
The Design of a Group Key Agreement API

Giuseppe Ateniese

Computer Science Department

Johns Hopkins University

ateniese@cs.jhu.edu

Olivier Chevassut

Lawrence Berkeley National Laboratory

University of California

chevassu@george.lbl.gov

Damian Hasse Yongdae Kim Gene Tsudik�

Computer Networks Division

USC Information Sciences Institute

fhasse,yongdaek,gtsg@isi.edu

Abstract

As collaborative applications grow in popularity the
need for appropriate security guarantees, services and
mechanisms becomes apparent. This paper describes a
protocol suite and an API geared for securing collab-
orative applications. The API is based on the exten-
sions of Di�e-Hellman key agreement developed in the
CLIQUES project. Its core services provide authenti-
cated group key agreement in relatively small (on the
order of 100 members) dynamic peer groups.

1. Introduction

Securing group communication is a complex issue. It
poses a number of challenges ranging from basic crypto-
graphic algorithms to systems, communication design
and secure implementation [4]. The two common group
security concerns are: 1) privacy: assuring that intra-
group communication remains secret to non-members,
and 2) authentication { assuring that legitimate group
members can be identi�ed as such.

The standard approach to supporting group security
is based on maintaining a secret quantity known only to
all current group members The particulars of generat-
ing and distributing this secret quantity are known col-
lectively as group key establishment. When the latter is
achieved with one party generating a group secret, the
problem is reduced to group key distribution. Whereas,
if all group members collectively generate the group se-
cret, the problem is referred to as group key agreement.

�Research supported by the Defense Advanced Research
Project Agency, Information Technology O�ce (DARPA-ITO),
under contract DABT63-97-C-0031.

In both cases, only current group members must have
access to the group secret. We say current since group
membership can be highly dynamic. Whenever mem-
bers join or leave a group, there must be means for
securely adjusting the group secret.

This paper discusses the design of an Application
Programming Interface (API) for group key agreement.
This API, called CLQ API , is based on the CLIQUES
protocol suite and is geared speci�cally for dynamic
peer groups. (Peer groups are relatively small, non-
hierarchical groups typically used for replication or
collaborative, many-to-many applications.) CLIQUES
protocols [14, 15, 3], in turn, are the group exten-
sions of the well-known Di�e-Hellman key exchange
[6]. CLIQUES provides authenticated contributory
key agreement which guarantees key independence, key
con�rmation, perfect forward secrecy, and resistance to
known key attacks.1

CLQ API separates cryptographic protocols from
communication, i.e., the actual group communication
is left to the underlying communication subsystem
(preferably, a reliable group communication system,
e.g., SPREAD[2], TOTEM[11] or TRANSIS[1]). More-
over, network events such as network partitions, fail-
ures and other abnormalities are assumed to be taken
care of by the same communication system. As de-
scribed in subsequent sections, this allows the design of
a small, concise and communication-independent API.

The rest of this paper is organized as follows. We be-
gin with the notation and the brief description of basic
operations in group key agreement. We then describe
the CLIQUES protocol suite, which, in turn, consists of
the following group operations: join, merge, leave and

1For the de�nition of the above, the reader is referred to [10].



key refresh. Next, CLQ API primitives are described
in detail along with some examples. Finally, we discuss
the e�ciency of CLQ API and conclude with some ex-
perimental results obtained with several popular cryp-
tographic packages. (A more detailed description of
the API is included in the Appendix.)

2. Group Key Agreement

The following notation is used throughout this
paper:

n number of protocol parties (group members)
i; j indices of group members
p; q prime integers
Mi i-th group member; i 2 [1; n]
G unique subgroup of Z�

p of order q
q order of the algebraic group
g exponentiation base; generator in group G
xi long-term private key of Mi

Ni Mi's session random number 2 Zq
Sn group shared key among n members
Kij long-term shared secret between Mi and Mj

jaj bit length of integer a
H output size of hash function

inv(a; b) multiplicative inverse of a modulo b

2.1. Group key agreement operations

A comprehensive group key agreement API must
handle adjustments to the group secret(s) stemming
from single- and multiple-member membership popu-
lation changes. This section describes the purpose of
each of these operations.

