IS511 Introduction to **Information Security** Lecture 2 **Cryptography 1**

Yongdae Kim

Recap

- http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
- E-mail policy
 - Include [is511]
 - Profs + TA: <u>IS511-prof@gsis.kaist.ac.kr</u>
 - Profs + TA + Students: <u>IS511@gsis.kaist.ac.kr</u>
- Text only posting, email!
- 😵 Preproposal
- Proposal: English only

The main players

Taxonomy of Attacks

Passive attacks

- Eavesdropping
- Traffic analysis
- Active attacks
 - Masquerade
 - Replay
 - Modification of message content
 - Denial of service

Big picture

Terminology for Encryption

* A denotes a finite set called the *alphabet*

- % M denotes a set called the message space
 - M consists of strings of symbols from an alphabet
 - An element of M is called a *plaintext*
- C denotes a set called the *ciphertext space*
 - C consists of strings of symbols from an alphabet
 - An element of C is called a *ciphertex*t
- K denotes a set called the key space
 - An element of K is called a key
- $\boldsymbol{\$} \mathsf{E}_{e}$ is an *encryption function* where $e \in \mathsf{K}$

 D_d called a *decryption function* where $d \in K$

Encryption

Why do we use key?

Or why not use just a shared encryption function?

SKE with Secure channel

Bob

PKE with insecure channel

Bob

Public key should be authentic!

Need to authenticate public keys

Digital Signatures

- Primitive in authentication and nonrepudiation
- Signature
 - Process of transforming the message and some secret information into a tag
- Nomenclature
 - M is set of messages
 - S is set of signatures
 - ► S_A: Signature generation algorithm
 - V_A is verification transformation from M to S for A, publicly known

Key Establishment, Management

Key establishment

- Process to whereby a shared secret key becomes available to two or more parties
- Subdivided into key agreement and key transport.
- Key management
 - The set of processes and mechanisms which support key establishment
 - The maintenance of ongoing keying relationships between parties

Symmetric vs. Public key

	Pros	Cons
SKE	 High data throughput Relatively short key size 	 The key must remain secret at both ends O(n²) keys to be managed Relatively short lifetime of the key
PKE	 O(n) keys Only the private key must be kept secret longer key life time digital signature 	 Low data throughput Much larger key sizes

Symmetric key Encryption

Symmetric key encryption

- If for each (e,d) it is easy computationally easy to compute e knowing d and d knowing e
- Usually e = d
- Block cipher
 - breaks up the plaintext messages to be transmitted into *blocks* of a fixed length, and encrypts one block at a time
- Stream cipher
 - encrypt individual characters of plaintext message one at a time, using encryption transformation which varies with time

Block Cipher

$\stackrel{\text{\tiny $\&$}}{\coloneqq} E: V_n \times K \to V_n$

- ▶ $V_n = \{0,1\}^n$, $K = \{0, 1\}^k$, n is called block length, k is called key size
- E(P, K) = C for $K \in K$ and P, $C \in V_n$
- $E(P, K) = E_K(P)$ is invertible mapping from V_n to V_n
 - $R E_{K}$: encryption function
- $D(C, K) = D_K(C)$ is the inverse of E_K
 - R D_k: decryption function

Modes of Operation

A block cipher encrypts plaintext in fixed-size n-bit blocks (often n =128). What happens if your message is greater than the block size?

Modes of Operation

- **ECB**
 - Encryption: $c_j \leftarrow E_K(x_j)$
 - Decryption: $x_j \leftarrow E^{-1}_K (c_j)$
- CBC
 - Encryption: $c_0 \leftarrow IV, c_j \leftarrow E_K(c_{j-1} \oplus x_j)$
 - Decryption: $c_0 \leftarrow IV$, $x_j \leftarrow c_{j-1} \oplus E^{-1}_{K}(c_j)$
- CFB CFB
 - ► Encryption: $I_1 \leftarrow IV$, $c_j \leftarrow x_j \oplus E_K(I_j)$, $I_{j+1} = c_j$
 - ► Decryption: $I_1 \leftarrow IV$, $x_j \leftarrow c_j \oplus E_K(I_j)$, $I_{j+1} = c_j$
- Sector OFB
 - Encryption: $I_1 \leftarrow IV$, $o_j = E_K(I_j)$, $c_j \leftarrow x_j \oplus o_j$, $I_{j+1} = o_j$
 - Decryption: $I_1 \leftarrow IV$, $o_j = E_K(I_j)$, $x_j \leftarrow c_j \oplus o_j$, $I_{j+1} = o_j$

