
EE817/IS893
Blockchain and Cryptocurrency

Peer-to-Peer Systems

Yongdae Kim
KAIST

Admin
q Student Information Survey

▹ https://goo.gl/forms/VnjAyN5N1bmswLNP2

q Paper Presentation Survey
▹ https://goo.gl/forms/pGhbDPJqBr4MNff92

q Paper Presentation vs. Reading Report Scoring
▹ If you present a paper, you will be exempted from four

reading reports.

q Project

1

https://goo.gl/forms/VnjAyN5N1bmswLNP2
https://goo.gl/forms/pGhbDPJqBr4MNff92

P2P System: Definition
q A distributed application architecture that

partitions tasks or workloads between peers
q Peers are equally privileged, equipotent

participants in the application
▹ Forming a peer-to-peer network of nodes.

q Peers make a part of their resources directly
available to other peers
▹ processing power, disk storage or network bandwidth

▹ without the need for central coordination by servers

q Peers are both suppliers and consumers of
resources

2

P2P Applications
q File Sharing : Napster, Gnutella, BitTorrent, etc
q Commercial Applications

▹ Blockchain
▹ Skype

q Research community
▹ P2P File and archival systems: Ivy, Kosha, Oceanstore, CFS
▹ Web caching: Squirrel, Coral
▹ Multicast systems: SCRIBE
▹ P2P DNS: CoDNS and CoDoNS
▹ Internet routing: RON
▹ Next generation Internet Architecture: I3

3

Issues in P2P Systems
q Identity

▹ Who am I talking to?

q Routing
▹ How to find desired information?

q Trust
▹ How do I know my peers behave nicely?

q Churn (Dynamicity)
▹ Peers come and go.

q Incentivization
▹ How to make peers to contribute to the system?

4

P2P Routing

q How to find the desired information?

▹ Centralized structured: Napster

▹ Decentralized unstructured: Gnutella

▹ Decentralized structured: Distributed Hash Table

» Content Addressable!

q A DHT provides a hash table’s simple put/get interface

▹ Insert a data object, i.e., key-value pair (k,v)

▹ Retrieve the value v using key k

Napster

BA X…

Napster.com

P

P: a node looking for a file
O: offerer of the file

Query
QueryHit
Download

O
Match

O Match

retrieve (K1)

K V

K V
K V

K V

K V

K V

K V

K V

K V

K V

K V

5

Case Study: BitTorrent
q A computer joins a BitTorrent swarm by loading a .torrent

file into a BitTorrent client.

q The client contacts a “tracker” specified in the .torrent file.
▹ The tracker shares their IP addresses with other clients in the

swarm, allowing them to connect to each other.

q Once connected, a client downloads bits of the files in the
torrent in small pieces, downloading all the data it can get.

q Once the client has some data, it can then begin to upload
that data to other BitTorrent clients in the swarm.

q In this way, everyone downloading a torrent is also
uploading the same torrent.

6

Case Study: BitTorrent

7

Attacks on P2P Systems
q Sybil Attack

▹ the attacker subverts the reputation
system of a P2P network by creating a
large number of pseudonymous
identities, to gain a large influence

q Eclipse Attack (aka routing-table poisoning)
▹ attacker takes over the peer’s routing table so

that they are unable to communicate with any
other peer except the attacker

8

DHT: Terminologies
q Every node has a unique ID: nodeID
q Every object has a unique ID: key
q Keys and nodeIDs are logically

arranged on a ring (ID space)
q A data object is stored at its root(key)

and several replica roots
▹ Closest nodeID to the key (or successor of k)

q Range: the set of keys that a node is responsible for
q Routing table size: O(log(N))
q Routing delay: O(log(N)) hops
q Content addressable!

C

B
R

Q

D

Y

X

A

k
(k,v)