Single-member changes: include single member
additions or deletions. The former occurs when a
prospective member wants to join a group and the lat-
ter { when a member wants to leave (or is forced to
leave) a group. Both operations may be performed by
the group controller(s) or by consent of all group mem-
bers, depending on the local policy.

Multiple-member changes: also include addition
and deletion. The former can be further broken into:

� Mass join: multiple disparate new members are
brought into an existing group

� Group fusion: two or more groups are merged to
form a single group.

The latter includes:

� Mass leave: multiple members must be removed
at the same time.

� Group �ssion: a monolithic group needs to be bro-
ken into smaller groups.

Key refresh: is not a membership change operation,
however, we discuss it here for the sake of completeness.
It has two main purposes:

� Limit the amount of ciphertext generated with the
same key.
Since it is easier to perform cryptanalysis with
more ciphertext/plaintext pairs, a routine group
key refresh operation is needed. The lifetime of a
key is determined by the application-speci�c pol-
icy.

� Recover from the compromise of a current group
secret or a member's contribution. (We note that a
compromise of a member's contribution can result
in disclosure of all group secrets contributed to by
this member. Therefore, not only the group shared
keys, but also the individual key shares must be
periodically refreshed.)

3. CLIQUES Protocols

As mentioned above, CLIQUES is a protocol suite
providing authenticated contributory key agreement
for dynamic peer groups. The following operations are
supported by CLIQUES:

� Join: a new member is added to the group.

� Merge: one or more members are added to the
group.

� Leave: one or more members are removed from (or
leave) the group.

� Key Refresh: generates a new group shared key.

Each operation is discussed in the remainder of this
section. The mapping between the group membership
changes and the corresponding key agreement (crypto-
graphic) operations is as follows:



Membership Operation CLIQUES Operation
Forced leave Leave
Voluntary leave Leave
Single join Join
Mass join Merge
Group fusion Merge
Group �ssion Leave
Mass leave Leave
Key refresh Key Refresh

3.1. Group Controller and Group Key

Group Controller. In the current version of
CLIQUES, the last member to join the group becomes
a group controller. Equivalently, the role of a group
controller is always played by the newest member. This
behavior can be easily changed if required. In fact, any
selection criteria can be used to select a group con-
troller as long as it yields a consistent outcome across
all group members. (CLIQUES assumes that the un-
derlying communication system provides a timely and
consistent membership view to all group members; this
property is referred to as membership view synchrony.)
One obvious alternative to the present criterion is to
let the oldest member be the group controller.

We emphasize that a group controller is not in any
way a privileged group member. It exists to prevent
contention and should be viewed as a burden (or a
chore) rather than a privilege. Speci�cally, the group
controller assists new members in joining the group and
initiates operations stemming from departing members
or the need for periodic re-keying.

Furthermore, it is important to note that any group
member can, at any time, initiate a group re-key by
unilaterally updating its key share and distributing ap-
propriate partial keys to the rest for the group2. (See
below.)

Group Key. In the following operations, the group
key (also referred to as group secret) has the form Sn =
gN1��� Ni ��� Nn , where n is the group size and Ni (0 <
i � n) is provided by the i-th member, Mi[14]. In
all CLIQUES protocols, the last broadcast message is
always the set formed by:

g
Kin

N1��� Nn
Ni 8i 2 [1; n� 1]

This set, from the last broadcast, must be retained by
each group member. This is necessary since any mem-
ber can become a controller due to a group partition or
a network fault. (In other words, a non-controller can

2Though we fully support re-keying mechanism, its usage de-
pends on local policy.

become a group controller if all \younger" members fail
or become partitioned out.) Although the entire group
receives this message from the current controller, each
member uses a di�erent element (key) to compute the
new group secret.

Finally, the computation of the pairwise long-term
key, Kij , shared between any two membersMi andMj

is assumed to be performed before its use is required
in the protocol.

3.2. Join

The join operation adds a new member, Mn+1, to
the current group of n members. During this process
a new group shared key, Sn+1, is computed and Mn+1

becomes the new group controller. Assuming that Mn

is the current controller, the protocol runs as follows:

1. Mn generates a new secret and random exponent
N 0

n and produces the following set:3

M = fgN1:::N
0

n=Ni j i 2 [1; n� 1]g

Next, M is sent to Mn+1.

