EE817/1S 893 cryptography Engineering and cryptocurrency

Yongdae Kim 社社社社

Admin Stuff

- ☐ Mar 13 midnight: Homework 1 submission
- ☐ Mar 14 morning: Homework I solution posting
- ☐ Mar 19 class: Quīz 1
- ☐ About 2 weeks after: Homework 2, Quiz 2
- ☐ About 2 weeks after: Homework 3, midterm, ···
- □ Question on homework?

Recap

Proof techniques Direct/Indirect proof. Proof by contradiction. Proof by cases. Existential/universal Proof. Forward/backward reasoning Divisibility: a divides b (a|b) if \exists c such that b = ac \Box d = gcd(a,b) is the largest positive integer that divides both a and b, more formally, 1) d > o, 2) d | a and d | b, 3) e | a and e | b implies e | d \Box lcm(a,b) is the smallest positive integer divisible by both a and b ☐ Euclidean Algorithm p > 2 is prime if 1) $a \mid p \Rightarrow a = \pm 1$ or $\pm p$ Prime number theorem: $\lim_{x\to\infty} \pi(x)/(x/\ln x) = 1$ Euler phi function: For n > 1, let f(n) denote the number of integers in [1, n] which are relatively prime to n. ☐ Pairwise relatively prime! $a \equiv b \pmod{m}$ if m divides a-b a* is an arithmetic inverse of a modulo n if a $a* \equiv 1 \mod n$. cardinality, counting, discrete probability, ... oneway function. Trapdoor oneway function Symmetric key cryptography, public key cryptography

key Management

- □ key establishment
 - > Process to whereby a shared secret key becomes available to two or more parties
 - > Subdivided into key agreement and key transport.

- □ key management
 - The set of processes and mechanisms which support key establishment
 - Detween parties

key Management Through SKE

- ► Easy to add and remove entities
- D Each entity needs to store only one long-term secret key
- cons
 - > Initial interaction with the TTP
 - TTP needs to maintain n longterm secret keys
 - TTP can read all messages
 - Single point of failure

key Management Through PKE

0xDAD12345	Alice
0xBADD00D1	Bob

- > TTP not required
- only n public keys need to be stored
- The central repository could be a local file

□ Problem

> Public key authentication problem

→ Solution

Need of TTP to certify the public key of each entity

Public Key certificates

- ☐ Entities trust a third party, who issues a certificate
- certificate = (data part, signature part)
 - Data part = (name, public-key, other information)
 - Signature = (signature of TTP on data part)
- ☐ If B wants to verify authenticity of A's public key
 - > Acquire public key certificate of A over a secured channel
 - > verify TTP's signature
 - □ If signature verified A's public key in the certificate is
 authentic

Symmetric vs. Public key

	Pros	cons
SKE	 High data throughput Relatively short key size 	 The key must remain secret at both ends O(n²) keys to be managed Relatively short lifetime of the key
PKE	 O(n) keys Only the private key must be kept secret longer key life time digital signature 	 Low data throughput Much larger key Sizes

kerckhoff's Principle

- □ Security should depend only on the key
 - Don't assume enemy won't know algorithm
 - » can capture machines, disassemble programs, etc.
 - » Too expensive to invent new algorithm if it might have been compromised
 - > Security through obscurity isn't
 - » Look at history of examples
 - » Better to have scrutiny by open experts
- "The enemy knows the system being used." (claude Shannon)

ID-based cryptography

- □ No public key
- ☐ Public key = ID (email, name, etc.)
- □ PKG
 - > Private key generation center
 - \triangleright $SK_{ID} = PKG_{S}(ID)$
 - > PKG's public key is public.
 - b distributes private key associated with the ID
- □ Encryption: c= E_{ID}(M)
- \square Decryption: $D_{Sk}(c) = M$

Discussion (PKI vs. Kerberos vs. IBE)

- On-line vs. off-line TTP
 - > Implication?
- □ Non-reputation?
- □ Revocation?
- ☐ Scalability?
- ☐ Trust issue?

