IS511 Introduction to **Information Security** Lecture 3 **Cryptography 2**

Yongdae Kim

Recap

- http://syssec.kaist.ac.kr/~yongdaek/courses/is511/
- E-mail policy
 - Include [is511]
 - Profs + TA: <u>IS511 prof@gsis.kaist.ac.kr</u>
 - Profs + TA + Students: <u>IS511_student@gsis.kaist.ac.kr</u>
- Text only posting, email!
- 😵 Preproposal
- Proposal: English only

Hash function and MAC

- A hash function is a function h
 - compression
 - ease of computation
 - Properties
 - **x** one-way: for a given y, find x' such that h(x') = y
 - $\$ collision resistance: find x and x' such that h(x) = h(x')
 - Examples: SHA-1, MD-5

MAC (message authentication codes)

- both authentication and integrity
- MAC is a family of functions h_k
 - \$ ease of computation (if k is known !!)
 - & compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - **x** computation resistance
- Example: HMAC

How Random is the Hash function?

Applications of Hash Function

File integrity

File identifier

📽 Hash table

- Digital signature
 Sign = S_{SK}(h(m))
- % Password verification
 stored hash = h(password)

Generating random numbers

Hash function and MAC

- A hash function is a function h
 - compression
 - ease of computation
 - Properties
 - **x** one-way: for a given y, find x' such that h(x') = y
 - **x** collision resistance: find x and x' such that h(x) = h(x')
 - Examples: SHA-1, MD-5

MAC (message authentication codes)

- both authentication and integrity
- MAC is a family of functions h_k
 - \$ ease of computation (if k is known !!)
 - & compression, x is of arbitrary length, $h_k(x)$ has fixed length
 - **x** computation resistance
- Example: HMAC

MAC construction from Hash

- Prefix
 - M=h(k||x)
 - appending y and deducing h(k||x||y) form h(k||x) without knowing k
- 😵 Suffix
 - M=h(x||k)
 - possible a birthday attack, an adversary that can choose x can construct x' for which h(x)=h(x') in O(2^{n/2})
- STATE OF THE ART: HMAC (RFC 2104)
 - HMAC(x)=h(k||p₁||h(k|| p₂||x)), p1 and p2 are padding
 - The outer hash operates on an input of two blocks
 - Provably secure

How to use MAC?

A & B share a secret key k

- A sends the message x and the MAC M←Hk(x)
- B receives x and M from A
- **B** computes H_k(x) with received M
- ✤ B checks if M=H_k(x)

How to design a hash function

Phase 1: Design a 'compression function'

- Which compresses only a single block of fixed size to a previous state variable
- Phase 2: 'Combine' the action of the compression function to process messages of arbitrary lengths
- Similar to the case of encryption schemes

General Model

Basic properties

- preimage resistance = one-way
 - it is computationally infeasible to find any input which hashes to that output
 - for a given y, find x' such that h(x') = y
- *2nd-preimage resistance = weak collision resistance*
 - it is computationally infeasible to find any second input which has the same output as any specified input
 - for a given x, find x' such that h(x') = h(x)
- *collision resistance = strong collision resistance*
 - it is computationally infeasible to find any two distinct inputs x, x' which hash to the same output
 - find x and x' such that h(x) = h(x').

Relation between properties

- **Collision resistance** \Rightarrow Weak collision resistance ?
 - > Yes! Why?
- \therefore Collision resistance \Rightarrow One-way?
 - No! Why?
 - Let g collision resistant hash function, g: $\{0,1\}^* \rightarrow \{0,1\}^n$
 - Consider the function h defined as
 - h(x) = 1 || x if x has bit length n
 - = o || g(x) otherwise
 - h: {0,1}* \to {0,1}ⁿ⁺¹
 - h(x) : collision and pre-image resistant (unique), but not oneway

Birthday Paradox (I)

What is the probability that a student in this room has the same birthday as Yongdae?

▶ 1/365. Why?

What is the minimum value of k such that the probability is greater than 0.5 that at least 2 students in a group of k people have the same birthday?

1 (1 - 1/n)(1 - 2/n)...(1 - (k-1)/n)
 ≤
$$e^{-1/n} e^{-2/n} ... e^{-(k-1)/n}$$
 ← 1 + x ≤ e^x Taylor series
 - $e^{-\sum i/n} - e^{-k(k-1)/2n}$

≤ 1/2

• k(k-1)/2n ≤ ln (1/2) ⇒ k ≥ (1 + (1 + (8 ln 2) n)^{1/2}) / 2

For n = 365, k ≥ 23

Birthday Paradox (II)

Relation to Hash Function?

- When n-bit hash function has uniformly random output
- One-wayness: Pr[y = h(x)] ?
- Weak collision resistance: Pr[h(x) = h(x') for given x]?
- Collision resistance: Pr[h(x) = h(x')]?

