pages

3GPP (3rd Generation Partnership Project)



Baseband Software

• Large Binary Size 

• The baseband software has to implement 
documents of n*100 pages


• Average Binary Size: 43MB


• Average # Functions: 83K


• Obscurity 

• Vendors don't release the details

Baseband 
Processor

Application 
Processor

Challenges

7



Motivation

• Dynamic Analysis 

• DoLTEst (Security'22), Firmwire (NDSS'22)


• Sends messages and observes responses from real or emulated devices


• Has to restrict the search space leading to missing bugs


• Static Analysis / BaseSpec (NDSS'21) 

• Limited to message decoding and fails to analyze integrity protection


• The vast size and obscurity causes highly resource-consuming manual analysis

8

Existing Approaches (Related Work)



Motivation

• Static Analysis 

• Without having to restrict the search space 

• Comparative Analysis 

• Comparison with specification to uncover bugs in integrity protection 

• Probabilistic Inference 

• Reduce the amount of manual effort needed

9

Our Approach



BaseComp
Overview

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

10



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

11

Probabilistic Inference

Find the integrity protection function



BaseComp
Probabilistic Inference

Firmware

Specification

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

12

Find the integrity protection function

• Factor Graph


• Variable Node: unknown quantities in problem


• Function Node: function on subset of the variable nodes



BaseComp
Probabilistic Inference

Firmware

Specification

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

13

Find the integrity protection function

• Assumption


• Does encryption/decryption using AES/ZUC/SNOW3G


• Does message type filtering based on specification



BaseComp
Probabilistic Inference

Firmware

Specification

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

14

Find the integrity protection function

• Assumption


• Does encryption/decryption using AES/ZUC/SNOW3G


• Does message type filtering based on specification

• Steps


1. Identify MAC functions


2. Identify message type comparing functions


3. Put it all together



BaseComp
Probabilistic Inference

1. Identify MAC functions

func1

ZUC SNOW3G

func2

<Call Graph> 15

• Cryptographic functions identified by 
magic constants (S-Box)



BaseComp
Probabilistic Inference

1. Identify MAC functions

func1

ZUC

• Find common ancestors of 
cryptographic functions

SNOW3G

func1

ZUC SNOW3G

func2

<Call Graph> 16

ZUC SNOW3G

func2



BaseComp
Probabilistic Inference

1. Identify MAC functions

func1

ZUC SNOW3G

func2

<Call Graph> 17
<Factor Graph>

x1 x2

x1: func1 is the MAC function
x2: func2 is the MAC function

p(x1)=0.7 p(x2)=0.7



BaseComp
Probabilistic Inference

1. Identify MAC functions

func2

func1

func1

ZUC SNOW3G

func2
• Prioritize lower common 

ancestors

<Call Graph> 18



BaseComp
Probabilistic Inference

1. Identify MAC functions

func1

ZUC SNOW3G

func2

<Call Graph> 19
<Factor Graph>

x1 x2

x1: func1 is the MAC function
x2: func2 is the MAC function

f-pref

f-pref: prefer first node

p(x1)=0.8 p(x2)=0.6



{0x55, 0x44, 0x4B, 0x4E, 0x52, 0x54, 0x46}

BaseComp

2. Identify message type comparing functions

Probabilistic Inference

20



BaseComp

2. Identify message type comparing functions

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

<Constants used for comparison with variables>

func1

var1

var2

var3

21



BaseComp

2. Identify message type comparing functions

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

<Constants used for comparison with variables>

func1

var1

var2

var3

22

<Factor Graph for var1>

x1

x13

f+

x12x11

f+f+

p(x1_)=1.0

p(x1)=0.8



BaseComp

2. Identify message type comparing functions

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

<Constants used for comparison with variables>

func1

var1

var2

var3

23

<Factor Graph for var2>

x2

x23

f-

x22x21

f-f-

x24

f+

p(x2_)=1.0

p(x2)=0.3



BaseComp

2. Identify message type comparing functions

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

<Constants used for comparison with variables>

func1

var1

var2

var3

24

<Factor Graph for var3>

x3

x33

f-

x32x31

f-f-

x34

f-

p(x3_)=1.0

p(x3)=0.1



BaseComp

2. Identify message type comparing functions

Probabilistic Inference

{0x55,0x44,0x4B}

{0x41,0x42,0x43,0x44}

{0xDE,0xAD,0xBE,0xEF}

<Constants used for comparison with variables>

func1

var1

var2

var3

25

p(x3)=0.1

p(x2)=0.3

p(x1)=0.8



BaseComp
Probabilistic Inference

3. Put it all together

func1

MAC

func2

func1

message 
type

func1

MAC message 
type

func2
• Prioritize lower common 

ancestors

<Call Graph>

• Find common ancestors of

• MAC function

• Message type comparing 

function

26



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

27

Manual Analysis

Gather additional information to do symbolic execution



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

28

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

29

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

• Additional information about the firmware is required to process symbolic execution

Manual Analysis

30

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp
Manual Analysis

31

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware



BaseComp
Manual Analysis

32

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware



BaseComp
Manual Analysis

33

• Firmware-specific configuration

• Integrity protection function address

• MAC validation function address

• Security state address

• Deny-list of functions to prevent path explosion


• Required per-firmware

• Additional information about the firmware is required to process symbolic execution

