
Network and Security: Introduction

Seungwon Shin

KAIST

Some slides are from Dr. Srinivasan Seshan
Some slides are from Dr. Nick Mckeown

Network Overview

Computer Network

Definition

A computer network or data network is a
telecommunications network that allows computers
to exchange data. In computer networks, networked
computing devices pass data to each other along
data connections. - from Wikipedia

Computer Exchange Data

Computer Network

data

Why is it important?

Everything is connected
• from norman-networok.net

http://norman-networok.net

Network Diagram

Drawing something

Node Node

Link

One wire

Wires for everybody!

direct connection

multiple hosts, multiple links

Network Multiplexing

Multiple hosts
How to share a network link

switched network
resource sharing

orange sends two packets to red - others are waiting

black sends two packets to green - others are waiting

Switching Approaches

Circuit switching
Source first establishes a connection (circuit) to the destination

Each switch along the way stores info about connection (and possibly allocates
resources)

Source sends the data over the circuit
No need to include the destination address with the data since the switches
know the path

The connection is explicitly torn down
Example: telephone network (analog)

Circuit Switching

Switching Approaches

Packet switching
Source sends information as self-contained packets that have an
address.

Source may have to break up single message in multiple

Each packet travels independently to the destination host.
Switches use the address in the packet to determine how to forward the
packets

Store and forward

Analogy: a letter in surface mail.

Packet Switching

Packets

Internet

An inter-net: a network of networks.
Networks are connected using routers that support communication
in a hierarchical fashion
Often need other special devices at the boundaries for security,
accounting, ..
The Internet: the interconnected set of networks of the Internet
Service Providers (ISPs)
About 17,000 different networks make up the Internet

Internet

How to find Nodes?

Naming

what is the IP address of nss.kaist.ac.kr

it is 143.248.111.111

DNS

http://nss.kaist.ac.kr

Routing

What is it?
an approach of sending packets to a destination

e.g.,
OSPF, BGP, ISIS, and more

routing vs. switching?

Protocol and Layer

Protocol

Definition

A communication protocol is a system of digital rules
for data exchange within or between computers. -
from Wikipedia

RULE for Communication

OSI Model

OSI
Open System Interconnection model

Definition
A conceptual model that characterizes and standardizes
the internal functions of a communication system by
partitioning it into abstraction layers. - from Wikipedia

Layering

Host Host

Application

Transport

Network

Link

User A User B

Modular approach to network functionality

Peer Layer Peer Layer

OSI-7 Layer

• from cisco.com

http://cisco.com

Protocols in OSI-7 layer

Headers

Layering again

Bridge/Switch Router/Gateway Host Host

Application

Transport

Network

Data Link

Presentation

Session

Physical

In Detail

IP

Definition
The Internet Protocol (IP) is the principal communications
protocol in the Internet protocol suite for relaying
datagrams across network boundaries. - from Wikipedia

IP

•  Characteristics of IP

•  CONNECTIONLESS: mis-sequencing

•  UNRELIABLE: may drop packets…

•  BEST EFFORT: … but only if necessary

•  DATAGRAM: individually routed

A

R1

R2

R4

R3

B
Source Destination

D H

D H

• Architecture
• Links
• Topology

Transparent

IP Datagram

Flags

vers

TTL

TOS

checksum

HLen Total Length

ID FRAG Offset

Protocol

SRC IP Address

DST IP Address

(OPTIONS) (PAD)

<=64 KBytes

Offset within
original packet

Hop count

IP Fragmentation

A router may receive a packet larger than the maximum
transmission unit (MTU) of the outgoing link

A
Ethernet MTU=1500 bytes MTU=1500 bytes

B
Source Destination

MTU<1500 bytes R1 R2

Data HDR (ID=x)

Data HDR (ID=x) Data HDR (ID=x) Data HDR (ID=x)

Offset>0
More Frag=0

Offset=0
More Frag=1

IP Fragmentation

Fragments are re-assembled by the destination host; not by
intermediate routers.
To avoid fragmentation, hosts commonly use path MTU
discovery to find the smallest MTU along the path.
Path MTU discovery involves sending various size datagrams
until they do not require fragmentation along the path.
Most links use MTU>=1500bytes today.

ICMP

Internet Control Message Protocol:
Used by a router/end-host to report some types of error:
E.g. Destination Unreachable: packet can’t be forwarded to/towards its
destination.
E.g. Time Exceeded: TTL reached zero, or fragment didn’t arrive in
time. Traceroute uses this error to its advantage.
An ICMP message is an IP datagram, and is sent back to the source of
the packet that caused the error.

