
Secure Architecture
Principles

Information flow
control

1

D. Denning and P. Denning

Certification of Programs for

Secure Information Flow

(CACM 1976)

slide 3

Review Access Control

• Discretionary access control (DAC)

– Philosophy: users have the discretion to specify policy
themselves

– Commonly, information belongs to the owner of object

– Access control lists, privilege lists, capabilities

• Mandatory access control (MAC)

– Philosophy: central authority mandates policy

– Information belongs to the authority, not to the individual users

– MLS and BLP, Chinese wall, Clark-Wilson, etc.

slide 5

Beyond Access Control

• Malicious program could do (after passing ACL):

– Write information into a public temp file

– Use IPC to communicate with process run by attacker

– Leak information in metadata (billing reports, nonces
chosen in protocols, ...)

– Use shared resources and OS API to encode information
(e.g., file locking, CPU cycles)

• Secure information flow: control propagation of sensitive data
after it has been accessed

slide 6

Information-flow control Model

• Set S of subjects

• Set O of objects

• Set L of security labels

– Function “+” that combines security labels:

• ℓ1 + ℓ2 is label of information derived from ℓ1 and ℓ2

• + is associative and commutative

• Function L(X) that gives label of entity (subject or object) X

– labels might be static: don't change throughout execution

– or dynamic: label of entity changes based on history of
execution

IFC example lattice: Two points
• L = {low, high} (called Label or Classification)
• ℓ1 + ℓ2 =

– low if ℓ1=ℓ2=low
– high otherwise

• bottom = low
• Top, ⊤ = high
• low → high, low → low, high → high
• think of this as MLS with only...

– Unclassified (low) and Top Secret (high)
– no compartments

• simple and captures important ideas, so use of two-point lattice is
standard in information-flow literature

slide 9

Information Flow Within
Programs

• Access control for program variables

– Finer-grained than processes

• Use program analysis to prove that the program has no
undesirable flows

slide 10

Explicit and Implicit Flows

• Goal: prevent information flow from “high” variables
to “low” variables

• Flow can be explicit …

h := <secret>

x := h

l := x

• … or implicit

boolean h := <secret>

if (h) { l := true} else { l := false }
slide 11

Compile-Time Certification

• Declare classification of information allowed to be stored in
each variable

– x: integer class { A,B }

• Classification of function parameter = classification of
argument

• Classification of function result =

slide 12

– union of parameter classes

• Certification becomes type checking!

Assignments and Compound
statements

• Assignment: left-hand side must be able to receive all classes in
right-hand side

x = w+y+z requires L{w,y,z} = L(w) + L(y) + L(z) ≤ L(x)

• Compound statement

begin

x = y+z;

a = b+c –x

end

requires L{y,z} ≤ L(x) and L{b,c,x} ≤ L(a)

slide 13

• Conditional:

classification of “then/else” must contain
classification of “if” part (why?)

• Functions:

int sum (int x class{A}) {

int out class{A,B} ;

out = out + x;

}

requires A ≤ B and B ≤ B

Conditionals and Functions

slide 14

Iterative Statements

• In iterative statements, information can flow from the absence
of execution

while f(x1, x2, …, xn) do S

– Information flows from variables in the conditional
statement to variables assigned in S (why?)

• For an iterative statement to be secure …

– Statement terminates

– Body S is secure

– L{x1, x2, …, xn} ≤ L{target of an assignment in S}

slide 15

Non-Interference
• (informal) Definition (from Wikipedia)

– a computer is modeled as a machine with inputs and
outputs. Inputs and outputs are classified as
either low or high

– A computer has the non-interference property
if and only if any sequence of low inputs will produce the
same low outputs, regardless of what the high level
inputs are

slide 16

slide 17

Non-Interference

• Observable behavior of the program should not depend on
confidential data

– Example: private local data should not “interfere” with
network communications

Network

Disk

Accounting
software

[Goguen and Meseguer]

slide 18

Declassification
• Non-interference can be too strong

– Programs release confidential information as part of
normal operation

– "Alice will release her data after you pay her $10"

• Idea: allow the program to release confidential data, but
only through a certain computation

• Example: logging in using a secure password

if (password == input) login(); else fail();

– Information about password must be released …

… but only through the result of comparison

slide 19

Covert channel

• Password checking (CWE-385)
def validate_password(actual_pw, typed_pw):

if len(actual_pw) <> len(typed_pw):
return 0

for i in len(actual_pw):
if actual_pw[i] <> typed_pw[i]:

return 0
return 1

• Does Low input (typed_pw) produce the same low output in
terms of (time taken to validate_password(), return value)?

