IS511
Introduction to

Information Security

Lecture 2
Cryptography 1

Yongdae Kim
KAIST

Recap

% http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
%= E-mail policy
» Include [is511]

» Profs + TA: IS511-prof@gsis.kaist.ac.kr
» Profs + TA + Students: IS511@gsis.kaist.ac.kr

%t Text only posting, email!

%t Preproposal
%t Proposal: English only

KAIST

http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
mailto:IS511-prof@gsis.kaist.ac.kr
mailto:IS511@gsis.kaist.ac.kr

The main players

Attacks

Normal Flow

Sou rce Destlnatlon

KAIST

Taxonomy of Attacks

%= Passive attacks

» Eavesdropping
» Traffic analysis

¢ Active attacks
» Masquerade
» Replay
» Modification of message content
» Denial of service

KAIST

Big picture

Trusted third party
(e.qg. arbiter, distributor
of secret information)

T

|

1e‘

\5]
//L/ .
\ > E/ Information
Channel

Message — :>

)._

Secret ___,
Information

Eve

KAIST

d

h

Message

Secret
Information

Terminology for Encryption

%t A denotes a finite set called the alphabet

“t M denotes a set called the message space

» M consists of strings of symbols from an alphabet
» An element of M is called a plaintext

%t C denotes a set called the ciphertext space

» C consists of strings of symbols from an alphabet
» An element of C is called a ciphertext

%t K denotes a set called the key space
» An element of K is called a key

%t E. is an encryption function where e € K

%t D4 called a decryption function where d € K
KAIST

Encryption

C \ 4
insecure channel

Alice Bob

“* Why do we use key?
» Or why not use just a shared encryption function?

KAIST

SKE with Secure channel

m

d Secure channel

4 C

Plaintext source

Insecure channel

Alice

KAIST

m

destination

Bob

PKE with insecure channel

e Insecure channel

Passive
Adversary

C A 4

Insecure channel

Alice

KAIST

Key source

d

Bob

Public key should be authentic!

Ee(m)

*t Need to authenticate public keys

KAIST

Digital Signatures

%> Primitive in authentication and non-
repudiation

¢ Sighature

» Process of transforming the message and some
secret information into a tag

= Nomenclature

» M is set of messages
» S is set of signatures
» Sa: Signature generation algorithm

» V, is verification transformation from M to S for A,
publicly known

KAIST

Key Establishment, Management

%t Key establishment

» Process to whereby a shared secret key becomes
available to two or more parties

» Subdivided into key agreement and key transport.

% Key management
» The set of processes and mechanisms which
support key establishment

» The maintenance of ongoing keying relationships
between parties

KAIST

Symmetric vs. Public key

Pros

Cons

SKE % High data throughput

%t Relatively short key size

% The key must remain secret
at both ends

% O(n?2) keys to be managed

% Relatively short lifetime of
the key

% O(n) keys

% Only the private key
PKE must be kept secret
% longer key life time

% digital signature

KAIST

% Low data throughput
% Much larger key sizes

Symmetric key Encryption

%t Symmetric key encryption
» if for each (e,d) it is easy computationally easy to
compute e knowing d and d knowing e
» Usually e = d
%t Block cipher

» breaks up the plaintext messages to be
transmitted into blocks of a fixed length, and
encrypts one block at a time

%t Stream cipher
» encrypt individual characters of plaintext

message one at a time, using encryption
transformation which varies with time

KAIST

Block Cipher

“w E:V,x K->V,
» V, ={0,1}", K = {0, 1}k, nis called block length, k is called key size
» E(P, K =CforK e Kand P, C € V,
» E(P, K) = Ex(P) is invertible mapping from V,to V,
R Ex: encryption function
» D(C, K) = Dg(C) is the inverse of Ex
% Dy: decryption function

P (plaintext) P (plaintext)
K
E T |Key Ex
C (ciphertext) C (ciphertext)

KAIST

Modes of Operation

%t A block cipher encrypts plaintext in fixed-size n-bit blocks (often n
=128). What happens if your message is greater than the block size?

)1(1 C0=|V C_1 D
v B ;
k—i E E — k AT D — k
k— E ARy C
w- \/ 1
X; | J
b/ XJ
l,=IV ;
l,=IV
k— E E — Kk k— E E — Kk
O, O O O,
‘ VL v v
ranm

Modes of Operation
% ECB

» Encryption: ¢; «Ex(x;)
» Decryption: x; «— E~1 ()
% CBC
> Encryption: Co < 1V, Cj < EK(Cj—l@ X])
» Decryption: ¢y < IV, Xj < ¢_1 @ E~4(c)
* CFB
4 Encryption: I]_ < IV, Cj < Xj S EK(I])I Ij+1 = Cj
» Decryption: Ij « 1V, X; < ¢ @ E¢(I)), Iiv1 = ¢
= OFB
> Encryption: Il «~ 1V, O; = EK(IJ)I G < X; &> Oj, Ij+1 = O;
» Decryption: Ij « IV, 0; = Ex(I;), X; < ¢; @ 0, Ij11 = 0

KAIST

Modes of Operation (CTR)

CTR
|
k— E
X1 C)
C1
CTR
|
k— E
C1 :CD
X1

CTR+1
!

k— E

X2 4’69

CTR+N-1
!

k— E
XNA’GE

als
U‘D

als
U‘D

als
U‘D

als
U‘D

als
U‘D

als
U‘D

CTR advantages

Hardware efficiency

» Parallelizable
Software efficiency

» Similar, modern processors support parallel computation
Preprocessing

» Pad can be computed earlier
Random-access

» Each ciphertext block can be encrypted independently

» important in applications like hard-disk encryption
Provable security

» no worse than what one gets for CBC encryption
Simplicity

» No decryption algorithm and key scheduling

KAIST

Double DES

¢ C = Exol Exq [P]]
“ P = Dyy[Dyl C]]

¢ Reduction to single stage?