• Vendor-specific analysis module

• How to symbolize variables

• How to decide if a message is accepted


• Required per-vendor



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

34

Symbolic Analysis

Collect constraints from the integrity protection function



BaseComp
Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function


• Collect constraints related to the message

35



BaseComp
Symbolic Analysis

• Under-constrained symbolic execution on the 
integrity protection function


• Collect constraints related to the message

36



BaseComp
Symbolic Analysis

sec_state == SECURE

0 < sec_hdr_type <= 3

37

• Under-constrained symbolic execution on the 
integrity protection function


• Collect constraints related to the message



BaseComp
Symbolic Analysis

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0

38

• Under-constrained symbolic execution on the 
integrity protection function


• Collect constraints related to the message



BaseComp
Symbolic Analysis

CheckSeq(message) == true && ValidateMac(message) == true

msg_type in {0x55, ... , 0x46}

sec_state == SECURE

0 < sec_hdr_type <= 3

sec_state != SECURE

sec_hdr_type == 0

Message is accepted!
39

• Under-constrained symbolic execution on the 
integrity protection function


• Collect constraints related to the message



BaseComp

Firmware

Specification

Mismatches

Probabilistic 
Inference

Manual 
Analysis

Comparative 
Analysis

Implementation 
Model

Reference 
Model

Symbolic 
Analysis

Specification 
Analysis

40

Comparative Analysis

Compare the two models and find mismatches



Evaluation

• Research Questions


1. How well can BaseComp find the integrity protection function?


2. How effectively can BaseComp discover bugs?


• Dataset


• 16 images (10, 5, 1 from Samsung, MediaTek, srsRAN respectively)


• ARM, MIPS(with 16e2 extension), and x86 architecture

Setup

41



Evaluation
How well can BaseComp find the integrity protection function?

42

G950 G955 G960 G965 G970 G975 G977 G991 G996 G998 Pro 7 A31 A31' A03s A145 srsran AVG

Size(MB) 41.2 41.8 41.5 41.6 44.0 44.3 44.3 66.6 66.3 66.3 17.8 22.5 22.5 16.8 17.0 92.9 43.0

Number 
of funcs

64K 61K 74K 74K 92K 75K 92K 103K 108K 103K 48K 94K 94K 65K 65K 96K 82K

Rank 1 1 1 1 1 1 1 3 1 3 2 2 2 2 2 1 1.56

<The rank of the integrity protection function for each firmware>

• Effectiveness



• Summary


• 34 Mismatches


• 29 True Positives


• 5 False Positives

Evaluation
How effectively can BaseComp discover bugs?

43

Samsung MediaTek srsRAN Total

Mismatches 9 10 15 34

False 
Positives 1 3 1 5

True 
Positives 8 7 14 29



Evaluation
How effectively can BaseComp discover bugs?

44



Case Study
NAS AKA Bypass Vulnerability

45

• NAS Authentication and Key Agreement



Case Study
NAS AKA Bypass Vulnerability

46

• NAS Authentication and Key Agreement bypass


• Attach Accept message to connect to malicious 
base station


• Send arbitrary NAS messages in plaintext


• Gather IMEI with Identity Request message


• Modify time with EMM Information message


• ...



Case Study
NAS AKA Bypass Vulnerability

47

• Delivering an arbitrary SMS message


• Sender


• 010-1000-1100


• Time


• January 3rd, 2030


• SMS Data


• Hello World!! from 2030



Conclusion

• Proposed a novel semi-automatic approach to analyze the integrity protection. 

• Probabilistic inference + Comparative analysis


• Found 29 bugs from Samsung, MediaTek and srsRAN images. 

• Including critical NAS AKA bypass vulnerabilities.

48



Good Questions

• Zhixian Jin


• Author pointed out that challenges regarding to the full automation, but is it really possible to 
overcome these challenge to make full automation for any kind of software that try to find the 
bug?


• 오지오


• Despite the risk of performance, are there any studies that fully automated these kinds of 
analyses in cellular softwares?


• 이승현


• Is BaseComp still able to identify the integrity protection function properly if some or all of 
the MAC functions or message type comparing functions are inlined into another function?



Best Questions

• 윤태웅


• Can you elaborate more on the trade-offs between static and dynamic techniques in the 
context of integrity protection analysis, and when might one approach be more suitable 
than the other?


• 오지오


• Are there any ML approaches to convert these natural languages to structured data for 
software analyses or for attack?


• 오성룡


• Is it hard for an attacker to find vulnerability on Hexagon architecture?



Backup Slides



Case Study
NAS AKA Bypass Vulnerability

52

sec_state != SECURE

sec_hdr_type != 0

sec_hdr_type > 3

Message is accepted!

(regardless of any other element of the message)

• NAS Authentication and Key Agreement bypass



ML used in Cellular Security

• Sherlock on Specs


• Utilizes natural language processing and machine learning on 3GPP 
specification to perform automated reasoning on events.


• Yi Chen et al., "Sherlock on Specs: Building LTE Conformance Tests 
through Automated Reasoning", Usenix Security 2023


