
IS511
Introduction to

Information Security
Lecture 2

Cryptography 1

Yongdae Kim

Recap
✾ http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
✾ E-mail policy

4 Include [is511]
4 Profs + TA: IS511-prof@gsis.kaist.ac.kr
4 Profs + TA + Students: IS511@gsis.kaist.ac.kr

✾ Text only posting, email!

✾ Preproposal
✾ Proposal: English only

http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
mailto:IS511-prof@gsis.kaist.ac.kr
mailto:IS511@gsis.kaist.ac.kr

The main players

Alice Bob

Eve
Yves?

Attacks

Source Destination

Normal Flow

Source Destination

Interruption: Availability

Source Destination

Interception: Confidentiality

Source Destination

Modification: Integrity

Source Destination

Fabrication: Authenticity

Taxonomy of Attacks
✾ Passive attacks

4Eavesdropping
4Traffic analysis

✾ Active attacks
4Masquerade
4Replay
4Modification of message content
4Denial of service

Big picture
Trusted third party

(e.g. arbiter, distributor
of secret information)

Secret
Information

Message

Secret
Information

Message

Alice Bob

Information
Channel

Eve

Terminology for Encryption
✾ A denotes a finite set called the alphabet
✾ M denotes a set called the message space

4M consists of strings of symbols from an alphabet
4An element of M is called a plaintext

✾ C denotes a set called the ciphertext space
4C consists of strings of symbols from an alphabet
4An element of C is called a ciphertext

✾ K denotes a set called the key space
4 An element of K is called a key

✾ Ee is an encryption function where e Î K
✾ Dd called a decryption function where d Î K

Encryption

✾Why do we use key?
4Or why not use just a shared encryption function?

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
insecure channel

Alice Bob

Adversary

m m

SKE with Secure channel

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
Insecure channel

Alice Bob

Adversary

Key source

e

m m

d Secure channel

PKE with insecure channel

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c
Insecure channel

Alice Bob

Passive
Adversary

Key source

d

m m

e Insecure channel

Public key should be authentic!

e

e

Ee(m)

e�

Ee�(m)
Ee(m)

✾ Need to authenticate public keys

Digital Signatures
✾ Primitive in authentication and non-

repudiation
✾ Signature

4Process of transforming the message and some
secret information into a tag

✾ Nomenclature
4M is set of messages
4S is set of signatures
4SA: Signature generation algorithm
4VA is verification transformation from M to S for A,

publicly known

Key Establishment, Management

✾ Key establishment
4Process to whereby a shared secret key becomes

available to two or more parties
4Subdivided into key agreement and key transport.

✾ Key management
4The set of processes and mechanisms which

support key establishment
4The maintenance of ongoing keying relationships

between parties

Symmetric vs. Public key
Pros Cons

SKE
✾ High data throughput
✾ Relatively short key size

✾ The key must remain secret
at both ends

✾ O(n2) keys to be managed
✾ Relatively short lifetime of

the key

PKE

✾ O(n) keys
✾ Only the private key

must be kept secret
✾ longer key life time
✾ digital signature

✾ Low data throughput
✾ Much larger key sizes

Symmetric key Encryption
✾ Symmetric key encryption

4if for each (e,d) it is easy computationally easy to
compute e knowing d and d knowing e

4Usually e = d
✾ Block cipher

4breaks up the plaintext messages to be
transmitted into blocks of a fixed length, and
encrypts one block at a time

✾ Stream cipher
4encrypt individual characters of plaintext

message one at a time, using encryption
transformation which varies with time

Block Cipher
✾ E: Vn ´ K ® Vn

4Vn = {0,1}n, K = {0, 1}k, n is called block length, k is called key size
4E(P, K) = C for K Î K and P, C Î Vn
4E(P, K) = EK(P) is invertible mapping from Vn to Vn

-EK: encryption function
4D(C, K) = DK(C) is the inverse of EK

-Dk: decryption function

P (plaintext)

E

C (ciphertext)

K
Key

P (plaintext)

EK

C (ciphertext)

Modes of Operation
✾ A block cipher encrypts plaintext in fixed-size n-bit blocks (often n

=128). What happens if your message is greater than the block size?

