
Secure Architecture
Principles

• Mandatory access control

• Multi-level security

• SELinux

Most slides are from Prof. Michael Clarkson

1

Secure Architecture
Principles

Mandatory
access control

2

• Discretionary access control (DAC)

– Philosophy: users have the discretion to specify policy themselves

– Commonly, information belongs to the owner of object

– Model: access control relation

• Set of triples (subj,obj,rights)

• Sometimes described as access control "matrix"

• Implementations:

– Access control lists (ACLs): each object associated with list of
(subject, rights)

– Capabilities: distributed ways of implementing privilege lists

3

Review: DAC

• Mandatory access control (MAC)

– not Message Authentication Code (applied crypto), nor Media
Access Control (networking)

– philosophy: central authority mandates policy

– information belongs to the authority, not to the individual users

• Three case studies:

1. Multi-level security (military)

2. Chinese wall (consulting firm)

3. Clark-Wilson (business)

4

MAC

Secure Architecture
Principles

Multi-level
security

5

• Concern is confidentiality of information

• Documents classified according to sensitivity: risk associated
with release of information

• In US:

– Top Secret

– Secret

– Confidential

– Unclassified

6

Sensitivity

• Documents classified according to compartment(s): categories of
information (in fact, aka category)

– Cryptography

– nuclear

– biological

– reconnaissance

• Need to Know Principle:

– access should be granted only when necessary to perform
assigned duties (instance of Least Privilege)

– {crypto,nuclear}: must need to know about both to access

– {}: no particular compartments
7

Compartments

• Label: pair of sensitivity level and set of compartments. e.g.,

– (Top Secret, {crypto, nuclear})

– (Unclassified, {})

• Users are labeled according to their clearance

• Document is labeled aka classified

– Perhaps each paragraph labeled

– Label of document is most restrictive label for any paragraph

• Labels are imposed by organization

• Notation: let L(X) be the label of entity X

8

Labels

• Notation: L1 ⊑ L2

– means L1 is no more restrictive than L2

• less precisely: L1 is less restrictive than L2

• another reading: information may flow from L1 to L2

• also: L1 is dominated by L2

• e.g.,

– (Unclassified,{}) ⊑ (Top Secret, {})

– (Top Secret, {crypto}) ⊑ (Top Secret, {crypto,nuclear})

9

Restrictiveness of labels

• Definition:

– Let L1 = (S1, C1) and L2 = (S2, C2)

– L1 ⊑ L2 iff S1 ≤ S2 and C1 ⊆ C2

– Where ≤ is order on sensitivity: Unclassified ≤ Confidential
≤ Secret ≤ Top Secret

• Partial order:

– Some labels are incomparable

– e.g. (Secret, {crypto}) vs. (Top Secret, {nuclear})

10

Restrictiveness of labels

11

Labels from a lattice

12

Labels from a lattice

13

Labels from a lattice

• When may a subject read an object? (Confidentiality)
– S may read O iff L(O) ⊑ L(S)
– object's classification must be below (or equal to) subject's

clearance
– "no read up"

• When may a subject write an object? (Integrity)
– S may write O iff L(S) ⊑ L(O)
– object's classification must be above (or equal to) subject's

clearance
– "no write down"

• Beautiful symmetry between these

14

Access control with MLS

• Scenario:
– Colonel with clearance (Secret, {nuclear, Europe})
– DocA with classification (Confidential, {nuclear})
– DocB with classification (Secret, {Europe, US})
– DocC with classification (Top Secret, {nuclear, Europe})

• Which documents may Colonel read?

15

Reading with MLS

– Recall: S may read O iff L(O) ⊑ L(S)

– DocA: (Confidential, {nuclear}) ⊑ (Secret, {nuclear, Europe})

– DocB: (Secret, {Europe, US}) not ⊑ (Secret, {nuclear, Europe})

– DocC: (Top Secret, {nuclear, Europe}) not ⊑ (Secret, {nuclear,
Europe})

• Scenario:
– Colonel with clearance (Secret, {nuclear, Europe})
– DocA with classification (Confidential, {nuclear})
– DocB with classification (Secret, {Europe, US})
– DocC with classification (Top Secret, {nuclear, Europe})

• Which documents may Colonel write?

16

Writing with MLS

– Recall: S may write O iff L(S) ⊑ L(O)

– DocA: (Secret, {nuclear, Europe}) not ⊑ (Confidential, {nuclear})

– DocB: (Secret, {nuclear, Europe}) not ⊑ (Secret, {Europe, US})

– DocC: (Secret, {nuclear, Europe}) ⊑ (Top Secret, {nuclear, Europe})

• Laundering Scenario:
– “subject with clearance Top Secret reads Top Secret information

then writes it into an Unclassified file”
• More generally: S reads O1 then writes O2 where L(O2) ⊏ L(O1)

regardless of L(S)

17

Prevention of laundering with MLS

• Can't happen:
– S read O1, so L(O1) ⊑ L(S)
– S wrote O2, so L(S) ⊑ L(O2)
– So L(O1) ⊑ L(S) ⊑ L(O2)
– Hence L(O1) ⊑ L(O2)
– But combined with L(O2) ⊏ L(O1), we have L(O1) ⊏ L(O1)
– Contradiction

• Blind write: subject may not read higher-security object yet may
write it

– Useful for logging

• Declassification violates the "no write down" rule

– Unclassified output from Secret information (write down)

• Encryption (secret input) → unclassified output

– Traditional solution is trusted subjects who are not constrained
by access control rules

• Could introduces a potential vulnerability

18

Perplexities of writing with MLS

• Formal mathematical model of MLS plus access control matrix

• Proof that information cannot leak to subjects not cleared for
it

• "No read up": simple security property

• "No write down": *-property

19

Bell-La Padula model [1973]

Secure Architecture
Principles

SELinux

31

• Problem: Military needs adequate secure systems

– How to create civilian demand for systems military can use?