Merkle-Damgård scheme

The most popular and straightforward method for combining compression functions

Merkle-Damgård scheme

h(s, x): the compression function

- s: `state' variable in {0,1}ⁿ
- x: 'message block' variable in {0,1}^m
- % s₀=IV, si=h(si-1, xi)
- $H(x_1||x_2||...||x_n)=h(h(...h(|V,x_1),x_2)...,x_n)=s_n$

Merkle-Damgård strengthening

- In the previous version, messages should be of length divisible by m, the block size
 - a padding scheme is needed: x||p for some string p so that m |len(x||p)
- Merkle-Damgård strengthening:
 - encode the message length len(x) into the padding string p

Strengthened Merkle-Damgård

- If the compression function is collision resistant, then strengthened Merkle-Damgård hash function is also collision resistant
- Collision of compression function: f(s, x)=f(s', x') but (s, x)≠(s', x')

If h(,) is collision resistant, and if H(M)=H(N), then len(M) should be len(N), and the last blocks should coincide

And the
 penultimate
 blocks should
 agree, and,

And the ones
 before the
 penultimate, too...
 So in fact M=N

Extension property

- For a Merkle-Damgård hash function, H(x, y) = h(H(x),y)
 - Even if you don't know x, if you know H(x), you can compute H(x, y)
 - ► H(x, y) and H(x) are *related* by the formula
 - Would this be possible if H() was a random function?

Fixing Merkle-Dåmgard

- Merkle-Dåmgard: historically important, still relevant, but likely will not be used in the future (like in SHA-3)
- Clearly distinguishable from a random oracle
- How to fix it? Simple: do something completely different in the end

SMD

EMD

V₁≠IV₂

MDP

If π: a permutation with few fixed points
For example, π(x)=x⊕C for some C≠o

MAC & AE

Two easy attacks

Exhaustive key search

- ► Given one pair (x, M), try different keys until M=H_k(x)
- Lesson: key size should be large enough
- Pure guessing: try many different M with a fixed message x
 - Lesson: MAC length should be also large
- Question: which one is more serious?

Practical constructions

Blockcipher based MACs

- CBC-MAC
- CMAC

Hash function based MACs

- secret prefix, secret suffix, envelop
- HMAC

CBC-MAC

- CBC, with some fixed IV. Last 'ciphertext' is the MAC
- Block ciphers are already PRFs. CBC-MAC is just a way to combine them
- Secure as PRF, if message length is fixed

CBC-MAC

Completely insecure if the length is variable!!!

CBC-MAC

- * 'Extension property' once more!
- How to fix it?
 - Again, do something different at the end to break the chain

Modification 1

- Good: this solves the problem
- Bad: switching block cipher key is bad

Modification 2

XORing a different key at the input is indistinguishable from switching the block cipher key

CMAC

NIST standard (2005)

- Solves two shortcomings of CBC-MAC
 - variable length support
 - message length doesn't have to be multiple of the blockcipher size

Some Hash-based MACs

- Secret prefix method: H_k(x)=H(k, x)
- Secret suffix method: H_k(x)=H(x, k)
- Envelope method with padding: H_k(x)=H(k, p, x, k)

Secret prefix method

Secret prefix method: H_k(x)=H(k, x)

- Secure if H is a random function
- Insecure if H is a Merkle-Damgård hash function
 - \Re H_k(x, y)=h(H(k, x), y)=h(H_k(x), y)

Secret suffix method

Secret suffix method: $H_k(x)=H(x, k)$

- Much securer than secret prefix, even if H is Merkle-Damgård
- An attack of complexity 2^{n/2} exists:
 - **X** Assume that H is Merkle-Damgård
 - % Find hash collision H(x)=H(y)
 - $H_k(x) = h(H(x), k) = h(H(y), k) = H_k(y)$
 - **X** off-line!

Envelope method

Envelope method with padding: H_k(x)=H(k, p, x, k)

For some padding p to make k||p at least one block

Prevents both attacks

HMAC

NIST standard (2002)

- $HMAC_k(x) = H(K \oplus opad || H(K \oplus ipad || x))$
- Proven secure as PRF, if the compression function h of H satisfies some properties

Encryption and Authentication

℅ E_K(M)

- Redundancy-then-Encrypt: E_K(M, R(M))
- Hash-then-Encrypt: E_K(M, h(M))
- $Hash and Encrypt: E_{K}(M), h(M)$
- Solution $\mathbb{P}^{\mathcal{H}}$ MAC and Encrypt: $E_{h_1(K)}(M)$, $HMAC_{h_2(K)}(M)$
- MAC-then-Encrypt: $E_{h_1(K)}(M, HMAC_{h_2(K)}(M))$