2. Upon receipt of the message, Mn+1 generates a
new secret exponent Nn+1 and computes:

M0 = fgKi;n+1N1:::N
0

nNn+1=Ni j i 2 [1; n]g

This set is broadcast to the entire group (including
itself).

3. Upon receipt of the broadcast, each Mi computes
the shared group key as follows:

(g
N1:::N

0

nNn+1
Ni

�Ki;n+1)K
�1

i;n+1
�Ni = gN1:::N

0

nNn+1 = Sn+1

Steps 1 and 2 require n modular exponentiations
(by Mn and Mn+1, respectively) and step 3 requires
a single exponentiation by each member. Hence, the
protocol requires (2n+ 1) serial exponentiations.

3.3. Merge

The merge operation adds k > 0 members to the
current group of n � 1 members. Let m = n + k.
During this process a new group shared key, Sm, is
computed and Mm becomes the new group controller.
Assuming Mn is the current controller, the protocol
runs as follows:

3This is achieved by exponentiating N 0

n � inv(Kin; p) �
inv(Nn; q) to each element in the last broadcast message.



1. Mn generates a new exponent N 0

n and computes:
gN1:::Nn�1N

0

n by modular exponentiation of the
previous group shared key with (N 0

n � inv(Nn; q)).
Then, this value is sent to Mn+1, the �rst new
member.

2. Each new (merging) member Mj , j = n +
1; : : : ;m � 1, generates a new exponent Nj , com-

putes gN1:::N
0

n:::Nj and forwards the result to
Mj+1.

3. Upon receipt of the accumulated value,Mm simply
broadcasts it to the entire group.

4. Every group member Mi (old and new) received
the broadcast, computes gN1:::N

0

n:::Nm�1=Ni and
sends back to Mm.

5. Having received all responses from the groupmem-
bers,Mm generates a new secret exponentNm and
produces the following set: 4

M = fgKimN1:::N
0

n:::Nm=Ni j i 2 [1;m� 1]g

which it broadcasts to the group.

6. Each member Mi computes the group shared key
exactly as in the last step of the Join protocol.

In case of a single-member Merge (k = 1), step 2 is not
required and the rest of the protocol runs as above.

Steps 1 and 2 require a total of k modular expo-
nentiations while steps 4 and 6 each involve one expo-
nentiation (in parallel by each member). Finally, step
5 needs (n + k � 1) exponentiations. Thus the total
number of serial exponentiation for a k-member Merge
is (n+ 2k + 1).

3.4. Leave

The leave operation removes one or more members
from the group of n members. As a result, a new group
shared key Sn�k, is computed where k is the number
of the departing members. Let the set K denote the
leaving members.

There are two cases to consider: 1) the current con-
troller Mn 2 K and 2) Mn =2 K. In the �rst case,
the controller's role is passed on to the most recent
remaining member Md where d = n � k. (See Sec-
tion 4.1 below.) Assuming that members are indexed
in the order of joining the group (i.e., Mn is the most
recent member to join) the remaining members must
be renumbered after a Leave. Now, even if the previous

4Note thatM is the same as its counterpart in the Join pro-
tocol.

controller is not in K, it will acquire a new index and
become Md due to renumbering.

The protocol runs as follows:

1. The controller Md generates a new exponent N 0

d,
produces the following set and broadcasts it to the
remaining group.

M = fgKi;dN1:::N
0

d=Ni j Mi =2 Kg

2. Having received M, each Mi computes:

Sd = (g
N1:::N

0

d
Ni

�Ki;d)K
�1

i;d
�Ni = gN1:::Nd

Members of the departing set K cannot compute
the new key since the group controller only computes
partial keys for the remaining group.

Step 1 requires n� k exponentiations whereas step
2 needs a single exponentiation by each member. In
total, the leave operation requires (n � k + 1) serial
exponentiations.

3.5. Key refresh

The key refresh operation updates the current group
shared key, Sn. It is, in fact, a special case of a Leave
with k = 0. Its usage depends on the application pol-
icy.

4. CLQ API

CLQ API is a group key management API based on
the CLIQUES protocol suite. It is fairly small, contain-
ing only eight function calls.

