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Definition
 A hash function is a function h

▹ compression — h maps an input x of arbitrary finite 
bitlength, to an output h(x) of fixed bitlength n.

▹ ease of computation — h(x) is easy to compute for given 
x and h

 Example: Checksum
▹ Ci = m

i=1 bji

where
▹ Ci = i-th bit of hash code
▹m = number of n-bit blocks in the input
▹ bij = i-th bit in j-th block



General Model

Arbitrary length input

Iterated
Compression

function

Optional
transformation

MDC h with compression function f:

H0=IV, Hi=f(Hi-1, xi), h(x)= Ht



Basic properties
 preimage resistance = one-way

▹ it is computationally infeasible to find any input which hashes to that output

▹ for a given y, find x’ such that h(x’) = y

 2nd-preimage resistance = weak collision resistance

▹ it is computationally infeasible to find any second input which has the same output as 
any specified input

▹ for a given x, find x’ such that h(x’) = h(x)

 collision resistance = strong collision resistance

▹ it is computationally infeasible to find any two distinct inputs x, x’ which hash to the 
same output

▹ find x and x’ such that h(x) = h(x’).



Relation between properties
 Collision resistance  Weak collision resistance ?

▹ Yes! Why?

 Collision resistance  One-way ?

▹ No! Why?
▹ Let g collision resistant hash function, g: {0,1}* → {0,1}n

▹ Consider the function h defined as
h(x) = 1 || x  if x has bit length n

= 0 || g(x) otherwise
h: {0,1}* → {0,1}n+1

▹ h(x) : collision and pre-image resistant (unique), but not one-way



Birthday Paradox (I)
 What is the probability that a student in this

room has the same birthday as Yongdae?
▹ 1/365. Why?

 What is the minimum value of k such that the probability is 
greater than 0.5 that at least 2 students in a group of k people 
have the same birthday?
▹ 1 (1 - 1/n)(1 - 2/n)…(1 - (k-1)/n)

≤ e-1/n e-2/n … e-(k-1)/n           1 + x ≤ ex Taylor series
= e- i/n = e-k(k-1)/2n

≤ 1/2
▹ - k(k-1)/2n ≤ ln (1/2)  k  (1 + (1+ (8 ln 2) n)1/2 ) / 2
▹ For n = 365, k  23



Birthday Paradox (II)
 Relation to Hash Function?

▹ When n-bit hash function has uniformly random output

▹ One-wayness: Pr[y = h(x)]  ?

▹ Weak collision resistance: Pr[h(x) = h(x’) for given x] ?

▹ Collision resistance: Pr[h(x) = h(x’)] ?



What is a hash function?
Arbitrary length input, fixed length output

 efficient

 one-wayness, 2nd preimage resistance, collision 
resistance

What else?



Probability

Recall that MD5 outputs 128-bit 
bitstrings.

What is the probability that
MD5(“a”)=0cc175b9c0f1b6a831c399e269772661?

• Answer: 1 (I tested it yesterday.)



A random function?
A hash function is a deterministic function, 

usually with a published succinct algorithm.

As soon as Ron Rivest finalized his design, 
everything is determined and there’s nothing 
really random about it!



Heuristically random?
 But we still regard hash functions more or less 

‘random’.  The intuition is like:

A hash function ‘mixes up’ the input too 
throughly, so for any x, unless you explicitly 
compute H(x), you have no idea about any bit of 
H(x) any better than pure guess



Heuristically random?
We want more or less:

▹Even if x & x’ are different in 1 bit, H(x) & H(x’) 
should be independent (input is thoroughly mixed)

▹The best way to learn anything about H(x) is to 
compute H(x) directly

» Knowing other H(y) doesn’t help



How to design a hash function
 Phase 1: Design a ‘compression function’

▹Which compresses only a single block of fixed size to 
a previous state variable

 Phase 2: ‘Combine’ the action of the compression 
function to process messages of arbitrary 
lengths

 Similar to the case of encryption schemes



Merkle-Damgard scheme

 The most popular and straightforward method 
for combining compression functions



Merkle-Damgard scheme
 h(s, x): the compression function

▹ s: ‘state’ variable in {0,1}n

▹ x: ‘message block’ variable in {0,1}m

 s0=IV, si=h(si-1, xi)

H(x1||x2||...||xn)=h(h(...h(IV,x1),x2)...,xn)=sn



Merkle-Damgard strengthening
 In the previous version, messages should be of 

length divisible by m, the block size

▹ a padding scheme is needed: x||p for some string p so 
that m | len(x||p)

Merkle-Damgard strengthening:

▹ encode the message length len(x) into the padding 
string p



Strengthened Merkle-Damgard



Collision resistance
 If the compression function is collision 

resistant, then strengthened Merkle-Damgard
hash function is also collision resistant

 Collision of compression function:
f(s, x)=f(s’, x’) but (s, x)≠(s’, x’)



Collision resistance

 If h(,) is collision 
resistant, and if 
H(M)=H(N), then 
len(M) should be 
len(N), and the last 
blocks should coincide



Collision resistance



Collision resistance

 And the penultimate 
blocks should agree, 
and,



Collision resistance

 And the ones before 
the penultimate, 
too...

