
Secure Architecture
Principles

• Isolation and Least Privilege

• Access Control Concepts

• Operating Systems

• Browser Isolation and Least Privilege

Original slides were created by Prof. John Mitchel and Suman Janna
Some slides are from Prof. David Mazieres 1

Secure Architecture
Principles

Isolation and
Least Privilege

3

Principles of Secure Design

• Compartmentalization

– Isolation

– Principle of least privilege

• Defense in depth

– Use more than one security mechanism

– Secure the weakest link

– Fail securely

• Keep it simple

4

Principle of Least Privilege

• What’s a privilege?

– Ability to access or modify a resource

• Assume compartmentalization and isolation

– Separate the system into isolated compartments

– Limit interaction between compartments

• Principle of Least Privilege

– A system module should only have the minimal
privileges needed for its intended purposes

5

Monolithic design

System

Network

User input

File system

Network

User device

File system

6

Monolithic design

System

Network

User input

File system

Network

User device

File system

7

Monolithic design

System

Network

User input

File system

Network

User display

File system

8

Component design

Network

User input

File system

Network

User display

File system

9

Component design

Network

User input

File system

Network

User device

File system

10

Component design

Network

User input

File system

Network

User device

File system

11

Principle of Least Privilege

• What’s a privilege?

– Ability to access or modify a resource

• Assume compartmentalization and isolation

– Separate the system into isolated compartments

– Limit interaction between compartments

• Principle of Least Privilege

– A system module should only have the minimal
privileges needed for its intended purposes

12

Example: Mail Agent

• Requirements

– Receive and send email over external network

– Place incoming email into local user inbox files

• Sendmail

– Traditional Unix

– Monolithic design

– Historical source of many vulnerabilities

• Qmail

– Compartmentalized design

13

OS Basics (before examples)

• Isolation between processes

– Each process has a UID

• Two processes with same UID have same permissions

– A process may access files, network sockets, ….

• Permission granted according to UID

• Relation to previous terminology

– Compartment defined by UID

– Privileges defined by actions allowed on system resources

14

Qmail design

• Isolation based on OS isolation

– Separate modules run as separate “users”

– Each user only has access to specific resources

• Least privilege

– Minimal privileges for each UID

– Only one “setuid” program

• setuid allows a program to run as different users

– Only one “root” program

• root program has all privileges

15

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

Incoming external mail Incoming internal mail

16

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

17

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
Reads incoming mail directories
Splits message into header, body
Signals qmail-send

18

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
qmail-send signals

• qmail-lspawn if local
• qmail-remote if remote

19

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-lspawn
• Spawns qmail-local
• qmail-local runs with ID of user

receiving local mail

20

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-local
• Handles alias expansion
• Delivers local mail
• Calls qmail-queue if needed

21

Structure of qmail

qmail-smtpd

qmail-remote

qmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmail-remote
• Delivers message to remote MTA

22

root

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr user
setuid user

qmailq – user who is allowed to read/write mail queue

setuid

root

23

Least privilege

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

root

setuid

24

Qmail summary

25

• Security goal?

• Threat model?

• Mechanisms

– Least privilege

– Separation

Secure Architecture
Principles

Access Control
Concepts

29

Access control

• Assumptions
– System knows who the user is

• Authentication via name and password, other credential

– Access requests pass through gatekeeper (reference monitor)
• System must not allow monitor to be bypassed

Resource
User

process

Reference
monitor

access request

policy

?

30

Access control matrix [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Subjects

(Principal)

Objects

31

Implementation concepts

• Access control list (ACL)
– Store column of matrix

with the resource
• Capability

– User holds a “ticket” for
each resource

– Two variations
• store row of matrix with user, under OS control
• unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups

Some aspects of capability concept are used in many systems

32

ACL vs Capabilities

• Access control list

– Associate list with each object

– Check user/group against list

– Relies on authentication: need to know user

• Capabilities

– Capability is unforgeable ticket

• Random bit sequence, or managed by OS

• Can be passed from one process to another

– Reference monitor checks ticket

• Does not need to know identify of user/process
33

ACL vs Capabilities

Process P

User U

Process Q

User U

Process R

User U

Process P

Capability c,d,e

Process Q

Process R

Capability c

Capability c,e

34

ACL vs Capabilities

• Delegation
– Cap: Process can pass capability at run time
– ACL: Try to get owner to add permission to list?

