Network and Security: Introduction

Seungwon Shin
KAIST

Some slides are from Dr. Srinivasan Seshan
Some slides are from Dr. Nick Mckeown

Network Overview

Computer Network

@ Definition

A computer network or data network is a
telecommunications network that allows computers
to exchange data. In computer networks, networked
computing devices pass data to each other along
data connections. - from Wikipedia

Computer Exchange Data

Computer Network

Vaden

UV ok w -
DB elcize

Why is it important?

from norman-networok.net

Everything is connected

http://norman-networok.net

Network Diagram

® Drawing something _ _
direct connection

B

Node Node

multiple hosts, multiple links

One wire

Wires for everybody!

Network Multiplexing

@ Multiple hosts

B How to share a network link

& switched network
$ resource sharing

orange sends two packets to red - others are waiting

¢ black sends two packets to green - others are waiting

Switching Approaches

@ Circuit switching
B> Source first establishes a connection (circuit) to the destination

& Each switch along the way stores info about connection (and possibly allocates
resources)

B> Source sends the data over the circuit

&€ No need to include the destination address with the data since the switches
know the path

P> The connection is explicitly torn down

B Example: telephone network (analog)

Circuit Switching

B
-

— .

Switching Approaches

@ Packet switching

B> Source sends information as self-contained packets that have an
address.

¥ Source may have to break up single message in multiple

B Each packet travels independently to the destination host.

¥ Switches use the address in the packet to determine how to forward the
packets

¢ Store and forward

B> Analogy: a letter in surface mail.

Packet Switching

&

A

Packets

=3P

Internet

@ An inter-net; a network of networks.

® Networks are connected using routers that support communication
INn a hierarchical fashion

® Often need other special devices at the boundaries for security,
accounting, ..

@ The Internet: the interconnected set of networks of the Internet
Service Providers (ISPs)

@ About 17,000 different networks make up the Internet

Internet

How to find Nodes?

@ Naming

what is the IP address of nss.kaist.ac.kr

itis 143.248.111.111

http://nss.kaist.ac.kr

Routing

® \Whatisit?
B> an approach of sending packets to a destination
veg.,
OSPF, BGP, ISIS, and more a TS
B> routing vs. switching?

A
@oute Sepment m
<

Protocol and Layer

Protocol

@ Definition

A communication protocol is a system of digital rules
for data exchange within or between computers. -
from Wikipedia

RULE for Communication

OSI Model

@ OS5

e Open System Interconnection model

@ Definition

A conceptual model that characterizes and standardizes
the internal functions of a communication system by
partitioning it into abstraction layers. - from Wikipedia

Layer 5 (5) Inslance ! {5} - Protocol {5) Inslance

i
Layer 4 {4) Instance ! (4] - Protecal {4) Instance
]

Layer 3 (3) Instance | (3] - Protecal {3) Instance
y |

Layering

Host

Host

Modular approach to network functionality

OSI-7 Layer

1 7 Application Layer
P v Message format, Human-Machine Interfaces
L
>- -
3 6 Presentation Layer
% v Coding inte 1s and 0s; encryption. compression
N
5 . Session Layer
¢ v Authentication, permissions, session restoration
A
4 Transport Layer
(u; v" End-to-end error control
>
53 Network Layer
2 v Network addressing; routing or switching
o
& o Data Link Layer
%’ v Error detection, flow control on physical link
<
o
- 1 Physical Layer
l v" Bit stream: physical medium, method of representing bits

from cisco.com

http://cisco.com

Protocols in OSI-7 layer

Protocol Wrapper Dependencies and Network Layers

DHS

91 T~ e
L= i
e

\ mt / ""m

SLIP, PPP

Headers

Data

UDP | UDP
header| data

IP

header IP data

Frame
header

Frame data

Frame
footer

Application

Transport

Internet

Link

Layering again

Application

Presentation

Session

Transport

Network

Data Link

Physical

Host Bridge/Switch Router/Gateway Host

IP

@ Definition
The Internet Protocol (IP) is the principal communications

protocol in the Internet protocol suite for relaying
datagrams across network boundaries. - from Wikipedia