 So in fact M=N



Multicollision
H: a random function of output size n

You have to compute about 2n/2 hash values until 
finding a collision with high probability

You have to compute about 2n(r-1)/r hash values 
until finding r-collision with high probability: 
H(x1)= H(x2)=...=H(xr).



Multicollision attack
H: a Merkle-Damgard hash function of output 

size n (with or without strengthening)

 It is possible to find r-collision about time 
log2(r)2n/2, if r=2t for some t

 By Antoine Joux (2004)



Multicollision attack

 Do birthday attack 
to find M1, N1 so that 
h(IV, M1)= h(IV, N1)



Multicollision attack

 Starting from the 
common previous 
output, do another 
birthday attack M2, 
N2 so that the next 
outputs agree



Multicollision attack



Multicollision attack

 Any of the 2t possible paths all produce the same hash 
value

 Total workload:   t 2n/2 hash computations
(actually compression function computations)



Extension property
 For a Merkle-Damgard hash function,

H(x, y) = h(H(x),y)

▹ Even if you don’t know x, if you know H(x), you can 
compute H(x, y)

▹ H(x, y) and H(x) are related by the formula

▹Would this be possible if H() was a random function?



Fixing Merkle-Damgard
Merkle-Damgard: historically important, still 

relevant, but likely will not be used in the future 
(like in SHA-3)

 Clearly distinguishable from a random oracle

How to fix it?  Simple: do something completely 
different in the end



SMD



EMD

 IV1≠IV2



MDP

π: a permutation with few fixed points
▹ For example, π(x)=x⊕C for some C≠0



MAC & AE



MAC
Message Authentication Code

 ‘keyed hash function’ Hk(x)

▹k: secret key, x: message of any length, 
Hk(x): fixed length (say, 128 bits)

▹ deterministic

 Purpose: to ‘prove’ to someone who has the secret 
key k, that x is written by someone who also has 
the secret key k
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How to use?
A & B share a secret key k

A sends the message x and the MAC M←Hk(x)

 B receives x and M from A

 B computes Hk(x) with received M

 B checks if M=Hk(x)



Attack scenario
 E may eavesdrop many communications (x, M) 

between A & B

 E then tries (possibly many times) to ‘forge’ (x’, 
M’) so that B accepts: M’=Hk(x’)

Question: what if E ‘replays’ old transmission (x, 
M)?  Is this a successful forgery?



Capabilities of attackers
Known-text attack

▹Simple eavesdropping

 Chosen-text attack

▹Attacker influences Alice’s messages

Adaptive chosen-text attack

▹Attacker adaptively influences Alice



Types of forgery
Universal forgery: attacker can forge a MAC for 

any message

 Selective forgery: attacker can forge a MAC for a 
message chosen before the attack

 Existential forgery: attacker can forge some 
message x but in general cannot choose x as he 
wishes



Security of MAC
 Should be secure against adaptively chosen-

message existential forger

▹Attacker may watch many pairs (x, Hk(x))

▹May even try x of his choice

▹May try many verification attempts (x, M)

▹Still shouldn’t be able to forge a new message at all



Two easy attacks
 Exhaustive key search

▹Given one pair (x, M), try different keys until 
M=Hk(x)

▹Lesson: key size should be large enough

 Pure guessing: try many different M with a fixed 
message x

▹Lesson: MAC length should be also large

Question: which one is more serious?
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Random function as MAC
 Suppose A and B share a random function R(x), 

which assigns random 128-bit value to its input x

 Even if E sees many messages of form (x, R(x)), 
for a new y, R(y) can be any of 2128 strings

 Successful forgery prob. ≤ 2-128



Random function as MAC
 It is a perfect MAC, but the ‘key size’ is too 

large: how many functions of form
R: {0,1}m→{0,1}n? Answer: 2^(n 2m)

 But there are keyed functions which are 
‘indistinguishable’ from random functions: called 
PRFs (PseudoRandom Functions)

 Designing a secure PRF is a good way to design a 
secure MAC



Truncation of MAC
Hk(x) is a secure MAC with 256-bit output

H’k(x) = the first 128 bits of Hk(x)

Question: is H’k(x) a secure MAC? 
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• Answer: not in general, but secure if Hk(x) is a secure PRF



Practical constructions
 Blockcipher based MACs

▹ CBC-MAC

▹ CMAC

Hash function based MACs

▹ secret prefix, secret suffix, envelop

▹HMAC



CBC-MAC

 CBC, with some fixed IV.  Last ‘ciphertext’ is the MAC

 Block ciphers are already PRFs.  CBC-MAC is just a way to combine 
them

 Secure as PRF, if message length is fixed



CBC-MAC

 Secure as PRF, if message length is fixed

 Completely insecure if the length is variable!!!



CBC-MAC

 ‘Extension property’ once more!

