Mining Your Ps and Qs:
Detection of Widespread Weak
Keys in Network Devices

N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman,
USENIX Sec'12

20203590 Hyunsik Jeong

Intro

 Detecting weak keys/signatures in the wild
» Collected public keys/certificates

* Tried to figure out how weak keys/signatures were generated

Public keys and Randomness

 Public key cryptography used everywhere! —
+ TLS (used in HTTPS), SSH, ... WZ00m

« Based on randomly generated secret keys

Public keys and Randomness

 Public key cryptography used everywhere!
e TLS (used in HTTPS), SSH, ...

« Based on randomly generated secret keys
« What if they are not random?

int getRandomNumber ()

return Y. // chosen by fair dice roll.
// Quaranteed to be random.

}

from: xkcd (https://www.explainxkcd.com/wiki/index.php/221:_Random_Number)

Collecting public keys

Finding Hosts

Nmap from EC2 Port 443 (HTTPS) Port 22 (SSH)

25 hosts, ~25 hours 29 million hosts 23 million hosts
Retrieving Keys Port 443 (HTTPS) Port 22 (SSH)
Event Driven Process - -

3 hosts, <48 hours 13 million hosts 10 million hosts
Parsing Certs Certificates

OpenSSL, database 6 million certificates

(2 million browser-trusted)

What could go wrong?

1. Repeated keys

Repeated keys

SSL Observatory Our TLS scan Our SSH scans

(12/2010) (10/2011) (2-4/2012)

Hosts with open port 443 or 22 ~16,200,000 28,923,800 23,237,081
Completed protocol handshakes 7,704,837 12,828,613 10,216,363
Distinct RSA public keys 3,933,366 5,656,519 3,821,639
Distinct DSA public keys 1,906 6,241 2,789,662
Distinct TLS certificates 4,021,766 5,847,957 —
Trusted by major browsers 1,455,391 1,956,267 —

e TLS: 7,770,232 hosts (61%)
* SSH: 6,642,222 hosts (65%)

Shared keys

Non-vulnerable reasons for shared keys

« Corporations shared keys across
certificates

» Shared hosting providers ' B viders

10°
[Unknown/other

Number of repeats

Vulnerable reasons for shared keys
 Default certificates and keys
* Low entropy problems

]04 o

50 most repeated RSA SSH keys

What could go wrong?

1. Repeated keys

2. Repeated factors in RSA keys

RSA revisited

» Generate two random prime numbers p, q

 Public key: (e,N), N = pq (Usually e = 65537)
* Private key: d = e (mod ¢p),¢p = (p — 1)(q — 1)

« Why is it difficult to break?

RSA revisited

» Generate two random prime numbers p, q

 Public key: (e,N), N = pq (Usually e = 65537)
* Private key: d = e (mod ¢p),¢p = (p — 1)(q — 1)

« Why is it difficult to break?
1. Hard to factorize N, so difficult to get ¢ and calculate d

2. For given encrypted message m®(mod N), it's hard to recover m
(DLP)

Repeated factors

« What if N; = pq, N, = pr?
The greatest common divisor (GCD) is p.

e Euclidean method! (from 300 BQC)
« Takes 15us for two 1024-bit numbers

» For multiple Ns, Bernstein’s algorithm can be
used.

4139/euclid-of-alexandria/

Result?

* 11,170,883 RSA keys

* 1.3 hours on EC2 Cluster Compute
Eight Extra Large Instance

* only $5!

* Got 2,134 prime factors

« Computed private keys for 64,081
TLS hosts (0.50%)

https://i.insider.com/5c7967b3eb3ce8763f505bf5?widt
h=700&format=jpeg&auto=webp

What could go wrong?

1. Repeated keys
2. Repeated factors in RSA keys

3. Repeated DSA signature randomness

DSA revisit

* Pick two random prime numbers: p, q
* Private key: x / Public key: y = g* mod p

* Signhature (r,s):
For random nonce k:

r = (g% mod p) mod g
s =k Y(H(m) + xr) mod q

Ephemeral key Is shared

r = (g% mod p) mod g
=k ' (H(m) + xr) mod g

s

k = (H(m) + xr) mod q

Ephemeral key Is shared

r = (g% mod p) mod g
=k ' (H(m) + xr) mod g

s

k = (H(m) + xr) mod q

strH(my) + xr) = k = s;*(H(m,) + xr) (mod q)

Result?

* 9,114,925 DSA signatures from SSH

* 4,094 signatures with same public key and r

« Recovered 281 distinct private keys
* These keys are used in 105,728 hosts (1.6%)

Result?

* Clustered vulnerable
signatures by r values

4 Ll ! |
manu fa Ctu rers 10 [Keys compromised by
repeated signature randomness
« 75.8% of the cases were from g 10 --
two manufacturers - II.

