De-anonymizing Programmers
via Code Stylometry

(USENIX 157)
Aylin Caliskan-Islam Richard Harang
Drexel University U.S. Army Research Laboratory
Arvind Narayanan Clare Voss
Princeton University U.S. Army Research Laboratory

Rachel Greenstadt
Drexel University

Andrew Liu
University of Maryland

Fabian Yamaguchi
University of Goettingen

Presenter: Dongok Kim

KAIST #Hacking Lab

Stylometry,

Introduction P—

De-anonymization

KAIST #Hacking Lab

Stylometry

Stylometry

> The statistical analysis of variations in literary style between one writer or genre and another.

-

"o
For sales
Baby shoes. Never worn."

g Hemingway

Art Literature Chess play(?)

KAIST Lab

Source code Stylometry

e Everyone has unique coding tastes ifﬂg;?r;g {
o Indentation character, newline before brackets... } E;i‘(*){
o Monolithic/modular, for/while... }
if (var)
foo();
else
e Source code can also incorporate stylometry p

KAIST Lab

Anonymity and De-anonymization

e Anonymity == Indistinguishability
e De-anonymization
== Distinguish something from (should be) indistinguishable set

KAIST Lab

De-anonymizing Programmers via Code Stylometry

) —
1010 sf%§§

|00I <[>

KAIST Lab

Why and How

M Otlvat| on Source code Stylometry and

Programmer de-anonymization is

Important?

KAIST #Hacking Lab

Importance of Source code Privacy & De-anonymization

» WANTED
BY THE FBI

Satoshi Nakamoto

Born: Unknown

Creator(s) of Bitcoin
Cryptocurrenc Y

« Pseudonym; true identity has not been
verified or revealed

« Authored the Bitcoin whitepaper

2 Investopedia . KIM IL PARK JIN HYOK

(’) Source code stylometry
KAIST is the key of privacy & security

Lab

Analyst’s interests

De-anonymization of Ghostwriting detection Software forensics

programmer

Copyright investigations Authorship verification
KAIST PyT3 g P Lab

Ap p roaCh es SCFS and Random Forest

Approaches

KAIST #Hacking Lab

Approaches Overview

extractor

T W T

i e
A ¥ 3 W W
- = i = = i =

R
a Syntactic feature > alu{Gfﬂ/ Tm
f

Random forest regression
Classifier

print “hello, world!”

Source code
dataset

Lexical / Layout feature
KAIST extractor Lab

Code Stylometry Feature Set (CSFS)

-

[a—

o Lexical feature e Layout feature e Syntactic feature
o # of ternary operations o #oftabs Max AST node depth
o # of comments © #of spaces Avg AST node depth
o # of literals 2 # of empty line C/C++ keyword
(@)
@]

o O O O

Bracelets before/after newline

KAIST #Hacking Lab

Random Forest Classification

e Perform random forest classification
o 300 decision trees
o log(# of total feature) + 1 random feature set

6 5
Final Prediction:

KAIST #Hacking Lab

Effectiveness,

Robustness,

Eval uatlon Generalizability and

Limitations

KAIST #Hacking Lab

Effectiveness - Authorship Attribution

A = #programmers, F = max #problems completed
N = #problems included in dataset (N < F)
A =250 from 2014 | A =250 from 2012 | A = 250 all years
F =9 from 2014 F =9 from 2014 F = 9 all years

Multi-class N=9 N=9 N=9
Closed World Task

Average accuracy after 10 iterations with 1G-CSFS features

95.07 % 96.83% 98.04 %

KAIST Lab

Effectiveness - Authorship Attribution

e A0 S

Multi-class Two-class Two-class/One-class
Open World Task Closed World Task Open World Task
96.67% 100% 100% for Mallory
on 30 classes 82.04% for non-Mallory

KAIST Lab

Robustness - Obfuscation (STUNNIX)