 How to fix it?

▹ Again, do something different at the end
to break the chain



Modification 1

▹ Use a different key at the end

▹ Good: this solves the problem

▹ Bad: switching block cipher key is bad



Modification 2

▹ XORing a different key at the input is 
indistinguishable from switching the block cipher 
key



CMAC
NIST standard (2005)

 Solves two shortcomings of CBC-MAC

▹variable length support

▹message length doesn’t have to be multiple of the 
blockcipher size



Some Hash-based MACs
 Secret prefix method: Hk(x)=H(k, x)

 Secret suffix method: Hk(x)=H(x, k)

 Envelope method with padding: 
Hk(x)=H(k, p, x, k)



Secret prefix method
 Secret prefix method: Hk(x)=H(k, x)

▹Secure if H is a random function

▹ Insecure if H is a Merkle-Damgard hash function

» Hk(x, y)=h(H(k, x), y)=h(Hk(x), y)



Secret suffix method
 Secret suffix method: Hk(x)=H(x, k)

▹Much securer than secret prefix, even if H is Merkle-
Damgard

▹An attack of complexity 2n/2 exists:

» Assume that H is Merkle-Damgard
» Find hash collision H(x)=H(y)
» Hk(x) = h(H(x), k) = h(H(y), k) = Hk(y)
» off-line!
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Envelope method
 Envelope method with padding: 

Hk(x)=H(k, p, x, k)

▹ For some padding p to make k||p at least one block

 Prevents both attacks



HMAC
NIST standard (2002)

HMACk(x)=H(K⊕opad || H(K⊕ipad || x))

 Proven secure as PRF, if the compression 
function h of H satisfies some properties
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MAC vs Signature
 secret key vs. public key

 private verification vs. public verification

MAC doesn’t provide non-repudiation

▹Bob claims that Alice sends (x, M), showing that 
M=Hk(x).  Who else can write this message?



Confidentiality & integrity
Two symmetric key primitives

▹Encryption scheme: protects confidentiality

▹MAC: protects integrity

Usually, what we want is to protect both
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Encryption not enough?
 ‘It’s encrypted so nobody can alter it!’

 C=Ek(P)

 If any string is a valid ciphertext (e.g., a 
blockcipher), modifying C to C’ will alter your P 
(to P’, perhaps a garbage)

▹Question: is this a problem?



Giving redundancy
 Solution: not all strings are valid ciphertext

▹ Format plaintext with some redundancy

▹Only correctly formatted plaintext is to be accepted

▹Example, C=Ek(P || P), or C=Ek(P || H(P))

▹Be careful: what if Ek() is a stream cipher?



Generic composition
 Instead of using an ad-hoc method,

 Combine a secure encryption scheme (say, CBC, 
CTR) and a secure MAC (say, CMAC, HMAC)

▹Two keys are needed

▹How to combine two?

▹ ‘Generic’ here means ‘black-box’



Generic composition
MAC-and-Encrypt: Eke(P) || Mkm(P)

MAC-then-Encrypt: Eke(P || Mkm(P))

 Encrypt-then-MAC: Eke(P) || Mkm(Eke(P))



Generic composition
 Encrypt-then-MAC: Eke(P) || Mkm(Eke(P)) 

▹Most ‘unintuitive’, in a sense.  Handbook gives mild 
criticism to this

▹Actually, proven to be most secure



Encrypt-then-MAC
 Encrypt-then-MAC: Eke(P) || Mkm(Eke(P))

 If the encryption scheme is secure against chosen 
plaintext attack, and MAC is secure, then the 
composition is secure against chosen ciphertext 
attack, and protects integrity of ciphertext

upgrade!



The other two
MAC-and-Encrypt: Eke(P) || Mkm(P)

▹Protects integrity of plaintext, but MAC could leak 
some information on P

▹How?



The other two
MAC-and-Encrypt: Eke(P) || Mkm(P)

▹Protects integrity of plaintext, but MAC could leak 
some information on P

▹How?

» What if Mkm(P) = P || M’km(P)?



The other two
MAC-then-Encrypt: Eke(P || Mkm(P))

▹Protects integrity of plaintext, and confidentiality 
against chosen plaintext attack

▹No problem, but no upgrade



Authenticated Encryption
 Shortcomings of generic composition:

▹Have to manage two keys

▹Takes two passes (one for Enc, one for MAC)

▹ Correct combination is responsibility of ‘users’ of 
the two primitives



Authenticated Encryption
Authenticated Encryption scheme
▹ Performs both encryption and authentication, with one key

▹ Usually comes with security proof

▹ Packaged into a single API

▹ Potentially, could be done in one-pass

▹ Examples: OCB, GCM, ...



Questions?
Yongdae Kim

▹ email: yongdaek@kaist.ac.kr

▹ Home: http://syssec.kaist.ac.kr/~yongdaek

▹ Facebook: https://www.facebook.com/y0ngdaek

▹ Twitter: https://twitter.com/yongdaek

▹ Google “Yongdae Kim”
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