• More common: let other process act under current user
• Revocation

– ACL: Remove user or group from list
– Cap: Try to get capability back from process?

• Possible in some systems if appropriate bookkeeping
– OS knows which data is capability
– If capability is used for multiple resources, have to revoke all or none …

• Indirection: capability points to pointer to resource
– If C → P → R, then revoke capability C by setting P=0

35

Roles (aka Groups)

• Role = set of users
– Administrator, PowerUser, User, Guest
– Assign permissions to roles; each user gets permission

• Role hierarchy
– Partial order of roles
– Each role gets

permissions of roles below
– List only new permissions

given to each role

Administrator

Guest

PowerUser

User

37

Role-Based Access Control

Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: users change more frequently than roles 38

ACL vs Capabilities vs RBAC

• Capability? ACL? RBAC?
– I hereby delegate to David the right to read file 4 from

9am to 1pm
– I want to give read and write right of a file to Alice
– I guaranteed that Charlie will have the same authority as

me when accessing a file
– A person in the financial team can perform “create a

credit account transaction” in a financial application
– a nurse shall have access to all the patients who are on

her ward, or who have been there in the last 90 days

39

Access control summary

• Access control involves reference monitor

– Check permissions: user info, action→ yes/no

– Important: no way around this check

• Access control matrix

– Access control lists vs capabilities

– Advantages and disadvantages of each

• Role-based access control

– Use group as “user info”; use group hierarchies

40

Secure Architecture
Principles

Access Control in
UNIX

41

Unix access control

• Process has user id
– Inherit from creating process
– Process can change id

• Restricted set of options
– Special “root” id

• All access allowed
• File has access control list (ACL)

– Grants permission to user ids
– Owner, group, other

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

42

Unix file access control list

• Each file has owner and group

• Permissions set by owner

– Read, write, execute

– Owner, group, other

– Represented by vector of

four octal values

• Only owner, root can change permissions

– This privilege cannot be delegated or shared

• Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid

43

Process effective user id (EUID)

• Each process has three Ids (+ more under Linux)
– Real user ID (RUID)

• same as the user ID of parent (unless changed)
• used to determine which user started the process

– Effective user ID (EUID)

• from set user ID bit on the file being executed, or sys call
• determines the permissions for process

– file access and port binding

– Saved user ID (SUID)

• So previous EUID can be restored

• Real group ID, effective group ID, used similarly
44

Process Operations and IDs

• Root
– ID=0 for superuser root; can access any file

• Fork and Exec
– Inherit three IDs, except exec of file with setuid bit

• Setuid system call
– seteuid(newid) can set EUID to

• Real ID or saved ID, regardless of current EUID

• Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

45

Setid bits on executable Unix file

• Three setid bits

– Setuid – set EUID of process to ID of file owner

– Setgid – set EGID of process to GID of file

– Sticky

• Off: if user has write permission on directory, can
rename or remove files, even if not owner

• On: only file owner, directory owner, and root can
rename or remove file in the directory

46

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--

file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

47

Runs as root

• /usr/bin/login runs as root

– Reads username & password from terminal

– Looks up username in /etc/passwd, etc.

– Computes H(salt, typed password) & checks that it matches

– If matches, sets group ID & user ID corresponding to
username

– Execute user’s shell with execve system call

48

Another example

• Why do we need the setuid bit?

