Secure Architecture
Principles

e |solation and Least Privilege
* Access Control Concepts
* Operating Systems

* Browser Isolation and Least Privilege

Original slides were created by Prof. John Mitchel and Suman Janna
Some slides are from Prof. David Mazieres 1

Secure Architecture
Principles

|Isolation and
Least Privilege

Principles of Secure Design

 Compartmentalization

— Isolation
— Principle of least privilege
 Defense in depth
— Use more than one security mechanism
— Secure the weakest link

— Fail securely
 Keep it simple

Principle of Least Privilege

 What's a privilege?
— Ability to access or modify a resource

 Assume compartmentalization and isolation
— Separate the system into isolated compartments
— Limit interaction between compartments

* Principle of Least Privilege

— A system module should only have the minimal
privileges needed for its intended purposes

Monolithic design

Network Network

User input System User device

File system File system

Monolithic design

w4

- s‘é L
” " Network Network
User input System User device

File system File system

Monolithic design

il

Component design

Network Network
User input ; é User display

File system File system

Component design

N/ 4
~>‘é'

-~

~ " Network Network
User input ; é User device

File system File system

o~

10

Component design

N/ 4
~>‘é'
4

Network - - Network
User input ; é User device

File system File system

11

Principle of Least Privilege

 What’s a privilege?
— Ability to access or modify a resource

 Assume compartmentalization and isolation
— Separate the system into isolated compartments
— Limit interaction between compartments

* Principle of Least Privilege

— A system module should only have the minimal
privileges needed for its intended purposes

12

Example: Mail Agent

Requirements

— Receive and send email over external network
— Place incoming email into local user inbox files
Sendmail

— Traditional Unix

— Monolithic design

— Historical source of many vulnerabilities
Qmail

— Compartmentalized design

13

OS Basics (before examples)

* |solation between processes
— Each process has a UID
* Two processes with same UID have same permissions
— A process may access files, network sockets,
* Permission granted according to UID
* Relation to previous terminology
— Compartment defined by UID
— Privileges defined by actions allowed on system resources

14

Qmail design

Isolation based on OS isolation
— Separate modules run as separate “users”
— Each user only has access to specific resources
Least privilege
— Minimal privileges for each UID
— Only one “setuid” program
 setuid allows a program to run as different users
— Only one “root” program
* root program has all privileges

15

Structure of gmail

gmail-smtpd
< Incoming internal m?

gmail-queue

Incoming external mail

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local
16

Isolation by Unix UIDs

gmailg — user who is allowed to read/write mail queue

gmaild

user
gmail-smtpd gmailq

gmails

gmailr

root

gmail-rspawn gmail-Ispawn

setuid user

gmaj user
gmail-remote gmail-local

17

Structure of gmail

gmail-smtpd

gmail-queue

Reads incoming mail directories
Splits message into header, body
Signals gmail-send

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local
18

Structure of gmail

gmail-smtpd

gmail-send signals
e gmail-Ispawn if local
e gmail-remote if remote

gmail-rspawn

gmail-queue

gmail-send

gmail-inject

gmail-Ispawn

gmail-local

19

Structure of gmail

gmail-smtpd

gmail-queue

gmail-send

gmail-Ispawn gmail-lspawn
- W

e Spawns gmail-local
e gmail-local runs with ID of user

receiving local mail gmail-local
20

Structure of gmail

gmail-smtpd

gmail-queue

gmail-send

gmail-inject

gmail-local
e Handles alias expansion
e Delivers local mail
e Calls gmail-queue if needed

gmail-Ispawn

) dMail-local

21

Structure of gmail

gmail-smtpd

gmail-rspawn

gmail-queue

gmail-inject

gmail-send

gmail-remote
e Delivers message to remote MTA

22

Isolation by Unix UIDs

gmailg — user who is allowed to read/write mail queue

gmaild

user
gmail-smtpd gmailq

setuid : gmail-queue

gmails

gmailr

gmail-rspawn gmail-Ispawn == o0t

setuid user

gmaj user
gmail-remote gmail-local

23

Least privilege

gmail-smtpd

setuid w—)

gmail-inject

gmail-queue

gmail-send

gmail-rspawn gmail-Ispawn

@ gmail-local

24

Qmail summary

e Security goal?

* Threat model?