Modes of Operation (CTR)

CTR+1

Ε

X₂

 $k \rightarrow E \qquad k \rightarrow c_2 \rightarrow c_2 \rightarrow c_1 \rightarrow c_2 \rightarrow c_2$

CTR advantages

- Hardware efficiency
 - Parallelizable
- Software efficiency
 - Similar, modern processors support parallel computation
- Preprocessing
 - Pad can be computed earlier
- Random-access
 - Each ciphertext block can be encrypted independently
 - important in applications like hard-disk encryption
- Provable security
 - no worse than what one gets for CBC encryption
- Simplicity
 - No decryption algorithm and key scheduling

Double DES

 $C = E_{K2}[E_{K1} [P]]$ $P = D_{K1}[D_{K2}[C]]$

Reduction to single stage?

- $E_{K2}[E_{K1} [P]] = ? E_{K3}[P]$
- It was proven that it does not hold

Meet-in-the-middle Attack

Diffie 1977

Exhaustively cracking it requires 2¹¹²?

 $C = E_{K2}[E_{K1} [P]]$

• $X = E_{K1} [P] = D_{K2} [C]$

Siven a known pair, (P, C)

- Encrypt P with all possible 2^{56} values of K_1
- Store this results and sort by X
- ▶ Decrypt C with all possible 2⁵⁶ K₂, and check table
- If same, accept it as the correct key
- % Are we done? &&#@!#(

Meet-in-the-middle Attack

Little statistics

- ▶ For any P, there are 2⁶⁴ possible C
- DDES uses 112 bit key, so 2¹¹² keys
- Given C, there are $2^{112}/2^{64} = 2^{48}$ possible P

X So there are 2⁴⁸ false alarms

▶ If one more (P', C') pair, we can reduce it to 2⁻¹⁶

So using two (plaintext, ciphertext) pairs, we can break DDES c * 2⁵⁶ encryption/decryption

$C = E_{K2}[D_{K1} [P]]$ different?

Triple DES with two keys

Obvious counter to DDES: Use three keys

- Complexity?
- 168 bit key

* Triple DES = EDE = encrypt-decrypt-encrypt • $C = E_{K_1}[D_{K_2}[E_{K_1}[P]]]$

Attacks?

No practical one so far

Hash function and MAC

- A hash function is a function h
 - compression
 - ease of computation
 - Properties
 - **x** one-way: for a given y, find x' such that h(x') = y
 - $\$ collision resistance: find x and x' such that h(x) = h(x')
 - Examples: SHA-1, MD-5

MAC (message authentication codes)

- both authentication and integrity
- MAC is a family of functions h_k
 - \$ ease of computation (if k is known !!)
 - & compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - **x** computation resistance
- Example: HMAC

How Random is the Hash function?

Applications of Hash Function

File integrity

File identifier

📽 Hash table

Digital signature
 Sign = S_{SK}(h(m))

% Password verification
stored hash = h(password)

Generating random numbers

Hash function and MAC

- A hash function is a function h
 - compression
 - ease of computation
 - Properties
 - **x** one-way: for a given y, find x' such that h(x') = y
 - **x** collision resistance: find x and x' such that h(x) = h(x')
 - Examples: SHA-1, MD-5

MAC (message authentication codes)

- both authentication and integrity
- MAC is a family of functions h_k
 - \$ ease of computation (if k is known !!)
 - & compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - **x** computation resistance
- Example: HMAC

MAC construction from Hash

- Prefix
 - M=h(k||x)
 - appending y and deducing h(k||x||y) form h(k||x) without knowing k
- 😵 Suffix
 - M=h(x||k)
 - possible a birthday attack, an adversary that can choose x can construct x' for which h(x)=h(x') in O(2^{n/2})
- STATE OF THE ART: HMAC (RFC 2104)
 - HMAC(x)=h(k||p₁||h(k|| p₂||x)), p1 and p2 are padding
 - The outer hash operates on an input of two blocks
 - Provably secure

How to use MAC?

A & B share a secret key k

- A sends the message x and the MAC M←Hk(x)
- B receives x and M from A
- B computes H_k(x) with received M
- ✤ B checks if M=H_k(x)