– Some programs need to do privileged operations on behalf
of unprivileged users

• /usr/bin/ping should be able to create raw sockets
(needs root)

• An unprivileged user should be able to run ping

• Solution: /usr/bin/ping in Linux is owned by root with
setuid bit set

49

Unix summary

• Good things

– Some protection from most users

– Flexible enough to make things possible

• Main limitation

– Too tempting to use root privileges

– No way to assume some root privileges without all root
privileges

52

Secure Architecture
Principles

Security holes

53

A Security hole

• Even without root or setuid, attackers can trick root owned
processes into doing things...

• Example: Want to clear unused files in /tmp

• Every night, automatically run this command as root:

– find /tmp -atime +3 -exec rm -f -- {} \;

• find identifies files not accessed in 3 days

– executes rm, replacing {} with file name

• rm -f -- path deletes file path

– Note “--” prevents path from being parsed as option

• What’s wrong here?

54

An attack

55

An attack (cont’d)

56

• Time-of-check-to-time-of-use [TOCTTOU] bug
• find checks that /tmp/badetc is not symlink
• But meaning of file name changes before it is used

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

– Requires kernel pseudo-terminal (pty) device
– Required root privs to change ownership of pty to user
– Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file

fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);
/* ... */

• What’s wrong here?

57

Xterm command

• Provides a terminal window in X-windows
• Used to run with setuid root privileges

– Requires kernel pseudo-terminal (pty) device
– Required root privs to change ownership of pty to user
– Also writes protected utmp/wtmp files to record users

• Had feature to log terminal session to file
if (access (logfile, W_OK) < 0)

return ERROR;
fd = open (logfile, O_CREAT|O_WRONLY|O_TRUNC, 0666);

/* ... */

• xterm is root, but shouldn’t log to file user can’t write
• access call avoids dangerous security hole

– Does permission check with real, not effective UID

58

Xterm command

59

TOCTTOU attack in xterm

• Attacker changes /tmp/log between check and use
– xterm unwittingly overwrites /etc/passwd
– Another TOCTTOU bug

• OpenBSD man page: “CAVEATS: access() is a potential security hole
and should never be used.”

• Use new APIs that are relative to an opened directory fd
– openat, renameat, unlinkat, symlinkat, faccessat
– fchown, fchownat, fchmod, fchmodat, fstat, fstatat
– O_NOFOLLOW flag to open avoids symbolic links in last

component
– But can still have TOCTTOU problems with hardlinks

• Lock resources, though most systems only lock files (and locks are
typically advisory)

• Wrap groups of operations in OS transactions
– A few research projects for POSIX [Valor] [TxOS 2009]

60

Prevent TOCTTOU

Secure Architecture
Principles

Capability-based
protection

66

• Setting: A multi-user time sharing system

– This time it’s not Unix

• Wanted Fortran compiler to keep statistics

– Modified compiler /sysx/fort to record stats in /sysx/stat

– Gave compiler “home files license”—allows writing to
anything in /sysx (kind of like Unix setuid)

• What’s wrong here?

67

A security problem

• Attacker could overwrite any files in /sysx
– System billing records kept in /sysx/bill got wiped
– Probably command like fort -o /sysx/bill file.f

• Is this a bug in the compiler fort?
– Original implementors did not anticipate extra rights
– Can’t blame them for unchecked output file

• Compiler is a “confused deputy”
– Inherits privileges from invoking user (e.g., read file.f)
– Also inherits privileges from home files license
– Which master is it serving on any given system call?
– OS doesn’t know if it just sees open ("/sysx/bill", ...)

68

A confused deputy

• Slicing matrix along rows yields capabilities

– E.g., For each process, store a list of objects it can access

– Process explicitly invokes particular capabilities

69

Recall the access control matrix
File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

• Can help avoid confused deputy problem

– E.g., Must give compiler an argument that both specifies
the output file and conveys the capability to write the file
(think about passing a file descriptor, not a file name)

– So compiler uses no ambient authority to write file

• Three general approaches to capabilities:

– Hardware enforced (Tagged architectures like M-machine)

– Kernel-enforced (Hydra, KeyKOS)

– Self-authenticating capabilities (like Amoeba)

70

Capability-Based System