* Mechanisms
— Least privilege
— Separation

25

Secure Architecture
Principles

Access Control
Concepts

Access control

* Assumptions
— System knows who the user is
* Authentication via name and password, other credential
— Access requests pass through gatekeeper (reference monitor)
e System must not allow monitor to be bypassed

Reference R
monitor N
User
> Resource
process access request

~_

policy

Subjects
(Principal)

Access control matrix [Lampson]
Objects
File 1 File 2 File 3 File n
User 1 read write - - read
User 2 write write write - -
User 3 - - - read read
User m read write read write read

31

Implementation concepts

File 1 File 2
* Access control list (ACL) | User 1 read write _
— Store column of matrix _ _
) User 2 write write -
with the resource
e Capability User 3 - - read
— User holds a “ticket” for
each resqurFe User m Read write write
— Two variations

* store row of matrix with user, under OS control
* unforgeable ticket in user space

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems

ACL vs Capabilities

Access control list
— Associate list with each object
— Check user/group against list
— Relies on authentication: need to know user
Capabilities
— Capability is unforgeable ticket
 Random bit sequence, or managed by OS
e Can be passed from one process to another
— Reference monitor checks ticket
* Does not need to know identify of user/process

33

ACL vs Capabilities

User U

Process P

-

Capability c,d,e

User U

Process Q

User U

Process R

Process P]

Capability c,e

Process Q

Capability c

Process R

34

ACL vs Capabilities

Delegation
— Cap: Process can pass capability at run time
— ACL: Try to get owner to add permission to list?
* More common: let other process act under current user
Revocation
— ACL: Remove user or group from list
— Cap: Try to get capability back from process?
* Possible in some systems if appropriate bookkeeping
— 0OS knows which data is capability
— If capability is used for multiple resources, have to revoke all or none ...
* Indirection: capability points to pointer to resource
— If C—> P — R, then revoke capability C by setting P=0

35

Roles (aka Groups)

* Role =set of users
— Administrator, PowerUser, User, Guest
— Assign permissions to roles; each user gets permission
* Role hierarchy
— Partial order of roles Administrator
— Each role gets |
permissions of roles below Poweruser|
— List only new permissions User

given to each role |
Guest

Role-Based Access Control

Individuals Roles Resources

Inl /> engineering o % >erver 1
_, Mmarketing = Server 2
_§ Server 3

Inl » human res —

Advantage: users change more frequently than roles 28

ACL vs Capabilities vs RBAC

Capability? ACL? RBAC?

— | hereby delegate to David the right to read file 4 from
9am to 1pm

— | want to give read and write right of a file to Alice

— | guaranteed that Charlie will have the same authority as
me when accessing a file

— A person in the financial team can perform “create a
credit account transaction” in a financial application

— a nurse shall have access to all the patients who are on
her ward, or who have been there in the last 90 days

39

Access control summary

Access control involves reference monitor
— Check permissions: {user info, action)— yes/no
— Important: no way around this check
Access control matrix
— Access control lists vs capabilities
— Advantages and disadvantages of each
Role-based access control
— Use group as “user info”; use group hierarchies

40

Secure Architecture
Principles

Access Control in
UNIX

41

Unix access control

File 1 File 2
User 1 read write
* Process has user id Usera write write
— Inherit from creating process
- User 3 - read
— Process can change id
e Restricted set of options
. . User m Read write write
— Special “root” id

* All access allowed
* File has access control list (ACL)
— Grants permission to user ids
— Owner, group, other

42

Unix file access control list

Each file has owner and group
Permissions set by owner setid
— Read, write, execute ’
— Owner, group, other Y Y Yh
ownr r othr
— Represented by vector of STP
four octal values

Only owner, root can change permissions
— This privilege cannot be delegated or shared
Setid bits — Discuss in a few slides

43

Process effective user id (EUID)

Each process has three Ids (+ more under Linux)
— RealuserID (RUID)
* same as the user ID of parent (unless changed)
* used to determine which user started the process
— Effective user ID (EUID)
* from set user ID bit on the file being executed, or sys call

* determines the permissions for process
— file access and port binding

— Saved user ID (SUID)
* So previous EUID can be restored

Real group ID, effective group ID, used similarly

44

Process Operations and IDs

Root

— |ID=0 for superuser root; can access any file
Fork and Exec

— Inherit three IDs, except exec of file with setuid bit
Setuid system call

— seteuid(newid) can set EUID to

* Real ID or saved ID, regardless of current EUID
 AnyID, if EUID=0

Details are actually more complicated
— Several different calls: setuid, seteuid, setreuid

45

Setid bits on executable Unix file

Three setid bits
— Setuid — set EUID of process to ID of file owner
— Setgid — set EGID of process to GID of file
— Sticky
e Off: if user has write permission on directory, can
rename or remove files, even if not owner

* On: only file owner, directory owner, and root can
rename or remove file in the directory

46

Example

RUID 25

;;ec(),/

Owner 18
.| SetUID
_— program
Owner 18 l
-rW-r--r-- "
file _read/write | .
i=getruid()
Owner 25 setuid(i);
TWEPETEZ | read/write |«
file ¢ g

RUID 25
EUID 18

RUID 25
EUID 25

47

Runs as root

e /usr/bin/login runs as root
— Reads username & password from terminal
— Looks up username in /etc/passwd, etc.
— Computes H(salt, typed password) & checks that it matches

— If matches, sets group ID & user ID corresponding to
username

— Execute user’s shell with execve system call

48

Another example

* Why do we need the setuid bit?