0 1 8 12 1C 20 24 28 3%
1 | |]
. “cric : .l
Version "L‘::’:;, (f_“f) | Tyke Of Service (TOS) . Tulzl Lenglh (TL)
Identfication L Flags | Fragmenl OfTsel
lime 1o Lve (11L) : Protocol kit .. lleader Checksum
ssource Address
eshnaton Arirass
= option= '.. ". o e =
B “, Fauuing
E= vata . T
0 4 i (3
UoTs | Woz
-~ - 4. |Thou-| Rk - Ree | Fag- | Fau-
Erecedence = | grput | avaey | RESETVED " |azrvzd| mert | menia
: A | wh

IP

* Characteristics of IP

 CONNECTIONLESS:

e UNRELIABLE:
e BEST EFFORT:
e DATAGRAM.:

Source

mis-sequencing
may drop packets...
.. but only if necessary

individually routed

Destination

*Architecture)

*Links ‘Transparent
* Topology

IP Datagram

Hop count__|

vers | HLen TOS Total Length
ID Flags FRAG Offs
COTTL Protocol checksum
SRC IP Address
DST IP Address
| (OPTIONS) (PAD)

Offset within

~ original packet

<=64 KBytes

IP Fragmentation

@ A router may receive a packet larger than the maximum
transmission unit (MTU) of the outgoing link

Source Destination

Ethernet @ATU:IE)OO bytes MTU=1500 by’res’
MTU<1500 bytes
@ : <R2%

Offset=0
Offset>0 More Frag-=1
More Frag=0

[5Gl HoR co-n) [IIBEA]HOR com] -~ e

IP Fragmentation

@ Fragments are re-assembled by the destination host; not by
iIntermediate routers.

@ Jo avoid fragmentation, hosts commonly use path MTU
discovery to find the smallest MTU along the path.

@ Path MTU discovery involves sending various size datagrams
until they do not require fragmentation along the path.

@ Most links use MTU>=1500bytes today.

ICMP

@® [nternet Control Message Protocol:
P> Used by a router/end-host to report some types of error:

P> E.g. Destination Unreachable: packet can’t be forwarded to/towards its
destination.

P E.g. Time Exceeded: TTL reached zero, or fragment didn’t arrive in
time. Traceroute uses this error to its advantage.

P> An ICMP message is an IP datagram, and is sent back to the source of
the packet that caused the error.

TCP and UDP

® [CPandUDP
P TCP

¥ Transmission Control Protocol

» UDP

¥ User Datagram Protocol

B> core protocols of the Internet

Key difference between them?

TCP

@ Key features
B> connection oriented
> reliable - how?
e ordered - how?

2 traffic control - how?
Retransmission - ACK

Sequence number - SEQ

Flow Control - Window size

TCP Header

Bits
0 8 16 31

Source Port Destination Port

Sequence Number
Acknowledgment Number
Data Offset Reserved Code Window
Checksum Urgent Pointer
Options Padding

Data

TCP: 3-way handshake

(Active) (Passive) (Active) (Passive)

Client Server Client Server
Syn '

(Data +) Ack

Connection Setup Connection Close/Teardown
3-way handshake 2 x 2-way handshake

UDP

@ UDP is a connectionless datagram service.

B> There is no connection establishment: packets may show up at any
time.

@ UDP is unreliable:

B> No acknowledgements to indicate delivery of data.

B> Checksums cover the header, and only optionally cover the data.

B> Contains no mechanism to detect missing or mis-sequenced packets.
B> No mechanism for automatic retransmission.

B2 No mechanism for flow control, and so can over-run the receiver.

HTTP

@ Definition

The Hypertext Transfer Protocol (HTTP) is an
application protocol for distributed, collaborative,

hypermedia information systems.

HTTP Client(s)

http://xy7.com/hamehtml

| Client-cine
Mrograns

- from Wikipedia

Request Message

GeEl shome.himl HIIP/L1.1

Host: xyz.coem

Connec L ion: Keep=Alive

User=Apent: Mosillz/4.@

Accept: image/zitf, image/jpcg
blank linc

{1 mpty body) HTTP Server
e

Response Message Server-side

FlogErane

HTTP/L1.1 208 QK
Dales ...
gerver: 4Apache/z.€.45
Last Medified: ...
Canlenl-tenglh: ey
Canlenl-lype: lexly
blank linc
<html>
<heac><title>My llomed/titles< head>
<body><h1>1his is my llome Paze</hl>
< fbocy></html>