KAIST

#ifdef __STL_USE_EXCEPTIONS
externvoid __out_of_range (const char *);
#define OUTOFRANGE(cond, msg) \
do { if (cond) _out_of_range (#cond); } while(0)
#else
#include <cassert>
#define OUTOFRANGE(cond, msg) assert (! (cond))
#endif

template < class charT, class traits, class Allocator>
basic_string < charT, traits, Allocator> &
basic_string < charT, traits, Allocator> :

replace (size_type pos1, size_type n1,

#ifdef 27929401884
extern void za41dafc42e(const char*) ;
#define z1c52ffdd48(z22fc207d33, zde05b8b1b0) \

do { if (z22fc207d33) zad1dafcd2e (#z22fc207d33); } while ((0x1fb1+1115-

0x240¢))
#else
#include <cassert>

#define z1c52ffdd48(z22fc207d33, zde05b8b1b0) z7bd0031cc2 (! (z22fc207d33)

#endif

template< class zd9cfc9cefe, class z9cdf2cd536, class Allocator> basic_string<
zd9cfc9cefe, z9cdf2cd536, Allocator> & basic_string=< zd9cfc9cefe, z9cdf2cd536,
Allocator> :: replace(size_type z795f772c7c, size_type zddd43c876a,

ranct hacir ctrinaf ctr ciza tuna 722A17da272 ciza tuna 73 2abfNGEFAda) 1

Obfuscator| Programmers | Lang | Results w/o | Results w/
Obfuscation Obfuscation

Stunnix 20 C++ 98.89% 100.00%

Stunnix 20 C++ 08.89*% 98.89*%

#Hacking Lab

Robustness - Obfuscation (TIGRESS)

Virtualize i JitDynamic Flatten

Turn a function into a Turn a function into one Turn a function into ane Remove control flow
specialized interpreter. that generates its code that continously from a function.
at runtime. transforms itself.

EEE] Sl & A - LY

Obfuscator| Programmers | Lang | Results w/o | Results w/
Obfuscation
Tigress 20 C 93.65%
Tigress 20 95.91*%

I 58.33%
67227%

x=6; x=Ex(6); X——y—1 call bf
y=T; y=Ex(7); _) (xoy)+2:(xay) .) void bf() {
2=y | z=xy; Y=Y vy (xay) Imp L prah
print z; print Dk(z); 2:(xvy)=(x@y) return;

Encode Data Enc. Arithmetic

Encode External

Encode Branches

Replace integer

Replace integer
arithmetic with more

Hide API calls such as
system calls and library
calls.

Make it harder to
variables with different
representations.

dtermine the target of

complex expressions. branches.

KAIST #Hacking Lab

Generalization - Python

KAIST

VS

Lang. | Programmers| Classification| IG Top-5 Top-5 IG
Python | 23 87.93% 79.71% | 199.52% || 96.62
Python | 229 53.91% 39.16% | [75.69% || 55.46

#Hacking Lab

Takeaways

If the given codes are

A-" f VT

...from difficult tasks, ...from skilled programmers

) Easy to attribute

KAIST #Hacking Lab

Limitation

e Multi-authorship problem
o Pair programming
o Knowledge sharing
o Generative Al

e Coding style normalized problem
o Layout policy
o Layout specification
o Linter

A
PEP ¢

KAIST #Hacking Lab

Conclusion

KAIST #Hacking Lab

Conclusion

e First work that utilize stylometry features for source code stylometry
o ...along with lexical/layout features

e Shows >90% acc. in classifying 1600 authors from Google code jam

e Motivate future researches

o Binary-only code feature set
o Classification accuracy improving

KAIST #Hacking Lab

Re I ated WO rkS Previous, and Future works of

Code Stylometry Research

KAIST #Hacking Lab

Related works - Previous works

KAIST

Related Work # of Programmers Results
Pellin [23] 2 73%
MacDonell et al.[21] 7 88.00%
Frantzeskou et al.[14] 8 100.0%
Burrows et al. [9] 10 76.78%
Elenbogen and Seliya [11] 12 74.70%
Kothari et al. [18] 12 76%
Lange and Mancoridis [20] 20 75%
Krsul and Spafford [19] 29 73%
Frantzeskou et al. [14] 30 96.9%
Ding and Samadzadeh [10] 46 67.2%
This work 8 100.00%
This work 35 100.00%
This work 250 98.04 %
This work 1,600 92.83 %