CLQ API does not perform any communication. All
API calls either accept a token, produce one or both.
As mentioned before, CLIQUES (and CLQ API )
requires reliably and sequenced communication and
membership view synchrony. Any communication sys-
tem providing these features can be used in conjunction
with CLQ API , e.g., SPREAD, TOTEM, and TRAN-
SIS might be used.

4.1. CLQ API Calls

This section describes CLQ API calls. Each call
represents one or more steps in one of the group op-
erations presented in Section 3. Details of the data
structures, de�nitions and secondary function calls can
be found in the appendix.

The following terms are used throughout this sec-
tion:



Communication
Layer

Application 1

CLQ_API

. . .Secure Communication

Communication
Layer

Application 2

CLQ_API

Secure Communication

Communication
Layer

Application n

CLQ_API

Secure Communication

Figure 1. Communication layer and CLQ API

Context: contains information about each user re-
quired by CLQ API.

Epoch: message sequence number of a token. It
is used to keep track of the group secret evolution
and to prevent replay attacks.

Timestamp: time when a token is sent. It is used
to check the freshness of an incoming token.

Session random: secret key share generated by
each member.

Token: basic protocol unit; includes: epoch,
timestamp, and a CLIQUES protocol message.

We now describe the CLQ API calls:

� clq proc join: performs step 1 of the join oper-
ation. The controller calls this function to hand
over information about the current group to a new
member who will eventually become the new con-
troller. The purposes of this function are:

{ generate a new session random for the current
controller.

{ remove long term keys and previous session
random from the partial keys of all users.

{ add the new session random into the partial
keys of all users.

� clq join: performs step 2 of the join operation.
The new group member calls this function us-
ing the token received from the current controller.
The purposes of this function are:

{ generate a new session random for the new
member.

{ generate long-term keys between the new
member and each user (can also be done be-
fore calling this function).

{ compute the partial keys for other group
members.

� clq update ctx: performs the last step of the join,
merge, leave, and key refresh operation. Every
member calls this function in order to update the
group shared key upon receipt of the token sent by
the current controller. The main purpose of this
function is to compute group shared key with the
caller's session random and the incoming token.

� clq update key: performs step 1 and 2 of the
merge operation. This function is called by the
current controller and by all (but last) of the new
members to add their session randoms to the group
shared key.

The main purposes of this function are:

{ generate new session random.

{ add new session random to the group shared
key.

� clq factor out: performs step 4 of the merge opera-
tion. Every group member (except the controller)
calls this function to factor out its own session ran-
dom number from the group shared key.

� clq merge: performs step 5 of the merge opera-
tion. The last new member (new controller) calls
this function to add its session random to each of
received partial keys from the group members.

� clq leave: performs step 1 of the leave operation.
Every group member calls this function right im-
mediately after one or more members leave the
group. A group member may also become the cur-
rent controller after calling this function; this can
happen if it �nds itself to be the newest member
within the remaining group. The main purpose of
this function is to remove the information of the
leaving members. If the controller calls this func-
tion, then two more steps need to be performed:

{ generate new session random.

{ compute partial keys for other group mem-
bers (except, of course, the departed ones).



� clq refresh key: performs step 1 of the key refresh
operation. The current controller calls this func-
tion, when the group shared key needs to be up-
dated. The main purposes of this function are:

{ To generate new session random number.

{ To compute new partial keys by adding this
session random number and removing old
one.

4.2. Operations of CLQ API

Before we explain each of the group operations in
the API, we need to de�ne some message types:

� NEW MEMBER : sent by the controller to a new
member, when a new member joins the group.

� KEY UPDATE MESSAGE : sent to every mem-
ber in order to update the group shared key.

� MERGE KEY UPDATE : sent to every member
to update the group shared key in merge opera-
tion.

� MERGE BROADCAST : broadcast from the last
new member when one or more members merge.

� MERGE FACTOR OUT : sent by each group
member to the new controller in a merge opera-
tion.

� MASS JOIN : sent to the next new member in a
merge operation.

We now clarify group operations using the function
calls from the previous section.