‘hlml

HTTP over TCP/IP

FTP

file transfer

i

remote file
system

Transfer file to/from remote host

Client/server model

» Client: side that initiates transfer (either to/from

remote)
o Server: remote host
ftp: RFC 959

ftp server: port 21

FTP

* Ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

 Two parallel TCP
connections opened:

« Control: exchange commands,
responses between client,

server.
“out of band control”

 Data: file data to/from server

« Ftp server maintains “state”:

current directory, earlier
authentication

FTP
client

TCP control connection
port 21

>n
>

TCP data connection
port 20

FTP
server

SOCKET
@ Definition

A network socket is an endpoint of an inter-
process communication flow across a computer
network... from wikipedia

Client Process Server Process

Socket Layer Socket Layer
TCP TCP
Protocol Layer | | Protocol Layer
IP IP
| |
I I
Device Layer Ne}work Ngtwork Device Layer
Driver Driver
—— Network —

Socket Label

Client - Server

Server and Client exchange messages over the
network through a common Socket API

Server

=

N

TCP/UDP

I

IP

_______f________

Ethernet Adapter |4

ports —

\ Socket API /

%

Clients

Co) (o)

TCP/UDP

I

IP

_______f________

Ethernet Adapter

user
4 space

kernel
} space

v

} hardware

Network Port

* Port numbers are used to identify

“entities” on a host
 Port numbers can be

* Well-known (port 0-1023)
* Dynamic or private (port 1024-65535)

» Servers/daemons usually use well-

kKnown ports

* Any client can identify the server/service
« HTTP =80, FTP = 21, Telnet = 23, ...

 /etc/service defines wel

-known ports

* Clients usually use dynamic ports

» Assigned by the kernel

at run time

NTP

daemon

Web
server

port 125 port 80

TCP/UDP

I

IP

I

Ethernet Adapter

Code: in_addr, sockaddr in

#include <netinet/in.h>

/* Internet address structure
struct in addr {
u long s _addr;

s

/* Socket address,
struct sockaddr in {
u char sin family;
u short sin port;

struct in addr sin addr;
char sin zerol[8];

I

Internet style.

*/

/* 32-bit IPv4 address */
/* network byte ordered */

*/
/ *

/*
/*

Address Family */
UDP or TCP Port# */
network byte ordered */

/* Internet Address */
unused */

/*

* sin_family = AF_INET selects Internet address family

Byte Ordering

union
u int32 t addr;

char cl[4];
}oun;

/* 4 bytes address */

/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = 2 */
c[0] c[l] c[2] c[3]
* Big Endian > | 128 | 2 194 | 95
 Sun Solaris, PowerP(C, ...
e Little Endian » | 95 | 194 2 128

* 1386, alpha, ...
* Network byte order = Big Endian

How to Convert

* Converts between host byte order and network
byte order
« ‘h’ = host byte order

* ‘n’ = network byte order
« ‘I' =long (4 bytes), converts IP addresses

« ‘s’ =short (2 bytes), converts port numbers

#include <netinet/in.h>

unsigned long i1nt htonl (unsigned long 1nt hostlongqg);
unsigned short i1nt htons (unsigned short 1nt
hostshort) ;

unsigned long 1nt ntohl (unsigned long int netlong);
unsigned short 1nt ntohs (unsigned short int
netshort) ;

Socket Example

* A socket is a file descriptor that lets an application read/write data
from/to the network

int f£d; /* socket descriptor */

1f ((fd = socket (AF INET, SOCK_STREAM, 0)) < 0) }
perror(“sockegw);
ex1t (1) ;

J

* socket returns an integer (socket descriptor)
« fd < 0 indicates that an error occurred
« socket descriptors are similar to file descriptors

 AF_INET: associates a socket with the Internet protocol family
« SOCK STREAM: selects the TCP protocol
« SOCK DGRAM: selects the UDP protocol

TCP server example

* For example: web

Port 80
- What does a web server
TCP heed to do so that a web
i client can connect to it?
IP

1

Ethernet Adapter

socket()

Since web traffic uses TCP, the web server must create a socket
of type SOCK_STREAM

int fd;

1T ((f£d

/* socket descriptor */

socket (AF INET, SOCK STREAM,

perror ("socket”) ;
exit (1) ;

J

0))

< 0)