— Some programs need to do privileged operations on behalf
of unprivileged users

* /usr/bin/ping should be able to create raw sockets
(needs root)

* An unprivileged user should be able to run ping

 Solution: /usr/bin/ping in Linux is owned by root with
setuid bit set

49

Unix summary

Good things

— Some protection from most users

— Flexible enough to make things possible
Main limitation

— Too tempting to use root privileges

— No way to assume some root privileges without all root
privileges

52

Secure Architecture
Principles

Security holes

53

A Security hole

Even without root or setuid, attackers can trick root owned
processes into doing things...

Example: Want to clear unused files in /tmp
Every night, automatically run this command as root:
— find /tmp -atime +3 -exec rm -f -- {} \;
find identifies files not accessed in 3 days
— executes rm, replacing {} with file name
rm -f -- path deletes file path
— Note “--” prevents path from being parsed as option
What’s wrong here?

54

An attack

find/rm Attacker

mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passwd”)
readdir (“/tmp”) — “badetc”

Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

unlink (“/tmp/badetc/passwd”)

55

An attack (cont’d)

find/rm Attacker

mkdir (“/tmp/badetc”)

creat (“/tmp/badetc/passwd”)
readdir (“/tmp”) — “badetc”

Istat (“/tmp/badetc”) — DIRECTORY
readdir (“/tmp/badetc”) — “passwd”

rename (“/tmp/badetc” — “/tmp/x”)

symlink (“/etc”, “/tmp/badetc”)
unlink (“/tmp/badetc/passwd”)

e Time-of-check-to-time-of-use [TOCTTOU] bug
» find checks that /tmp/badetc is not symlink
e But meaning of file name changes before it is used

56

Xterm command

Provides a terminal window in X-windows
Used to run with setuid root privileges
— Requires kernel pseudo-terminal (pty) device
— Required root privs to change ownership of pty to user
— Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
[*..0*

What’s wrong here?

57

Xterm command

Provides a terminal window in X-windows
Used to run with setuid root privileges
— Requires kernel pseudo-terminal (pty) device
— Required root privs to change ownership of pty to user
— Also writes protected utmp/wtmp files to record users
Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)
return ERROR;
fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
[*..0*

xterm is root, but shouldn’t log to file user can’t write
access call avoids dangerous security hole
— Does permission check with real, not effective UID

58

TOCTTOU attack in xterm

xterm Attacker
creat (“/tmp/log”)

access (“/tmp/log”) — OK
unlink (“/tmp/log”)

symlink (“/tmp/log” — “/etc/passud”)
open (“/tmp/log”)

Attacker changes /tmp/log between check and use

— xterm unwittingly overwrites /etc/passwd
— Another TOCTTOU bug

OpenBSD man page: “CAVEATS: access() is a potential security hole
and should never be used.”

59

Prevent TOCTTOU

Use new APIs that are relative to an opened directory fd
— openat, renameat, unlinkat, symlinkat, faccessat
— fchown, fchownat, fchmod, fchmodat, fstat, fstatat

— O_NOFOLLOW flag to open avoids symbolic links in last
component

— But can still have TOCTTOU problems with hardlinks

Lock resources, though most systems only lock files (and locks are
typically advisory)

Wrap groups of operations in OS transactions
— A few research projects for POSIX [Valor] [TxOS 2009]

60

Secure Architecture
Principles

Capability-based
protection

66

A security problem

» Setting: A multi-user time sharing system
— This time it’s not Unix
 Wanted Fortran compiler to keep statistics
— Modified compiler /sysx/fort to record stats in /sysx/stat

— Gave compiler “home files license” —allows writing to
anything in /sysx (kind of like Unix setuid)

 What’s wrong here?

67

A confused deputy

Attacker could overwrite any files in /sysx
— System billing records kept in /sysx/bill got wiped

Probably command like fort -o /sysx/bill file.f

Is this a bug in the compiler fort?

Original implementors did not anticipate extra rights
Can’t blame them for unchecked output file

Compiler is a “confused deputy”

Inherits privileges from invoking user (e.g., read file.f)
Also inherits privileges from home files license

Which master is it serving on any given system call?
OS doesn’t know if it just sees open ("/sysx/bill", ...)

68

Recall the access control matrix

File 1 File 2
User 1 read write
User 2 write write
User 3 - - read
User m Read write write

* Slicing matrix along rows yields capabilities
— E.g., For each process, store a list of objects it can access
— Process explicitly invokes particular capabilities

Capability-Based System

e Can help avoid confused deputy problem

— E.g., Must give compiler an argument that both specifies
the output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

— So compiler uses no ambient authority to write file
* Three general approaches to capabilities:
— Hardware enforced (Tagged architectures like M-machine)
— Kernel-enforced (Hydra, KeyKOS)
— Self-authenticating capabilities (like Amoeba)

70