� Join

M

M

M

M
(1, 5)

(2, 6)

(4, 6)
(6)

(6)

n

1

2
n+1

(3)

Multicast

Unicast

Figure 2. Join operation

(1) New memberMn+1 calls communication pro-
tocol JOIN primitive.

(2) The current controller calls clq proc join to
generate a token containing NEW MEMBER
message.

(3) The token is sent to the new member.

(4) The new member calls clq join
to generate a token containing
KEY UPDATE MESSAGE.

(5) The token is broadcast to the entire group.

(6) Every user calls clq update ctx to compute
the new group shared key.

� Merge (single member)

M

M

M

M
(1, 5, 9)

(2, 6, 10)

(4, 8, 10)

(6, 10)

(6, 10)

n

1

2

n+1

(7)

(3, 7)

(7)

Figure 3. Merge operation

(1) New memberMn+1 calls communication pro-
tocol JOIN primitive.

(2) The current controller calls clq update key
to generate a token containing MASS JOIN
message.

(3) The token is sent to the new user (who be-
comes the new controller).

(4) The new controller calls clq update key
to generate a token containing
MERGE BROADCAST message.

(5) The token is broadcast to the group.

(6) Each member (except the new one) calls
clq factor out to generate a token containing
MERGE FACTOR OUT message.

(7) Each member sends the output token back to
the new controller.

(8) For each received token, the new controller
calls clq merge to generate a token contain-
ing
MERGE KEY UPDATE message. When
the last token is received,
MERGE KEY UPDATE returns an output
token.



(9) The token is broadcasted to the entire group.

(10) Every user calls clq update ctx to compute
the new group shared key.

� Merge (multiple members)

(1) A MERGE event occurs either at an explicit
request or as a result of a multiple members
calling communication protocol join to join a
group.

(2) The current group controller calls
clq update key to generate a token con-
taining MASS JOIN message.

(3) The token is sent to the �rst merging mem-
ber.

(4) Upon reception of the token, the next user
calls clq update key to generate a token con-
taining MASS JOIN message.

(5) The token is sent to the next new member.

(6) Upon reception of the token, the last user
calls clq update key to generate a token con-
taining MERGE BROADCAST message.

(7) The token is broadcasted to the entire group.

(8) Upon reception of the message, each
member except the last one calls
clq factor out to generate a token con-
taining MERGE FACTOR OUT message.

(9) The token is sent back to the last new user.

(10) For each output token, the last new member
calls clq merge to generate a token containing
MERGE KEY UPDATE.

(11) The token is broadcasted to the entire group.

(12) Every user calls clq update ctx to compute
the new group shared key.

� Leave

M

MM

M
(3)

(2, 4)

(1)

(2, 4)
(2, 4)

n-1

1

d

n

M
(2, 4)

d-1

M
(2, 4)

d+1

Figure 5. Leave operation

(1) The leaving member Md calls communica-
tion protocol LEAVE primitive. (In case of
a member disconnect or network failure the
communication system noti�es the group of
the event.)

(2) All group members call clq leave; only the
group controller obtains the output token
containing
KEY UPDATE MESSAGE.

(3) The token is broadcast to the entire group.

(4) Upon reception of the token, every user calls
clq update ctx to compute the new group
shared key.

� Key refresh

M

M

M

M
(2)

(3)

(1)
(3)

(3)

n-1

1

2
n

Figure 6. Key refresh operation

(1) The controller calls clq refresh key to gener-
ate a token containing
KEY UPDATE MESSAGE.

(2) The token is broadcasted to the entire group.

(3) Upon reception of the token, every user calls
clq update ctx to compute the new group
shared key.

5. E�ciency

The communication overhead is summarized in Ta-
ble 1.

Table 2 illustrates computation costs. Exponenti-
ation is the most expensive operation as it requires
O(log3p) bit operations in Z�

p . Given a and p, �nd-
ing the inverse of a 2 Z�

p requires only O(log2p) bit
operations (using the extended Euclidean algorithm).
Similarly, the multiplication of a and b modulo p re-
quires O(log2p) bit operations. See [9, 10] for more
details. Hence, the speed of each operation depends
largely on the number of serial exponentiations. (Note
that the cost for generating the long term keys is not
included in this table.)