Block cipher

- \square E: $\vee_{n} \times k \rightarrow \vee_{n}$
 - $V_n = \{0,1\}^n$, $K = \{0,1\}^k$, n is called block length, k is called key size
 - \triangleright E(P, K) = c for K \in K and P, c \in V,
 - \triangleright E(P, K) = E_k(P) is invertible mapping from V_n to V_n
 - » Ek: encryption function
 - $D(c, k) = D_k(c)$ is the inverse of E_k
 - » D_L: decryption function

Modes of operation

A block cipher encrypts plaintext in fixed-size n-bit blocks (often n = 128). What happens

Modes of operation

- □ ECB
 - \triangleright Encryption: $c_j \leftarrow E_k(x_j)$
 - Decryption: $x_j \leftarrow E^{-l}_{k} (c_j)$
- □ cBc
 - \triangleright Encryption: $c_o \leftarrow V, c_j \leftarrow E_k(c_{j-1} \oplus x_j)$
 - Decryption: $c_o \leftarrow V$, $x_j \leftarrow c_{j-1} \oplus E^{-1}_{\kappa}(c_j)$
- □ cFB
 - $\triangleright \quad \text{Encryption: } I_{i} \leftarrow IV, c_{j} \leftarrow x_{j} \oplus E_{k}(I_{j}), I_{j+1} = c_{j}$
 - Decryption: $I_i \leftarrow IV, x_j \leftarrow c_j \oplus E_k(I_j), I_{j+1} = c_j$
- □ OFB
 - Encryption: $l_i \leftarrow lv$, $o_j = E_k(l_j)$, $c_j \leftarrow x_j \oplus o_j$, $l_{j+l} = o_j$
 - Decryption: $I_i \leftarrow IV$, $O_j = E_k(I_j)$, $X_j \leftarrow C_j \oplus O_j$, $I_{j+1} = O_j$

Modes of operation (CTR)

cTR advantages

- ☐ Hardware efficiency
 - > Parallelizable
- □ Software efficiency
 - > Similar, modern processors support parallel computation
- Preprocessing
 - > Pad can be computed earlier
- □ Random-access
 - D Each ciphertext block can be encrypted independently
 - > important in applications like hard-disk encryption
- ☐ Provable security
 - > no worse than what one gets for cBc encryption
- □ Simplicity
 - No decryption algorithm and key scheduling

Double DES

$$\Box c = E_{k2}[E_{k1}[P]]$$

$$\square P = D_{k_1}[D_{k_2}[c]]$$

□ Reduction to single stage?

$$\triangleright E_{k2}[E_{k1}[P]] = ? E_{k3}[P]$$

> It was proven that it does not hold

Meet-in-the-middle Attack

- □ Diffie 1977
- □ Exhaustively cracking it requires 2112?
- $\Box c = E_{k2}[E_{k1}[P]]$ $D = D_{k2}[C]$
- Given a known pair (P, c)
 - > Encrypt P with all possible 256 values of k
 - > Store this results and sort by x
 - Decrypt c with all possible 256 k2, and check table
 - > If same, accept it as the correct key
- ☐ Are we done? &&#@!#(

Meet-in-the-middle Attack, cnt

- ☐ Little Statistics
 - > For any P, there are 264 possible c
 - DDES uses 112 bit key, so 2112 keys
 - \triangleright Given c, there are $2^{112}/2^{64} = 2^{48}$ possible P » So there are 2^{48} false alarms
 - \triangleright If one more (P', c') pair, we can reduce it to 2^{-16}
- □ So using two (plaintext, ciphertext) pairs, we can break DDES c * 2⁵⁶ encryption/decryption
- \Box c = $E_{k2}[D_{k1}[P]]$ different?

Triple DES with two keys

- obvious counter to DDES: use three keys
 - > complexity?
 - > 168 bit key

- ☐ Attacks?
 - > No practical one so far

Product cipher

- ☐ To build complex function to compose several simple operation offer complementary, but individually insufficient protection
- ☐ Basic operation: transposition, translation (XOR) and linear transformation, arithmetic operation, mod mult, simple substitution
- □ Substitution-permutation (SP)
 network is product cipher composed
 of a number of stages each involving
 substitution and permutation

Feistel cipher

- □ virtually all conventional block ciphers
 - by Horst Feistel of IBM in 1973
- ☐ The realization of a Feistel Network depends on the choice of the following parameters and features:
 - > Block size: larger block sizes mean greater security
 - > key Size: larger key size means greater security
 - > Number of rounds: multiple rounds offer increasing security
 - Description Subkey generation algorithm: greater complexity will lead to greater difficulty of cryptanalysis.
 - > Fast software encryption/decryption: the speed of execution of the algorithm becomes a concern

Feistel Network

□ iterated cipher mapping (L_o, R_o) to (R_r, L_r) through r-round process, $(L_{i-1}, R_{i-1}) \longrightarrow_{ki} (L_i, R_i)$ as follows $D L_i = R_{i-1}, R_i = L_{i-1} \oplus f(R_{i-1}, k_i), k_i \text{ is derived from } k_i$

Feistel Network - Why it works?