E

xj

k E-1 k

xj
�

Ek

xj

Cj-1

D k

Cj-1
xj
�

c0=IV

Ij

E

Oj

xj

Ij

E

Oj

k k

xj
�

Ij

E

Oj

xj

Ij

E

Oj

k k

xj
�

I1=IV

I1=IV

Modes of Operation
✾ ECB

4 Encryption: cj ¬EK(xj)
4 Decryption: xj ¬ E−1K (cj)

✾ CBC
4 Encryption: c0 ¬ IV, cj ¬ EK(cj−1Å xj)

4 Decryption: c0 ¬ IV, xj ¬ cj−1 Å E−1K(cj)
✾ CFB

4 Encryption: I1 ¬ IV, cj ¬ xj Å EK(Ij), Ij+1 = cj
4 Decryption: I1 ¬ IV, xj ¬ cj Å EK(Ij), Ij+1 = cj

✾ OFB
4 Encryption: I1 ¬ IV, oj = EK(Ij), cj ¬ xj Å oj, Ij+1 = oj
4 Decryption: I1 ¬ IV, oj = EK(Ij), xj ¬ cj Å oj, Ij+1 = oj

Modes of Operation (CTR)

E

x1

k

CTR

c1

E

x2

k

CTR+1

c2

E

xN

k

CTR+N-1

cN

E

c1

k

CTR

x1

E

c2

k

CTR+1

x2

E

cN

k

CTR+N-1

xN

CTR advantages
✾ Hardware efficiency

4 Parallelizable
✾ Software efficiency

4 Similar, modern processors support parallel computation
✾ Preprocessing

4 Pad can be computed earlier
✾ Random-access

4 Each ciphertext block can be encrypted independently
4 important in applications like hard-disk encryption

✾ Provable security
4 no worse than what one gets for CBC encryption

✾ Simplicity
4 No decryption algorithm and key scheduling

Double DES
✾ C = EK2[EK1 [P]]
✾ P = DK1[DK2[C]]

✾ Reduction to single stage?
4EK2[EK1 [P]] =? EK3[P]
4It was proven that it does not hold

Meet-in-the-middle Attack
✾ Diffie 1977
✾ Exhaustively cracking it requires 2112?

✾ C = EK2[EK1 [P]]
4X = EK1 [P] = DK2[C]

✾ Given a known pair, (P, C)
4Encrypt P with all possible 256 values of K1

4Store this results and sort by X
4Decrypt C with all possible 256 K2, and check table
4If same, accept it as the correct key

✾ Are we done? &&#@!#(

Meet-in-the-middle Attack
✾ Little statistics

4For any P, there are 264 possible C
4DDES uses 112 bit key, so 2112 keys
4Given C, there are 2112/264 = 248 possible P

-So there are 248 false alarms

4If one more (P�, C�) pair, we can reduce it to 2-16

✾ So using two (plaintext, ciphertext) pairs, we can
break DDES c * 256 encryption/decryption

✾ C = EK2[DK1 [P]] different?

Triple DES with two keys
✾ Obvious counter to DDES: Use three keys

4Complexity?
4168 bit key

✾ Triple DES = EDE = encrypt-decrypt-encrypt
4C = EK1[DK2 [EK1[P]]]

✾ Attacks?
4No practical one so far

Hash function and MAC
✾ A hash function is a function h

4compression
4ease of computation
4Properties

-one-way: for a given y, find x� such that h(x�) = y
-collision resistance: find x and x� such that h(x) = h(x�)

4Examples: SHA-1, MD-5

✾ MAC (message authentication codes)
4both authentication and integrity
4MAC is a family of functions hk

-ease of computation (if k is known !!)
-compression, x is of arbitrary length, hk(x) has fixed length
-computation resistance

4Example: HMAC

How Random is the Hash function?

Applications of Hash Function
✾ File integrity

✾ Digital signature
Sign = SSK(h(m))

✾ Password verification
stored hash = h(password)

✾ File identifier

✾ Hash table

✾ Generating random
numbers

Hash function and MAC
✾ A hash function is a function h

4compression
4ease of computation
4Properties

-one-way: for a given y, find x� such that h(x�) = y
-collision resistance: find x and x� such that h(x) = h(x�)

4Examples: SHA-1, MD-5

✾ MAC (message authentication codes)
4both authentication and integrity
4MAC is a family of functions hk

-ease of computation (if k is known !!)
-compression, x is of arbitrary length, hk(x) has fixed length
-computation resistance

4Example: HMAC

MAC construction from Hash
✾ Prefix

4M=h(k||x)
4appending y and deducing h(k||x||y) form h(k||x) without

knowing k
✾ Suffix

4M=h(x||k)
4possible a birthday attack, an adversary that can choose x

can construct x� for which h(x)=h(x�) in O(2n/2)

✾ STATE OF THE ART: HMAC (RFC 2104)
4HMAC(x)=h(k||p1||h(k|| p2||x)), p1 and p2 are padding
4The outer hash operates on an input of two blocks
4Provably secure

How to use MAC?
✾ A & B share a secret key k
✾ A sends the message x and the MAC

M←Hk(x)
✾ B receives x and M from A
✾ B computes Hk(x) with received M
✾ B checks if M=Hk(x)