• Idea: Separate policy from enforcement mechanism

– Most people will plug in simple DAC policies

– Military can take system off-the-shelf, plug in new policy

– Requires putting adequate hooks in the system

– Each object has manager that guards access to the object

– Conceptually, manager consults security server on each access

• Flask security architecture prototyped in fluke

– Now part of SElinux
32

Flash security architecture

• Kernel mediates access to objects at “interesting” points

• Kicks decision up to external (user-level) security server
33

Architecture

• Performance
– Adding hooks on every operation
– People who don’t need security don’t want slowdown

• Using generic enough data structures
– Object managers independent of policy still need to associate

data structures (e.g., labels) with objects
• Revocation

– May interact in a complicated way with any access caching
– Once revocation completes, new policy must be in effect
– Bad guy cannot be allowed to delay revocation completion

indefinitely

34

Challenges

• All objects are labeled with a security context

– Security context is an arbitrary string—opaque to object
manager in the kernel

• Labels abbreviated with security IDs (SIDs)

– 32-bit integer, interpretable only by security server

– Not valid across reboots (can’t store in file system)

– Fixed size makes it easier for object manager to handle

• Queries to server done in terms of SIDs

– Create (client SID, old obj SID, obj type)? → SID

– Allow (client SID, obj SID, perms)? → {yes, no}

35

Basic flask concepts

36

Creating new object

• ssid, tsid – source and target SIDs
• tclass – type of target

– E.g., regular file, device, raw IP socket, TCP socket, ...
• Server can decide more than it is asked for

– access_vector_t is a bitmask of permissions
– decided can contain more than requested
– Effectively implements decision prefetching

• seqno used for revocation (in a few slides)
37

Security server interface

• Want to minimize calls into security server
• AVC caches results of previous decisions

– Note: Relies on simple enumerated permissions
• Decisions therefore cannot depend on parameters:

X Andy can authorize expenses up to $999.99 %
X Bob can run processes at priority 10 or higher

• Decisions also limited to two SIDs
– Complicates file relabeling, which requires 3 checks:

38

Access vector cache

39

AVC in a query

• avc_entry_ref_t points to cached decision
– Contains ssid, tsid, tclass, decision vec., & recently used info

• aeref argument is hint
– Aeref first call, will be set to relevent AVC entry
– On subsequent calls speeds up lookup

• Example: New kernel check when binding a socket:
ret = avc_has_perm_ref(

current->sid, sk->sid, sk->sclass,
SOCKET__BIND, &sk->avcr);

• Now sk->avcr is likely to be speed up next socket op
40

AVC interface

• Decisions may be cached in AVC entries

• Decisions may implicitly be cached in migrated permissions

– E.g., Unix checks file write permission on open

– But may want to disallow future writes even on open file

– Write permission migrated into file descriptor

– May also migrate into page tables/TLB w. mmap

– Also may migrate into open sockets/pipes, or operations in progress

• AVC contains hooks for callbacks

– After revoking in AVC, AVC makes callbacks to revoke migrated
permissions

– seqno can be used to ensure strict ordering of policy changes

41

Revocation support

• Must label persistent objects in file system
– Persistently map each file/directory to a security context
– Security contexts are variable length, so add level of indirection
– “Persistent SIDs” (PSIDs) – numbers local to each file system

42

Persistence

• May need to relabel objects

– E.g., files in file system

• Processes may also want to transition their SIDs

– Depends on existing permission, but also on program

– SElinux allows programs to be defined as entrypoints

– Thus, can restrict with which programs users enter a new
SID (similar to the way setuid transitions uid on program
entry)

43

Transitioning SIDs

44

SElinux contexts

45

Users, roles, types

• Each role allows only certain types
– Can check with seinfo -x --role=name

• Types allow non-hierarchical security policies
– Each subject is assigned a domain, each object a type
– Policy stated in terms of what each domain can to do each type

• Example: Suppose you wish to enforce that each invoice undergoes the
following processing:
– Receipt of the invoice recorded by a clerk
– Receipt of of the merchandise verified by purchase officer
– Payment of invoice approved by supervisor

• Can encode state of invoice by its type
– Set transition rules to enforce all steps of process

46

Types

1. Allow sysadm domain to run insmod
2. Allow sysadm domain to transition to insmod
3. Allow insmod program to be entrypoint for insmod domain
4. Let insmod inherit file descriptors from sysadm
5. Let insmod use CAP_SYS_MODULE (load a kernel module)
6. Let insmod signal sysadm with SIGCHLD when done

47

Example: Loading kernel modules

• Very complicated sets of rules
– E.g., on Fedora, sesearch --all | wc -l shows 73K rules
– Rules based mostly on types

• Allowed/restricted transitions very important
– E.g., init can run initscripts, can run httpd
– Nowadays systemd needs to be able to transition to arbitrary types
– httpd program has special httpd_exec_t type, allows process to have

httpd_t type
– Might label public_html directories so httpd can access them, but not

access rest of home directory
• Can also use levels to enforce MLS

– E.g., “:s0-s0:c0.c255” means process is at sensitivity s0 with no categories,
but has all categories in clearance.

48

Policy specification

• Very low quality tooling around policy construction
– Broken build systems, incompatible kernel policy formats, ...

• Hard to check /sys/fs/selinux/policy matches expectations
– No single-pass decompilation, tools seem to hang on real policies
– Even rebuilding from source is hard (e.g., actual compilation happens

during RPM install, using tons of spec macros)
49

Policy construction