M(1, 7)

(6)
m

(5)
M
(4)

m-1

M
(4)

n+1
(1)

(1)

M

M

M

M

(9)

(8, 12)

(10, 12)
n

1

2

m

(8, 12)

(8, 12)

M
(8, 12)

n+1

M
(8, 12)

m-1

(9)

(9)

(9)

(9)

(11)

M

M

M
(2)

n

1

2

(5)

(3)

Figure 4. Merge(several members) operation

Table 1. Communication costs
Operations Join Merge Leave Refresh k-Merge k-Leave
Number of users after operation n+1 n+1 n-1 n n+k n-k

Rounds 2 3 1 1 k+2 1
Broadcasts 1 2 1 1 2 1
Reverse broadcast 0 1 0 0 1 0
Total messages 2 n+2 1 1 n+2k 1
Maximum bandwidth n n n-1 n-1 n+k-1 n-k

Table 2. Computation costs
Operations Join Merge Leave Refresh k-Merge k-Leave
Number of users after operation n+1 n+1 n-1 n n+k n-k

Serial exponentiation 2n+1 n+3 n-1 n n+2k+1 n-k
Total exponentiation 3n+2 3n+2 2n-3 2n-1 3n+4k-2 2n-2k-1



5.1. Exponentiation

As mentioned earlier, modular exponentiation is
most expensive operation in CLIQUES protocols. In
this section, we compare the performance of modular
exponentiation operations using three di�erent crypto-
graphic libraries on three di�erent processors(See Table
3).

The cryptographic libraries are summarized as fol-
lows:

� RSAREF[13]
A cryptographic toolkit for privacy-enhanced mail.
We used version 2.0 developed in 1996.

� Crypto++[5]
A public domain C++ class library of crypto-
graphic schemes published by Wei Dai. Note that,
since addition and subtraction are implemented
for the Pentium assembler, this package performs
better on Pentium than in other microprocessors.
We used version 3.1 developed in May 1999.

� OpenSSL[12]
A successor of SSLeay[8], OpenSSL is a cryp-
tographic toolkit implementing Secure Socket
Layer(SSL v.2/3)[7]. (Implements some basic op-
erations in assembler on various platforms.) We
used version 0.9.3a developed in May 1999.

We measured the performance of modular exponen-
tiation y = gx (mod p), where p is a random 512-bit
prime, g a 512-bit generator for GF(p) of order q(160
bit), and x a random 160 bit integer. Table 4 shows
the comparison.

At the time of this writing, OpenSSL appears to be
the fastest of all public domain cryptographic libraries.
On a Pentium II processor it requires only 2.5 msecs
for each 512-bit modular exponentiation.

6. Conclusion

This paper describes a protocol suite and an API
designed speci�cally for securing dynamic collaborative
applications in unreliable networks. The API is based
on the extensions of Di�e-Hellman key agreement de-
veloped in the CLIQUES project. It provides core se-
curity services (most notably, authenticated key agree-
ment) for relatively small and dynamic peer groups.

References

[1] Y. Amir, D. Dolev, S. Kramer, and D. Malki. A com-
munication sub-system for high availability. In 22nd

Annual International Symposium on Fault-Tolerant
Computing (FTCS), 1992.

[2] Y. Amir and J. Stanton. The spread wide area group
communication system. Technical Report CNDS-
98-4, The Johns Hopkins University, avalaible at
www.spread.org/docs/docspread.html, 1998.

[3] G. Ateniese, M. Steiner, and G. Tsudik. Authenticated
group key agreement and friends. In ACM Symposium
on Computer and Communication Security, November
1998.

[4] R. Canetti and B. Pinkas. A taxonomy of multicast
security issues, April 1999. draft-irtf-smug-taxonomy-
00.txt.

[5] W. Dai. Crypto++, May 1999. available at
www.eskimo.com/�weidai/cryptlib.html.

[6] W. Di�e and M. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
IT-22(6):644{654, Nov. 1976.

[7] K. E. Hickman and T. Elgamal. The SSL protocol.
RFC draft, Netscape Communications Corp., June
1995. Version 3.0, expires 12/95.

[8] T. Hudson and E. Young. SSLeay, Dec. 1998. available
at www.ssleay.org.

[9] N. Koblitz. A Course in Number Theory and Cryptog-
raphy. Springer-Verlag, New York, 1987.