» Exo[Exy [P]] =7 Exs[P]
» It was proven that it does not hold

KAIST

Meet-in-the-middle Attack

% Diffie 1977 - ¢
¢ Exhaustively cracking it requires 2112?
¢ C = Exo[Exq [P]]
» X = Exq [P] = Dyo[C]
¢ Given a known pair, (P, C)
» Encrypt P with all possible 2°° values of K;
» Store this results and sort by X
» Decrypt C with all possible 2°® K,, and check table
» If same, accept it as the correct key

%t Are we done? &&#@!#(
KAIST

Meet-in-the-middle Attack

% Little statistics
» For any P, there are 2% possible C
» DDES uses 112 bit key, so 2112 keys

» Given C, there are 2112/264 = 248 possible P
% So there are 248 false alarms

» If one more (P’, C’) pair, we can reduce it to 216

%t S0 using two (plaintext, ciphertext) pairs, we can
break DDES c¢ * 2% encryption/decryption 2

2

o — EKZ[DKl [P]] different?

KAIST

Triple DES with two keys

%¢ Obvious counter to DDES: Use three keys
» Complexity?
» 168 bit key

% Triple DES = EDE = encrypt-decrypt-encrypt
» C = Ex4[Dxz [Exa[P]]]

% Attacks?
» No practical one so far

KAIST

Hash function and MAC

% A hash function is a function h
» compression
» ease of computation

» Properties

L one-way: for a given y, find x’ such that h(x’) =y

% collision resistance: find x and x’ such that h(x) = h(x")
» Examples: SHA-1, MD-5

%t MAC (message authentication codes)

» both authentication and integrity

» MAC is a family of functions hy
% ease of computation (if k is known !!)
L compression, X is of arbitrary length, h,(x) has fixed length
£ computation resistance

» Example: HMAC

KAIST

How Random is the Hash function?

KAIST

Input Digest
Fox Sl DFCD 3454 BBEA 788A 751A
. 696C 24D9 7009 CA9S9 2D17
function
;h;;::g: el 0086 46BB FBD CBE2 823C
the blue dog S ACC7 6CD1 90B1 EEGE 3ABC
;h;;:,iz Sl 8FD8 7558 7851 4F32 DI1C6
the blue dog S 76B1 79A9 ODA4 AEFE 4819
l;h;]:1::: “oF t‘;ghdphic FCD3 7FDB SAF2 C6FF 915F
e . D401 COA9 7D9A 46AF FBAS
the blue dog function
The red fox cryptographic BACA D682 D588 4C75 4BF4
e blue d hash 1799 7D88 BCF8 92B9 6AGC
the blue dog function

Applications of Hash Function

= File integrity % File identifier

e e N
i. Instructions
The Windows SDK is available aDVD ISO | rn g fl othaty
! that you are downloa d gth ct IS0 file, f to th t bl b !
} to validate that the file d nloaded is th ct file.
'\
File Name: GRMSDK EN DVD.iso U‘D a S a ‘
Chip: X886 s.
CRC#: OxCA4FE79D \1’@”\64?\7 ewy. net {
SHA1: O0x8695FSEG810D84153181695DA78850988A823F4E s

L.-WMIMM-W-*,. -J

%t Generating random

s» Digital signature numbers

Sign = Sgk(h(m))

%t Password verification
stored hash = h(password)

KAIST

Hash function and MAC

)
U‘D

>0

>

%t MAC (message authentication codes)

» both authentication and integrity

» MAC is a family of functions hy
% ease of computation (if k is known !!)
L compression, X is of arbitrary length, h,(x) has fixed length
£ computation resistance

» Example: HMAC

KAIST

MAC construction from Hash

¢ Prefix
» M=h(k]||x)

» appending y and deducing h(k]||[x||y) form h(k]||x) without
knowing k

%2 Suffix
» M=h(x||k)
» possible a birthday attack, an adversary that can choose x
can construct x” for which h(x)=h(x") in O(2n/2)

% STATE OF THE ART: HMAC (RFC 2104)

» HMAC(x)=h(k||p1] (k|| p2]1%X)), p1 and p2 are padding
» The outer hash operates on an input of two blocks
» Provably secure

KAIST

How to use MAQC?

“* A & B share a secret key k

%t A sends the message x and the MAC
M—Hk(X)

> B receives X and M from A
%t B computes Hk(x) with received M

% B checks if M=Hk(Xx)

KAIST

