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Taxonomy of Attacks
✾ Passive attacks

4Eavesdropping
4Traffic analysis

✾ Active attacks
4Masquerade
4Replay
4Modification of message content
4Denial of service
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Terminology for Encryption
✾ A denotes a finite set called the alphabet 
✾ M denotes a set called the message space

4M consists of strings of symbols from an alphabet
4An element of M is called a plaintext 

✾ C denotes a set called the ciphertext space
4C consists of strings of symbols from an alphabet
4An element of C is called a ciphertext

✾ K denotes a set called the key space
4 An element of K is called a key

✾ Ee is an encryption function where e Î K
✾ Dd called a decryption function where d Î K



Encryption

✾Why do we use key?
4Or why not use just a shared encryption function?

Plaintext source

Encryption
Ee(m) = c

destination

Decryption
Dd(c) = m

c   
insecure  channel

Alice Bob

Adversary

m m



SKE with Secure channel
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PKE with insecure channel
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Public key should be authentic!
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✾ Need to authenticate public keys



Digital Signatures
✾ Primitive in authentication and non-

repudiation
✾ Signature 

4Process of transforming the message and some 
secret information into a tag

✾ Nomenclature
4M is set of messages
4S is set of signatures
4SA: Signature generation algorithm
4VA is verification transformation from M to S for A, 

publicly known



Key Establishment, Management

✾ Key establishment
4Process to whereby a shared secret key becomes 

available to two or more parties
4Subdivided into key agreement and key transport.

✾ Key management
4The set of processes and mechanisms which 

support key establishment  
4The maintenance of ongoing keying relationships 

between parties



Symmetric vs. Public key
Pros Cons

SKE
✾ High data throughput
✾ Relatively short key size

✾ The key must remain secret 
at both ends

✾ O(n2) keys to be managed
✾ Relatively short lifetime of 

the key

PKE

✾ O(n) keys
✾ Only the private key 

must be kept secret
✾ longer key life time
✾ digital signature

✾ Low data throughput
✾ Much larger key sizes 



Symmetric key Encryption
✾ Symmetric key encryption

4if for each (e,d) it is easy computationally easy to 
compute e knowing d and d knowing e

4Usually e = d
✾ Block cipher

4breaks up the plaintext messages to be 
transmitted into blocks of a fixed length, and 
encrypts one block at a time

✾ Stream cipher
4encrypt individual characters of plaintext 

message one at a time, using encryption 
transformation which varies with time



Block Cipher
✾ E: Vn ´ K ® Vn

4Vn = {0,1}n, K = {0, 1}k, n is called block length, k is called key size
4E(P, K) = C for K Î K and P, C Î Vn
4E(P, K) = EK(P) is invertible mapping from Vn to Vn

-EK: encryption function
4D(C, K) = DK(C) is the inverse of EK

-Dk: decryption function

P (plaintext)

E

C (ciphertext)

K
Key

P (plaintext)

EK

C (ciphertext)



Modes of Operation
✾ A block cipher encrypts plaintext in fixed-size n-bit blocks (often n 

=128). What happens if your message is greater than the block size?
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Modes of Operation
✾ ECB

4 Encryption: cj ¬EK(xj)
4 Decryption: xj ¬ E−1K (cj)

✾ CBC
4 Encryption: c0 ¬ IV, cj ¬ EK(cj−1Å xj)

4 Decryption: c0 ¬ IV, xj ¬ cj−1 Å E−1K(cj)
✾ CFB

4 Encryption: I1 ¬ IV, cj ¬ xj Å EK(Ij), Ij+1 = cj
4 Decryption: I1 ¬ IV, xj ¬ cj Å EK(Ij), Ij+1 = cj

✾ OFB
4 Encryption: I1 ¬ IV, oj = EK(Ij), cj ¬ xj Å oj, Ij+1 = oj
4 Decryption: I1 ¬ IV, oj = EK(Ij), xj ¬ cj Å oj, Ij+1 = oj



Modes of Operation (CTR)
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CTR advantages
✾ Hardware efficiency

4 Parallelizable
✾ Software efficiency

4 Similar, modern processors support parallel computation
✾ Preprocessing

4 Pad can be computed earlier
✾ Random-access

4 Each ciphertext block can be encrypted independently
4 important in applications like hard-disk encryption

✾ Provable security
4 no worse than what one gets for CBC encryption

✾ Simplicity
4 No decryption algorithm and key scheduling



Double DES
✾ C = EK2[EK1 [P]]
✾ P = DK1[DK2[C]]

✾ Reduction to single stage?
4EK2[EK1 [P]] =? EK3[P]
4It was proven that it does not hold



Meet-in-the-middle Attack
✾ Diffie 1977
✾ Exhaustively cracking it requires 2112?

✾ C = EK2[EK1 [P]]
4X = EK1 [P] = DK2[C]

✾ Given a known pair, (P, C)
4Encrypt P with all possible 256 values of K1

4Store this results and sort by X
4Decrypt C with all possible 256 K2, and check table
4If same, accept it as the correct key

✾ Are we done? &&#@!#(



Meet-in-the-middle Attack
✾ Little statistics

4For any P, there are 264 possible C
4DDES uses 112 bit key, so 2112 keys
4Given C, there are 2112/264 = 248 possible P

-So there are 248 false alarms

4If one more (P�, C�) pair, we can reduce it to 2-16

✾ So using two (plaintext, ciphertext) pairs, we can 
break DDES c * 256 encryption/decryption

✾ C = EK2[DK1 [P]] different?



Triple DES with two keys
✾ Obvious counter to DDES: Use three keys

4Complexity?
4168 bit key

✾ Triple DES = EDE = encrypt-decrypt-encrypt
4C = EK1[DK2 [EK1[P]]]

✾ Attacks?
4No practical one so far



Hash function and MAC
✾ A hash function is a function h

4compression
4ease of computation
4Properties

-one-way: for a given y, find x� such that h(x�) = y
-collision resistance: find x and x� such that h(x) = h(x�)

4Examples: SHA-1, MD-5

✾ MAC (message authentication codes)
4both authentication and integrity
4MAC is a family of functions hk

-ease of computation (if k is known !!)
-compression, x is of arbitrary length, hk(x) has fixed length
-computation resistance

4Example: HMAC



How Random is the Hash function?



Applications of Hash Function
✾ File integrity

✾ Digital signature
Sign = SSK(h(m))

✾ Password verification
stored hash = h(password)

✾ File identifier

✾ Hash table

✾ Generating random 
numbers
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MAC construction from Hash
✾ Prefix

4M=h(k||x)
4appending y and deducing h(k||x||y) form h(k||x) without 

knowing k
✾ Suffix

4M=h(x||k) 
4possible a birthday attack, an adversary that can choose x 

can construct x� for which h(x)=h(x�) in O(2n/2)

✾ STATE OF THE ART: HMAC (RFC 2104)
4HMAC(x)=h(k||p1||h(k|| p2||x)), p1 and p2 are padding
4The outer hash operates on an input of two blocks 
4Provably secure



How to use MAC?
✾ A & B share a secret key k
✾ A sends the message x and the MAC 

M←Hk(x)
✾ B receives x and M from A
✾ B computes Hk(x) with received M
✾ B checks if M=Hk(x)