TCP and UDP

TCP and UDP
TCP

Transmission Control Protocol

UDP
User Datagram Protocol

core protocols of the Internet

Key difference between them?

TCP

Key features
connection oriented
reliable - how?
ordered - how?
traffic control - how?

Flow Control - Window size

Retransmission - ACK

Sequence number - SEQ

TCP Header

TCP: 3-way handshake

Connection Setup
3-way handshake

(Active)
Client

(Passive)
Server

Syn

Syn + Ack

Ack

Connection Close/Teardown
2 x 2-way handshake

(Active)
Client

(Passive)
Server

Fin

(Data +) Ack

Fin

Ack

UDP

UDP is a connectionless datagram service.
There is no connection establishment: packets may show up at any
time.

UDP is unreliable:
No acknowledgements to indicate delivery of data.
Checksums cover the header, and only optionally cover the data.
Contains no mechanism to detect missing or mis-sequenced packets.
No mechanism for automatic retransmission.
No mechanism for flow control, and so can over-run the receiver.

HTTP

Definition

The Hypertext Transfer Protocol (HTTP) is an
application protocol for distributed, collaborative,
hypermedia information systems. - from Wikipedia

FTP

•  Transfer file to/from remote host
•  Client/server model

•  Client: side that initiates transfer (either to/from
remote)

•  Server: remote host
•  ftp: RFC 959
•  ftp server: port 21

file transfer FTP
server

FTP
user

interface
FTP
client

local file
system

remote file
system

user
at host

FTP

•  Ftp client contacts ftp server
at port 21, specifying TCP as
transport protocol

•  Two parallel TCP
connections opened:
•  Control: exchange commands,

responses between client,
server.
�out of band control�

•  Data: file data to/from server
•  Ftp server maintains �state�:

current directory, earlier
authentication

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

SOCKET

Definition

A network socket is an endpoint of an inter-
process communication flow across a computer

network… from wikipedia

Client - Server

TCP/UDP

IP

Ethernet Adapter

Server

TCP/UDP

IP

Ethernet Adapter

Clients

Server and Client exchange messages over the
network through a common Socket API

Socket API

hardware

kernel
space

user
space ports

Network Port

• Port numbers are used to identify
�entities� on a host

• Port numbers can be
• Well-known (port 0-1023)
• Dynamic or private (port 1024-65535)

• Servers/daemons usually use well-
known ports
• Any client can identify the server/service
• HTTP = 80, FTP = 21, Telnet = 23, ...
•  /etc/service defines well-known ports

• Clients usually use dynamic ports
• Assigned by the kernel at run time

TCP/UDP

IP

Ethernet Adapter

NTP
daemon

Web  
server

port 123 port 80

Code: in_addr, sockaddr_in

#include <netinet/in.h>

/* Internet address structure */
struct in_addr {
 u_long s_addr; /* 32-bit IPv4 address */
}; /* network byte ordered */

/* Socket address, Internet style. */
struct sockaddr_in {

 u_char sin_family; /* Address Family */
 u_short sin_port; /* UDP or TCP Port# */
 /* network byte ordered */
 struct in_addr sin_addr; /* Internet Address */
 char sin_zero[8]; /* unused */

};

•  sin_family = AF_INET selects Internet address family

Byte Ordering

• Big Endian
• Sun Solaris, PowerPC, ...

• Little Endian
•  i386, alpha, ...

• Network byte order = Big Endian

128 2 194 95

union {
 u_int32_t addr; /* 4 bytes address */
 char c[4];
} un;
/* 128.2.194.95 */
un.addr = 0x8002c25f;
/* c[0] = ? */

c[0] c[1] c[2] c[3]

95 194 2 128

How to Convert

•  Converts between host byte order and network
byte order
•  �h� = host byte order
•  �n� = network byte order
•  �l� = long (4 bytes), converts IP addresses
•  �s� = short (2 bytes), converts port numbers

#include <netinet/in.h>

unsigned long int htonl(unsigned long int hostlong);
unsigned short int htons(unsigned short int
hostshort);
unsigned long int ntohl(unsigned long int netlong);
unsigned short int ntohs(unsigned short int
netshort);

Socket Example

•  A socket is a file descriptor that lets an application read/write data
from/to the network

•  socket returns an integer (socket descriptor)
•  fd < 0 indicates that an error occurred
•  socket descriptors are similar to file descriptors

•  AF_INET: associates a socket with the Internet protocol family
•  SOCK_STREAM: selects the TCP protocol
•  SOCK_DGRAM: selects the UDP protocol

int fd; /* socket descriptor */
if ((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) }

 perror(�socket�);
 exit(1);