- ☐ 2 Round example
- ☐ Encryption

$$\triangleright L_1 = R_o R_1 = L_o \oplus f(K_1, R_o)$$

$$\triangleright L_2 = R_1 = L_0 \oplus f(K_1, R_0), R_2 = L_1 \oplus f(K_2, R_1)$$

☐ Decryption

$$\triangleright R_1 = L_2 L_1 = R_2 \oplus f(K_2, R_1)$$

$$\triangleright R_o = L_i, L_o = R_i \oplus f(K_i, R_o)$$

□ Easily extensible to multi-round

DES History

- originated with early 1970's IBM effort to develop banking security systems
- ☐ First result was Lucifer, most common variant has 128bit key and block size
 - > Broken
- □ NBS (currently NIST) called for Algorithms in 1973
- ☐ IBM Submitted the best algorithm in 1977 and that became DES
 - Doriginal IBM key size = 128, DES = 56:-)
 - Design Philosophy of S-Box was unknown >>> Turned out to be strong

DES Overview

 \square |P|, |c| = 64, |k| = 56, 16 rounds, k! Sixteen 48-bit subkeys k; are generated

S-Box

☐ 6 bit input, 4 bit output

 \square 27 = 011011 = (01) (1101)

 \square S,-Box output for 27 = 5

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
o	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
ı	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
2	4	ı	14	8	13	6	2	11	15	12	9	7	3	10	5	0
3	15	12	8	2	4	9	ı	7	5	11	3	14	10	0	6	13

New Era!

- □ DES broken
 - DES III challenge by RSA
 - > Idle cPU time of around 100,000 computers
 - > In 22 hours

- ☐ Triple DES?
 - D Original DES was designed for H/W implementation
 - > 64 bit block size too small for security and efficiency
- ☐ Now what?

Advanced Encryption Standard

- ☐ In 1997, NIST issued a call for proposal
 - Block length = 128 bit
 - > key size = 128, 192, 256 bits
- ☐ In the first round, 15 algorithms were accepted
- ☐ Second round, 5 algorithms were selected
- ☐ In November 2001, final standard was published
 - > Rijndel, FIPS PUB 197
 - b http://csrc.nist.gov/publications/fips/fips/fips-197.pdf
 - > Joan Daemen and vincent Rijmen

AES Evaluation criteria

- □ Security
 - > Actual security: compared with other submissions
 - > Randomness: output is indistinguishable from random
 - > Soundness: of mathematical basis
 - Dother security factors: raised by security community
- □ cost
 - > No licensing: world-wide, non-exclusive, royalty-free
 - D computation efficiency: both S/W and H/W
 - > Memory requirements
- ☐ Algorithm and Implementation characteristics
 - > Flexibility: key-/block-size, wide variety of platforms
 - > Simplicity

Stream cipher

□ Definition

encrypt individual characters of plaintext message one at a time, using encryption transformation which varies with time.

☐ Block vs. Stream

- Block ciphers
 - » process plaintext in relatively large blocks
 - » The same function is used to encrypt successive blocks \implies memoryless
- > stream ciphers
 - » process plaintext in small blocks, and the encryption function may vary as plaintext is processed \Rightarrow have memory
 - » sometimes called state ciphers since encryption depends on not only the key and plaintext, but also on the current state.
- D This distinction between block and stream ciphers is not definitive
 - » adding memory to a block cipher (as in cBc) results in a stream cipher

one-time Pad and Stream cipher

- one-time pad
 - \triangleright vernam cipher: $c_i = m_i \oplus x_i$ for $i = 1, 2, 3 \cdots$
 - key is generated independently and randomly
 - ciphertext contributes no information about plain text
 - \P key should be as long as plaintext \implies key management
- ☐ Stream cipher tries to solve this problem having short key and generate pseudo-random sequence
 - Not unconditionally secure, but try to be computationally secure

questions?

☐ Yongdae Kim

- ▶ email: yongdaek@kaist.ac.kr
- ▶ Home: http://syssec.kaist.ac.kr/~yongdaek
- ▶ Facebook: https://www.facebook.com/y0ngdaek
- ▶ Twitter: https://twitter.com/yongdaek
- ▶ Google "Yongdae Kim"