1 O()
10° 10! 102 103
Private key index

Final result

Number of live hosts

... using repeated keys
... using vulnerable repeated keys
... using default certificates or default keys
...using low-entropy repeated keys
..using RSA keys we could factor
..using DSA keys we could compromise
...using Debian weak keys
..using 512-bit RSA keys

..1dentified as a vulnerable device model
... model using low-entropy repeated keys

Our TLS Scan
12,828,613 (100.00%)
7,770,232 (60.50%)
714,243 (5.57%)
670,391 (5.23%)
43,852 (0.34%)
64,081 (0.50%)
4,147 (0.03%)
123,038 (0.96%)
985,031 (7.68%)
314,640 (2.45%)

Our SSH Scans
10,216,363 (100.00%)
6,642,222 (65.00%)
981,166 (9.60%)
2,459 (0.03%)
105,728 (1.03%)
53,141 (0.52%)
8,459 (0.08%)
1,070,522 (10.48%)

Weak entropy and the Linux RNG

* Nearly everything uses /dev/urandom

Fresh entropy Entropy Counter
Blocks (when less entropy)
@ 780
o .
S BlOCkmg — /dev/random
EEEEEEEEESR o) |
IHSEEEEEEE o pOO
=IIIIII= D)
i — Input pool .
> NoanOCkmg — /dev/urandom
pool

Weak entropy and the Linux RNG

* Nearly everything uses /dev/urandom

Fresh entropy Entropy Counter
Blocks (when less entropy)
o !
© > BlOCkmg /dev/random
EEEEEEEEEN o |
mEEEEEEEm o pOO
EEEEEEEDRES D)
Il I .

pool

i — Input pool .
> NoanOCkmg — /dev/urandom

Weak entropy and the Linux RNG

Input pool entropy (bits)

250

200

150

100

50

120,000

l- S ' 3
: f.E!.’ lllll "

." = e Input pool entropy estimate

! pdt —— Input threshold to update entropy pool

R R - - - Bytes read from nonblocking pool
:') A —— SSH process seeds from /dev/urandom
! . | | | | | |]
5 10 15 20 25 30 35 40 45 50 55 60 65

5,000

Time since boot (s)

Ubuntu 10.04 test system (typical boot)

0
70

25,000

15,000

10,000

Bytes read from nonblocking pool

Factorable RSA keys

p

q

t] t+1

Both factor repeated

Not bad

p

q

t]t+1

Both factor different

Very good

p

q

t

t+1

Only one different

Problematic!

Defense

* Lessons for OS developers, crypto library developers,
app developers, device makers, certificate authorities, end
users, security and crypto researchers

* More entropy sources
« Add hardware sources
 Kernel collects more aggressively

* Better communication between applications and OS
 /dev/urandom isn't providing the service people need

* Create public key check service for end users

Conclusion

« Studied entropy via global perspective on public keys

« Found widespread vulnerabilities
 Shared keys (5.6% of TLS hosts; 9.6% of SSH)
« Factorable RSA keys (0.5% of TLS hosts; 0.03% of SSH)
« Repeated DSA randomness (1.0% of SSH hosts)

 Secure random number generation is still difficult

Related works

Problems with random number generation

« "Randomness and the Netscape browser”, Dr. Dobb’s Journal 21
(1996)

« DSA-1571-1 OpenSSL—Predictable random number generator (2008)
* "Analysis of the Linux random number generator”, SP ‘06

Weak entropy and cryptography

« Console hacking 2010: PS3 epic fail, Talk at 27t Chaos
Communication Congress (2010)

* "When good randomness goes bad: Virtual machine reset
vulnerabilities and hedging deployed cryptography”, NDSS 10

Follow-up works

Other cryptographic vulnerabilities
« Unsecure ECDSA key
“Elliptic curve cryptography in practice.”, FC '14
* Diffie-Hellman algorithm
“Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice”, CCS 15

Malfunction of RNG

 “"Security Analysis of Pseudo-Random Number Generators with Input: /dev/random
Is not Robust”, CCS "13

* "Not-so-random numbers in virtualized Linux and the Whirlwind RNG", SP 14

Good Questions

« How would detecting weak entropy be possible in the crypto
graphic primitives level?

* Is there any other way to provide almost "perfect" randomnes
s, without using hardware RNG or factory adding entropy?

* If insufficient entropy is the issue, why don't we use another s
oftware package that blocks until enough entropy is acquired
for security-critical hosts?

« Would RSA really be a problem if the same key is generated?

Best Questions

Jaehyun: if the keys itself are not safe regardless of how we
generate the keys with much care, what kind of
countermeasures should be made?

A: This paper is not about PRNG, and there are various PRNGs
which is not able to compare.

Q: Is any new operation added to make randomness in OS?
A: /dev/urandom is not a problem, what do you mean?