Lab

Related works - Future works

Advanced Prediction Mechanism

? Large-Scale and Language-Oblivious Code

Authorship ldentification
(CCS '18)
I Misleading Authorship Attribution of Source Code

using Adversarial Learning
(USENIX '19)

A 4

l Current Paper

(USENIX 15)

When Coding Style Survives Compilation:

De-anonymizing Programmers from Executable Binaries
(NDSS 18')

Improved Stylometry Model
KAIST #Hacking Lab

Related works - Misc

e Code similarity
o Neural Machine Translation Inspired Binary Code Similarity Comparison beyond Function
Pairs (NDSS 19’)
o Finding Bugs Using Your Own Code: Detecting Functionally-similar yet Inconsistent Code

(USENIX 21°)
o How Machine Learning Is Solving the Binary Function Similarity Problem (USENIX 22’)

e De-anonymization

o Deanonymization in the Bitcoin P2P Network (ACM 17°)

o Online Website Fingerprinting: Evaluating Website Fingerprinting Attacks on Tor in the
Real World (USENIX 22’)

o Him of Many Faces: Characterizing Billion-scale Adversarial and Benign Browser
Fingerprints on Commercial Websites (NDSS 23’)

o Assessing Anonymity Techniques Employed in German Court Decisions: A De-
Anonymization Experiment (USENIX 23’)

KAIST #Hacking Lab

Q&A

KAIST #Hacking Lab

Q&A - Good Questions

e H{SHY: Variable name as a feature set?
o Could be, but might less impactful (obfuscation, too skewed, etc)

e O|&=: Can you analyze people from different languages using just one
language code?
o Based on this paper’s approaches, not straightforward (but can be generalized)

o 2 E: Effective method against obfuscation?
o It depends

KAIST #Hacking Lab

Q&A - Best Questions

e 0O|&%: What is the significance of the threshold level "15%"? Is this still
meaningful for N '= 307 What statistical guarantees that threshold levels
provide?

o Authors should justify their threshold level for other cases for meaningful results.
e O ?: Other code stylometry feature sets than lexical, layout, and syntactic

features to improve de-anonymizing?
o TF-IDF (Term Frequency - Inverse Document Frequency), disassembly / CFG for binary, etc.
e JIN ZHIXIAN: Difficult task -> likely attributes?? Isn’t it leads collaboration &
source code normalization?

o GCJ has a competitive-programming code set. The paper assumes there is a difficult task
given to only one programmer.

KAIST #Hacking Lab

Thank you

KAIST #Hacking Lab

	De-anonymizing Programmers via Code Stylometry
(USENIX 15’)
	Introduction
	Stylometry
	Source code Stylometry
	Anonymity and De-anonymization
	De-anonymizing Programmers via Code Stylometry
	Motivation
	Importance of Source code Privacy & De-anonymization
	Analyst’s interests
	Approaches
	Approaches Overview
	Code Stylometry Feature Set (CSFS)
	Random Forest Classification
	Evaluation
	Effectiveness - Authorship Attribution
	Effectiveness - Authorship Attribution
	Robustness - Obfuscation (STUNNIX)
	Robustness - Obfuscation (TIGRESS)
	Generalization - Python
	Takeaways
	Limitation
	Conclusion
	Conclusion
	Related works
	Related works - Previous works
	Related works - Future works
	Related works - Misc
	Q&A
	Q&A - Good Questions
	Q&A - Best Questions
	Thank you