Target P2P System
q Kad

▹ A peer-to-peer DHT based on Kademlia

q Kad Network
▹ Overnet: an overlay built on top of eDonkey clients

» Used by P2P Bots
▹ Overlay built using eD2K series clients

» eMule, aMule, MLDonkey
» Over 1 million nodes, many more firewalled users

▹ BT series clients
» Overlay on Azureus
» Overlay on Mainline and BitComet

10

Kademlia Protocol

q d(X, Y) = X XOR Y
q An entry in k-bucket shares at least k-bit

prefix with the nodeID

▹ k=20 in overnet

q Add new contact if

▹ k-bucket is not full

q Parallel, iterative, prefix-matching
routing

q Replica roots: k closest nodes

1
0

1
0

1
0

1
0

01001011
00100101
01011010…
01000001K

bu
ck

et
10101100

123.24.3.1
23.37.12.13
311.1.3.4

129.5.3.1

11011011
11000100
11111110…
11010001

10001011
10010100
10001110…
10000001

10
10

11
00 11000100

11001010

11001100

11001011

Find/store

11

Kad Protocol

q No restriction on nodeID

q Replica root: |r, k| < d
q K buckets with index [0,4] can be

split if new contact is added to
full bucket

q Wide routing table è short routing path

q K bucket in i-th level covers 1/2i ID space

q A knows new node by asking or contact from
other nodes

q Hello_req is used for liveness
▹ routing request can be used

1
0

1
0

1
0

1
0

10101100

15 14 13 12 11 10 9 8 7 6 5

1

1

1

1 0 1 0 1 0 1 0 1 0 1 0

0 1 0 1 0 1 0

0 1 0

0

4 3 2 1 0

12

Vulnerabilities of Kad
q No admission control, no verifiable binding

▹ An attacker can launch a Sybil attack by generating an arbitrary number of
IDs

q Eclipse Attack
▹ Stay long enough: Kad prefers long-lived contact
▹ (ID, IP) update: Kad client will update IP for a given ID without any

verification

q Termination condition
▹ Query terminates when A receives 300 matches.

q Timeout
▹ When M returns many contacts close to K, A contacts only those nodes and

timeouts.

13

Actual Attack
q Preparation phase

▹ Backpointer Hijacking: 8A, attacker M
» Learns A’s Routing Table by sending appropriate queries

» Then, change routing table by sending the following
message.

q Execution phase

▹ Provide many non-existing contacts

» Fact: Query will timeout after trying 25 contacts.

MA0xD00D IPBIPM
Hello, B, IPM

14

Screen Shots

15

Summary of Estimated Cost
q Assumption

▹ Total 1M nodes
▹ 800 routing table entries
▹ 100 Mbps network link

q Preparation cost
▹ 41.2GB bandwidth to hijack 30% of routing table
▹ Takes 55 minutes with 100 Mbps link

q Query prevention
▹ 100 Mbps link is sufficient to stop 65% of WHOLE query messages.

16

Large scale simulation

q 11,303 ~ 16,105 Kad nodes running on ~500 PlanetLab machines

10 20 30 40
0

100

200

300

400

500

600

700

800

Percentage of Hijacked Contacts

N
um

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Expected Send
Measured Send
Expected Received
Measured Received

10 20 30 40
0

10

20

30

40

50

60

70

80

90

Percentage of Hijacked Contacts

Pe
rc

en
ta

ge
 o

f F
ai

le
d

Q
ue

rie
s

Expected
Measured

10 20 30 40
0

10

20

30

40

50

60

70

Percentage of Hijacked Contacts

B
an

dw
id

th
 U

sa
ge

 (K
B

) p
er

 V
ic

tim

Expected Send
Measured Send
Expected Received
Measured Received

✾ Comparison between expected and measured
4keyword query failures
4Number of messages used to attack one node
4Bandwidth usage

17

Self reflection attack

q Fill node A�s routing table with A itself.

A
C

G
…

G

C A
C

G
…

G

C

Attack

IPC

IPG

✾ ≈ 100% queries failed after attack
✾ Nodes can recover slowly
✾ Second round of attack

Hello, X, IPA

18

Mitigations

✾ Identity authentication

✾ Routing correctness
4 Independent parallel routes

-Incrementally deployable

19

Method Secure Persistent ID Incremental deployable
Verify the liveness of old IP No Yes Yes
Drop Hello with new IP Yes No Yes
ID=hash(IP) Yes No No
ID=hash(Public Key) Yes Yes No

backpointers Current method Independent parallel routes
40% 98% fail 45% fail
10% 59.5% fail 1.7% fail

Then

Gossip Protocols
q a process of P2P communication that is

based on the way that epidemics spread
q How to distribute information to all peers?

21

Issues in P2P Gossip protocols
q Reliability

▹ All members receive the information

q Latency
▹ The time needed to deliver a message to all members

q Bandwidth
▹ Total bandwidth consumption

q Network/Node Dynamics
▹ When network changes or nodes churn

q Robustness against Sybil/Eclipse attack
q Incentivization

▹ Incentive to forward

22

Questions?
q Yongdae Kim

▹ email: yongdaek@kaist.ac.kr
▹ Home: http://syssec.kaist.ac.kr/~yongdaek
▹ Facebook: https://www.facebook.com/y0ngdaek
▹ Twitter: https://twitter.com/yongdaek
▹ Google “Yongdae Kim”

23

mailto:yongdaek@kaist.ac.kr
http://syssec.kaist.ac.kr/~yongdaek
http://www.facebook.com/y0ngdaek
https://twitter.com/yongdaek