}

TCP server example

TCP

IP

Ethernet Adapter

Web Server

Port 80

•  For example: web
server

•  What does a web server
need to do so that a web
client can connect to it?

socket()

•  Since web traffic uses TCP, the web server must create a socket
of type SOCK_STREAM

int fd; /* socket descriptor */

if((fd = socket(AF_INET, SOCK_STREAM, 0)) < 0) {

 perror(�socket�);
 exit(1);

}

•  socket returns an integer (socket descriptor)
•  fd < 0 indicates that an error occurred

•  AF_INET associates a socket with the Internet protocol family
•  SOCK_STREAM selects the TCP protocol

bind()

•  A socket can be bound to a port

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* create the socket */

srv.sin_family = AF_INET; /* use the Internet addr family */

srv.sin_port = htons(80); /* bind socket �fd� to port 80*/

/* bind: a client may connect to any of my addresses */
srv.sin_addr.s_addr = htonl(INADDR_ANY);

if(bind(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {

 perror("bind"); exit(1);
}

•  Still not quite ready to communicate with a client...

listen()

•  listen indicates that the server will accept a connection

int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */

/* 1) create the socket */
/* 2) bind the socket to a port */

if(listen(fd, 5) < 0) {

 perror(�listen�);
 exit(1);

}

•  Still not quite ready to communicate with a client...

accept()

•  accept blocks waiting for a connection
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by bind() */
struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

 perror("accept"); exit(1);
}

•  accept returns a new socket (newfd) with the same properties as the
original socket (fd)
•  newfd < 0 indicates that an error occurred

accept() more

struct sockaddr_in cli; /* used by accept() */
int newfd; /* returned by accept() */
int cli_len = sizeof(cli); /* used by accept() */

newfd = accept(fd, (struct sockaddr*) &cli, &cli_len);
if(newfd < 0) {

 perror("accept");
 exit(1);

}

•  How does the server know which client it is?
•  cli.sin_addr.s_addr contains the client�s IP address
•  cli.sin_port contains the client�s port number

•  Now the server can exchange data with the client by
using read and write on the descriptor newfd.

•  Why does accept need to return a new descriptor?

read()

•  read can be used with a socket
•  read blocks waiting for data from the client but

does not guarantee that sizeof(buf) is read

int fd; /* socket descriptor */
char buf[512]; /* used by read() */
int nbytes; /* used by read() */

/* 1) create the socket */
/* 2) bind the socket to a port */
/* 3) listen on the socket */
/* 4) accept the incoming connection */

if((nbytes = read(newfd, buf, sizeof(buf))) < 0) {

 perror(�read�); exit(1);
}

TCP client example

TCP

IP

Ethernet Adapter

2 Web Clients
•  For example: web

client

•  How does a web client
connect to a web server?

How to find a server

struct sockaddr_in srv;

srv.sin_addr.s_addr = inet_addr(�128.2.35.50�);
if(srv.sin_addr.s_addr == (in_addr_t) -1) {

 fprintf(stderr, "inet_addr failed!\n"); exit(1);
}

Converting a numerical address to a string:

•  IP Addresses are commonly written as strings (�128.2.35.50�), but
programs deal with IP addresses as integers.

struct sockaddr_in srv;
char *t = inet_ntoa(srv.sin_addr);
if(t == 0) {

 fprintf(stderr, �inet_ntoa failed!\n�); exit(1);
}

Converting strings to numerical address:

connect()

•  connect allows a client to connect to a server...
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */

/* create the socket */

/* connect: use the Internet address family */
srv.sin_family = AF_INET;

/* connect: socket �fd� to port 80 */
srv.sin_port = htons(80);

/* connect: connect to IP Address �128.2.35.50� */
srv.sin_addr.s_addr = inet_addr(�128.2.35.50�);

if(connect(fd, (struct sockaddr*) &srv, sizeof(srv)) < 0) {

 perror(�connect"); exit(1);
}

write()

•  write can be used with a socket
int fd; /* socket descriptor */
struct sockaddr_in srv; /* used by connect() */
char buf[512]; /* used by write() */
int nbytes; /* used by write() */

/* 1) create the socket */
/* 2) connect() to the server */

/* Example: A client could �write� a request to a server */
if((nbytes = write(fd, buf, sizeof(buf))) < 0) {

 perror(�write�);
 exit(1);

}

Network Program with SOCKET (TCP case)

Class Summary

Network
some basic things

