

Yongdae Kim

SysSec@KAIST

joint work with many of my students and collaborators

Drones in Ukraine War

Chinese drone firm DJI pauses 04/2022 operations in Russia and Ukraine

DJI ADMITS DRONE AEROSCOPE SIGNALS ARE NOT 05/2022 **ACTUALLY ENCRYPTED**

Ukrainians Say Russia is Still Tracking Their Drones with DJI AeroScope

- Oct. 6th 2022 2:04 am PT 🍠 @IshveenaSingh

05/2022

10/2022

07/2022

Drone Systems and Attack Vectors

Requirements for Anti-Drone

Low Power Long Distance

Accuracy

Hard to Bypass

Direction Control Minimize Collateral Damage Near Zero Response Time Handling Swarming

Drones

Drone Neutralization Technologies

Туре	Technology	Strength	Weakness	Response Time
Physical	Machine Gun	Cost	Accuracy, Collateral damage	≈ 0
	Net, Colliding Drone	Cost	Accuracy, Reload	<10 sec
	Sound	Swarm attack	Distance, Power, Bypass, Aiming	<10 sec
	High-power laser	Accuracy, Distance	Response time, Cost, Swarm	>10 sec
Electro- magnetic	RF jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	GNSS jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	High-power EM	Swarm, Distance	Cost, Collateral damage	≈ 0
	Targeted EM	Power, Swarm, Distance	Cost	≈ 0
Hijacking	GNSS spoofing	Hijacking, Distance	Collateral damage, Response time	<10 sec
	Software hijacking	Cost	Need vulnerability	

Communication

Drone Controller

- Just a RC controller
- Frequency: 2.4GHz
- ❖ Modulation: FHSS (Freq. Hopping Spread Spectrum)
 - Channel rapidly switches pseudo-randomly

Reactive jamming test

Positioning Channel

GNSS (GPS) Spoofing and Jamming

- ❖ No authentication and encryption for commercial GPS (GNSS)
- GNSS is used for localization and time synchronization
- Signal from satellite is weak.
- GNSS jamming causes loss of lock (wrong position or time)
- GNSS spoofing may cause much serious problems.
- Consideration for GNSS spoofing?
 - Fail-safe mode design
 - Hard vs. Soft spoofing (or seamless takeover)

Hard GPS spoofing + Failsafe Bypass

Soft GPS Spoofing (Receiver)

Soft GPS Spoofing

Sensing Channel

How Drone Control Works

How Rocking Drone Control Works

MEMS Gyro. & Sound Noise

Experimental Results

- Found the resonant frequencies of 7 MEMS gyroscopes
- Not found for 8 MEMS gyroscopes

Sensor	Vender	Supporting Axis	Resonant freq. in the datasheet (axis)	Resonant freq. in our experiment (axis)
L3G4200D	STMicro.	X, Y, Z		7,900 ~ 8,300 Hz (X, Y, Z)
L3GD20	STMicro.	X, Y, Z	No detailed information	19,700 ~ 20,400Hz (X, Y, Z)
LSM330	STMicro.	X, Y, Z		19,900 ~ 20,000 Hz (X, Y, Z)
MPU6000	InvenSense	X, Y, Z	30 ~ 36 kHz (X)	26,200 ~ 27,400 Hz (Z)
MPU6050	InvenSense	X, Y, Z	27 ~ 33 kHz (Y)	25,800 ~ 27,700 Hz (Z)
MPU9150	InvenSense	X, Y, Z	24 ~ 30 kHz (Z)	27,400 ~ 28,600 Hz (Z)
MPU6500	InvenSense	X, Y, Z	25 ~ 29 kHz (X, Y, Z)	26,500 ~ 27,900 Hz (X, Y, Z)

Attack Demo

Rocking Drone Experiments

Test Results

Raw data samples of the gyroscope

Rotor control data samples

Remote Experiments

Attack Distance

- The minimum sound pressure level in our experiments
 - About 108.5 dB SPL (at 10cm)
- Theoretically, 37.58m using a sound source that can generate 140 dB SPL at 1m

Anti-Drone Technologies

Туре	Technology	Strength	Weakness	Response Time
Physical	Machine Gun,	Cost	Accuracy, Collateral damage	≈0
	Net, Colliding Drone	Cost	Accuracy, Reload	<10 sec
	Sound	Swarm attack	Distance, Power, Bypass, Aiming	<10 sec
	High-power laser	Accuracy, Distance	Response time, Cost, Swarm	>10 sec
Electro- magnetic	RF jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	GNSS jamming	Cost, Distance	Collateral damage, Response time, Bypass	>10 sec
	High-power EM	Swarm, Distance	Cost, Collateral damage	≈ 0
	Targeted EM	Power, Swarm, Distance	Cost	≈ 0
Hijacking	GNSS spoofing	Hijacking, Distance	Collateral damage, Response time	<10 sec
	Software hijacking	Cost	Need vulnerability	

THOR US Military

Rocking Drone: Control System

Paralyzing Drone: Control System

Conclusion

- Arms race in Ukraine: anti-drone vs. counter-anti-drone
- What attacks should be in scope?
- RL under adversarial environment?
- * "Perception and identification" is also very important.

Best Questions

- Seunghyun Lee: Would this be mitigated with a low-pass filter in between the MEMS gyroscope output and flight control software?
 - Un-Rocking Drones: Foundations of Acoustic Injection Attacks and Recovery Thereof, Jinseob Jeong et al, NDSS'23

- Dongok Kim: will it be possible to adopt a visual sensor attack targeting the visual sensor of an autonomous driving system?
- Suhwhan Jeong: Can other components of drones could be affected due to their resonant frequency?

Good Questions

- Using Bluetooth seems too expensive as an attack vector?
- Could an attacker aim sound noise at a target drone?
- Are there other benefits when the attack frequency is 'audible'?
- Is there any software based defense method for this attack?
- Are other MEMS sensors like accelerometers and barometers also vulnerable?
- Can this attack affect other sensors causing a critical problem?
- How did real-world drones overcome this attack?
- Are there any alternatives than MEMS gyroscopes?
- Is the attack more powerful than attacks using EMI injection?
- Is an attack possible even for a fibre optic gyroscope?
- Even with physical isolation, is this attack still possible?
- Will it self-attack due to the noise generated by their propellers during operation?

Questions?

Yongdae Kim

- email: yongdaek@kaist.ac.kr
- Home: http://syssec.kaist.ac.kr/~yongdaek
- Facebook: https://www.facebook.com/y0ngdaek
- Twitter: https://twitter.com/yongdaek
- Google "Yongdae Kim"