[10] A. Menezes, P. V. Oorschot, and S. Vanstone. Hand-
book of applied cryptography. CRC Press series on dis-
crete mathematics and its applications. CRC Press,
1996. ISBN 0-8493-8523-7.

[11] L. Moser, P. Melliar-Smith, D. Agarwal, R. Budhia,
and C. Lingley-Papadopoulos. Totem: A fault-tolerant
multicast group communication system. Communica-
tions of the ACM, 39(4), 1996.

[12] OpenSSL Project team. Openssl, May 1999. available
at www.openssl.org.

[13] RSA Laboratories. Rsaref2.0(tm): A cryptographic
toolkit for privacy-enhanced mail, Jan. 1996. available
at www.rsa.com.

[14] M. Steiner, G. Tsudik, and M. Waidner. Di�e-hellman
key distribution extended to groups. In 3nd ACM Con-
ference on Computer and Communications Security,
pages 31{37. ACM Press, Mar. 1996.

[15] M. Steiner, G. Tsudik, and M. Waidner. CLIQUES:
A new approach to group key agreement. In IEEE In-
ternational Conference on Distributed Computing Sys-
tems, May 1998.

Appendix: Data Structures and De�ni-

tions of CLQ API

� CLQ CONTEXT

{ Type : Structure

{ Description : This structure contains the context
of a member, Mi, in a speci�c group.

{ Contents

� member name (String): Name of the user
Mi

� group name (String): Name of the group



Table 3. Target platform
Machine CPU speed Main memory OS Compiler

Ultra Sparc I 233 MHz 64 MB SUN OS 5.5.1 gcc 2.7.2.2
Pentium I 233 MHz 48 MB Linux 2.0.36 gcc 2.7.2.3
Pentium II 450 MHz 256 MB Linux 2.2.9 egcs 1.1.2

Table 4. Comparison results
Machine OpenSSL Crypto++ RSAREF

UltraSparc I 16.6 msec 60.2 msec 146.3 msec
Pentium I 6.4 msec N/A N/A
Pentium II 2.5 msec 7.6 msec 22.2 msec

� key share (jqj bit integer): Mi's session ran-
dom number, Ni

� group secret(jpj bit integer): Current group
shared key

� group secret hash (H bit integer): Hash of
group secret

� group members list (CLQ GML): List of
current group members

� �rst (Pointer): Pointer to the �rst member
in the group members list

� last (Pointer): Pointer to the last member
in the group members list

� me (Pointer): Pointer to the member Mi in
the group members list

� params (CLQ PARAM): Di�e-Hellman pa-
rameters

� key (CLQ KEY): Private and public key of
Mn

� epoch (Integer): Last message number used

� CLQ GML

{ Type : Double linked list of CLQ GM data struc-
ture

{ Description : This structure is a node of the
group member list.

{ Contents

� member (CLQ GM): The current group
member

� prev (Pointer): Pointer to the previous node
in the list

� next (Pointer): Pointer to the next node in
the list

� CLQ GM

{ Type : Structure

{ Description : This structure contains informa-
tion about a speci�c member.

{ Contents

� member name (String): Name of the mem-
ber

� long term key(jpj bit integer): Long term
shared key between myself and mem-
ber name, i.e. Kij where i is related to the
public key of member name, and j to my
private key

� last partial key(jpj bit integer): Last partial
key for member name.

� CLQ TOKEN

{ Type : Structure

{ Description : Communication token used by
CLQ API, see also
CLQ TOKEN INFO

{ Contents

� length (Integer): Size of t data

� t data (Integer array): Contains the fol-
lowing encoded data: group name, mes-
sage type, time stamp, sender name, epoch,
group members list(without long term key)

� CLQ TOKEN INFO

{ Type : Structure

{ Description : This structure contains informa-
tion about the token.

