

Yongdae Kim

SysSec@KAIST

Sensors for Autonomous Vehicles

- Proximity (5m).Ultrasonic sensors(Parking assistance)
- ❖ Short Range (30m).
 : Cameras, Short-range radars
 (Traffic sign recognition, Parking assistance)
- ❖ Medium Range (80m) : LiDAR and Medium range radars (MRR) (Collision avoidance, Pedestrian detection)
- Long Range (250m)Long-range radars (LRR)(High speed)

Sensor & Security

- Many prevention and detection mechanisms
 - For malicious network traffics
 - For software vulnerabilities

Sensor = A new attack vector

Velodyne VLP-16 [CHES'17]

Velodyne VLP-16 Experimental Setting

Velodyne VLP-16: Fundamental Idea

VLP-16 Experiment

Lidar Exposure to Strong Light Source

Curved Surface

VLP-16 Experiment

Lidar Spoofing of Multiple Moving Fake Dots

Mobileye Mobileye

- **GM**
- **BMW**
- Nissan
- Volvo
- (over 19 in total)

Mobileye-560 [Unpublished]

- Classify the objects
 - Vehicle, Pedestrian, Truck, Bike,
 Bicycle, Sign, Lane etc.
- Information about the Object
 - Distance, Velocity, State, etc.
- **♦** Recognition range : ∼80m
- **❖** Black and White screen

Parser

Parser prints the results for black box video.

(Object classification, velocity, accelerometer ...)


```
C:\Users\SysSec-EE\Desktop\CAN Receive\\Debug\CAN Receive.exe
Num_Obstacles : 2
STOP!!!
Existing object
Obstacle is Vehicle
Obstacle parked
              X: 16.625 m, Y: -1.938 m
Obstacle
Obstacle vel X: -0.000
Obstacle length: 31,500 m, width: 1,450 m
Obstacle age: 254
Obstacle lane not assigned
Obstacle angle rate: -0.210 deg/sec, scale change: 0.001 pix/sec
Obstacle acc: -0.480 m/s2
Obstacle angle: -321.020 deg
Existing object
Obstacle is Bike
Obstacle is standing
              X: 47.313 m,
                                Y: 2.930 m
Obstacle
Obstacle vel_X: -0.000
Obstacle length: 31.500 m, width: 0.600 m
Obstacle age: 254
Obstacle lane not assigned
Obstacle angle rate: 0.110 deg/sec, scale change: -0.003 pix/sec
```


Blinding Attack (Visible Light)

Experiment setup

980nm, 385nm, 460nm, 520nm, 585nm, 620nm

Invisible Light (IR)

Camera module blinded by laser injection

Mobileye Classification

Are You Serious?

Variations

Men in the Car

GPS Spoofing

Blinding AEB

Tesla Model S
Camera Blinding Effect on AEB
Demo

GPS Spoofing and Auto-pilot

GPS Spoofing Effect on Tesla Autopilot Cruise Speed

DoS Using Fake Base Station

Denial of Service attack using FAKE base station

Conclusion

- Sensing is one of the most important components of IoT
 - Driverless cars, Drones, Medical devices, SCADA systems, ...
- □ For self-driving car, sensors are one of the most important components.
- But, the current sensors look insecure.
- Now it is time to look at security of sensors.

Questions?

Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ► Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