{

* socket returns an integer (socket descriptor)
* fd < 0 indicates that an error occurred
 AF _INET associates a socket with the Internet protocol family

SOCK _STREAM selects the TCP protocol

bind()

* A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind() */

/* create the socket */
srv.sin family = AF INET; /* use the Internet addr family */
srv.sin port = htons(80); /* bind socket ‘fd’ to port 80%*/

/* bind: a client may connect to any of my addresses */
srv.sin addr.s addr = htonl (INADDR ANY) ;

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) |
perror ("bind"); exit(1l);

}

« Still not quite ready to communicate with a client...

listen()

 Jisten indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind () */

/* 1) create the socket */
/* 2) bind the socket to a port */

1f(listen(fd, 5) < 0) {
perror ("listen’) ;
exit (1) ;

J

« Still not quite ready to communicate with a client...

accept()

* accept blocks waiting for a connection

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by bind () */
struct sockaddr in cli; /* used by accept() */

int newfd; /* returned by accept () */
int cli len = sizeof(cli); /* used by accept() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
if (newfd < 0) {
perror ("accept") ; exit (1) ;
)
« accept returns a new socket (newfd) with the same properties as the

original socket (fd)
 newfd < 0 indicates that an error occurred

accept() more

struct sockaddr in cli; /* used by accept () */
int newfd; /* returned by accept () */
int cli len = sizeof(cli); /* used by accept () */

newfd = accept(fd, (struct sockaddr*) &cli, &cli len);
1f (newfd < 0) {

perror ("accept") ;

exit (1) ;
}

How does the server know which client it is?
« cli.sin_addr.s_addr contains the client’ s IP address
« cli.sin_port contains the client’ s port number

Now the server can exchange data with the client by
using read and write on the descriptor newfd.

Why does accept need to return a new descriptor?

read()

 read can be used with a socket

* read blocks waiting for data from the client but
does not guarantee that sizeof(buf) is read

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* create the socket */

1)
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */

1f ((nbytes = read(newfd, buf, sizeof(buf))) < 0) {
perror ("read”); exit (1);

}

TCP client example

* For example: web
client

How does a web client
connect to a web server?

2 Web Clients

(2

TCP

I

IP

!

Ethernet Adapter

How to find a server

IP Addresses are commonly written as strings (“128.2.35.50), but
programs deal with IP addresses as integers.

Converting strings to numerical address:

struct sockaddr 1n srv;

srv.sin addr.s addr = inet addr(“128.2.35.50");
if(srv.sin addr.s addr == (in addr t) -1) {
fprintf (stderr, "inet addr failed!\n"); exit (1)

}

4

Converting a numerical address to a string:

struct sockaddr 1in srv;
char *t = inet ntoa(srv.sin addr);

if(t == 0) {
fprintf (stderr, “inet_ntoa failed!\n”); exit (1)

4

connect()

connect allows a client to connect to a server...

int fd; /* socket descriptor */
struct sockaddr in srv; /* used by connect () */

/* create the socket */

/* connect: use the Internet address family */
srv.sin family = AF INET;

/* connect: socket ‘fd to port 80 */
srv.sin port = htons (80);

/* connect: connect to IP Address “128.2.35.50° */
srv.sin addr.s addr = inet_addr(“128.2.35.50");

1f (connect (fd, (struct sockaddr*) &srv, sizeof(srv)) < 0)
perror(”connect"); exit (1) ;

write()

 write can be used with a socket

int fd; /* socket descriptor */
struct sockaddr 1n srv; /* used by connect () */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */

/* 1) create the socket */
/* 2) connect () to the server */

/* Example: A client could “write” a request to a server */
1f ((nbytes = write(fd, buf, sizeof(buf))) < 0) {
perror(“write");
exit (1) ;

Network Program with SOCKET (TCP case)

TCP Server
TCP Client U |
sockei() , I)
[—,—] bind()
4 ;
| connact() I r listen() |
~ TC \f
' pe "’eyb [|
No. accept()
p{ write() }\\\ 563&9 - _l_A
0 T
g ’Gq block until connection
Soy ~ from client
A ¢ .
4 w read() m
—{ read() I‘ a - ;
0{\‘@3\\0 / 7
eog 1\0 Drocess
J -+ %@ reguest
| close() I o \

™ wite)

1

close()

|

Class Summary

@ Network

P some basic things