{ Contents

� group name (String): Name of the group

� message type (MSG TYPE): Type of the
message

� time stamp (Integer): Time stamp of the
message

� sender name (String): Name of the sender

� CLQ PARAM

{ Type : Structure



{ Description : Di�e-Hellman, DH, public param-
eters, i.e. p; q and g

{ Contents

� p (jpj bit integer): DH parameter p

� q (jqj bit integer): DH parameter q

� g (jpj bit integer): DH parameter g

� CLQ KEY

{ Type : Structure

{ Description : Public key and private key of the
user

{ Contents

� priv key (jqj bit integer): Private key of the
user

� pub key (jpj bit integer): Public key of the
user

Appendix: API Calls of CLQ API

� clq join(ctx, member name, group name, input token,
output token)

{ Caller : New member

{ Related to : Join

{ Parameters

� ctx (CLQ CONTEXT : Context for the new
user, this should be created in this function.

� member name (String): Name of the user
calling this function

� group name (String : Name of the group
that has been joined. This name has to
match with the one that is included in the
input token.

� input token (CLQ TOKEN): Message re-
ceived from the controller. It is the out-
put token generated by clq proc join.

� output token (CLQ TOKEN): New key up-
date message to be broadcasted to the
group. It will be used as input token of
clq update ctx.

� clq proc join(ctx, member name, output token)

{ Caller : Current controller

{ Related to : Join

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text, ctx will be modi�ed only if the caller
is the controller.

� member name (String): Name of the new
member

� output token (CLQ TOKEN): This token
should be used as the input token for
clq join.

� clq update ctx(ctx, input token)

{ Caller : Every group member.

{ Related to : Join, Merge, Leave, Key Refresh

{ Parameters

� ctx (CLQ CONTEXT): Current context of
each member

� input token (CLQ TOKEN): Generated by
new member or by the current controller,
when an update of key is required(i.e. a user
join, a user left, or the key has been com-
promised). It should be the output token of
clq join, clq merge, clq leave, or clq refresh.

� clq update key(ctx, member list, input token, out-
put token)

{ Caller : Current or new controller.

{ Related to : Merge

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text

� member list (List of string): List of names
of the new members. When a new mem-
ber calls this function, this list should be
null(Since the input token is valid).

� input token (CLQ TOKEN): Output of
clq update key by the current controller or
previous new member. When the controller
calls this function, input token should be
null. (Since the member list is valid).

� output token (CLQ TOKEN): Contains re-
freshed group secret. It will be used as in-
put token of

� clq factor out by the current group
members or

� clq update key by the next new mem-
ber.

� clq factor out(ctx, input token, output token)

{ Caller : Every group member (except the last
one5)

{ Related to : Merge

{ Parameters

� ctx (CLQ CONTEXT): Current member
context

� input token (CLQ TOKEN): output token
of clq update key

� output token (CLQ TOKEN): Contains up-
dated last partial key by removing each
user's key share. It will be used as in-
put token of clq merge.

5If the current controller, i.e. the last member, calls
clq factor out then the output token will return NULL



� clq merge(ctx, sender name, input token, out-
put token)

{ Caller : The last new member

{ Related to : Merge, Mass Join

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text. ctx will be modi�ed.

� sender name (String): Name of the sender
of the input token

� input token (CLQ TOKEN): output token
of clq factor out

� output token (CLQ TOKEN): Contains up-
dated last partial key

� clq leave(ctx, member list, output token)

{ Caller : Every group member

{ Related to : Leave

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text

� member list (List of string): List of mem-
bers leaving

� output token (CLQ TOKEN): Updated
message to be broadcasted to the group

� clq refresh key(ctx, output token)

{ Caller : Controller

{ Related to : Key Refresh

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text. ctx will be modi�ed.

� output token (CLQ TOKEN): Updated
message to be broadcasted to the group

� clq destroy ctx(ctx)

{ Description : Frees the space occupied by the
current context

{ Parameters

� ctx (CLQ CONTEXT): Current group con-
text. ctx will be destroyed.

� clq destroy token(token)

{ Description : Frees the space occupied by the
token

{ Parameters

� token (CLQ TOKEN): Input or out-
put token

� clq �rst user(ctx, member name, group name)

{ Description : clq �rst user is called by the �rst
user who joins a group

{ Main purposes

� Generates key share.

� Generates member context.

{ Caller : The �rst member in a group

{ Related to : Join

{ Parameters

� ctx (CLQ CONTEXT): Current member
context. ctx should be created.

� member name (String): Name of the �rst
user

� group name (String): Name of the group


