
Secure Group Communication Using
Robust Contributory Key Agreement

Yair Amir, Member, IEEE Computer Society, Yongdae Kim, Cristina Nita-Rotaru, Member, IEEE,

John L. Schultz, Jonathan Stanton, Member, IEEE Computer Society, and Gene Tsudik, Member, IEEE

Abstract—Contributory group key agreement protocols generate group keys based on contributions of all group members. Particularly

appropriate for relatively small collaborative peer groups, these protocols are resilient to many types of attacks. Unlike most group key

distribution protocols, contributory group key agreement protocols offer strong security properties such as key independence and

perfect forward secrecy. This paper presents the first robust contributory key agreement protocol resilient to any sequence of group

changes. The protocol, based on the Group Diffie-Hellman contributory key agreement, uses the services of a group communication

system supporting Virtual Synchrony semantics. We prove that it provides both Virtual Synchrony and the security properties of Group

Diffie-Hellman, in the presence of any sequence of (potentially cascading) node failures, recoveries, network partitions, and heals. We

implemented a secure group communication service, Secure Spread, based on our robust key agreement protocol and Spread group

communication system. To illustrate its practicality, we compare the costs of establishing a secure group with the proposed protocol

and a protocol based on centralized group key management, adapted to offer equivalent security properties.

Index Terms—Security and protection, fault tolerance, network protocols, distributed systems, group communication, contributory

group key agreement, cryptographic protocols.

�

1 INTRODUCTION

MANY collaborative settings such as audio and video-
conferencing, white-boards, clustering, and replica-

tion applications, require services which are not provided
by the current network infrastructure. A typical collabora-
tive application operates as a peer group where members
communicate via reliable many-to-many multicast, some-
times requiring reliable ordered message delivery. In some
settings, group members must be aware of the exact (agreed
upon) group membership. Since group communication
systems provide these services, many collaborative applica-
tions use group communication systems (GCS) as the
underlying messaging infrastructure.

Security is crucial for distributed and collaborative
applications that operate in a dynamic network environment
and communicate over insecure networks such as the
Internet. Basic security services needed in such a group
setting are largely the same as in point-to-point communica-
tion: data secrecy and integrity, and entity authentication.
These services cannot be attained without secure, efficient,

and robust group key management. Many critical applica-
tions (e.g., military and financial) require that all intragroup
communication remain confidential. Consequently, not only
sufficiently strong encryption must be used to protect
intragroupmessages, but the underlying group keymanage-
ment must also provide strong security guarantees.

Group keys can be viewed as a sequence of values sorted
by time of use, with each key corresponding to a different
“snapshot” of a group. A group key is changed whenever
the group changes or a periodic rekey is needed. The
strongest known security guarantees are key independence
and perfect forward secrecy (PFS). Key independence states
that a passive adversary—who, in the worst case, might
know all group keys except one—cannot use its knowledge
to discover the one key that is missing. PFS demands that
the compromise of group members’ long-term keys should
not lead to the compromise of any previously used group
keys (see [3] for formal definitions).

Contributory group key agreement protocols that com-
pute a group key as a (usually, one-way) function of
individual contributions from all members can provide
both key independence and PFS properties. At the same
time, contributory group key agreement presents a tough
practical challenge: Its multiround nature must be recon-
ciled with the possibility of crashes, partitions, and other
events affecting group membership that can occur during
the execution of the group key agreement. Therefore, this
paper focuses on robust contributory group key agreement.

1.1 Group Key Management

Traditional centralized key management relies on a single
fixed key server to generate and distribute keys to the
group. This approach is not well-suited for group commu-
nication systems that guarantee continuous operation in
any possible group subset and any arbitrary number of
partitions in the event of network partitions or faults.
Although a key server can be made constantly available and

468 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

. Y. Amir is with the Department of Computer Science, 224 NEB, Johns
Hopkins University, Baltimore, MD 21218. E-mail: yairamir@cs.jhu.edu.

. Y. Kim is with the Computer Science and Engineering Department,
University of Minnesota, Twin Cities, 200 Union Street S.E., Minneapolis,
MN 55455. E-mail: kyd@cs.umn.edu.

. C. Nita-Rotaru is with the Department of Computer Science, Purdue
University, 250 N. University Street, West Lafayette, IN 47907-2066.
E-mail: crisn@cs.purdue.edu.

. J.L. Schultz can be reached at 335 S. Ann St., Baltimore, MD 21231.
E-mail: jschultz@d-fusion.net.

. J. Stanton is with the Department of Computer Science, 801 22nd Street
NW, Suite 704, George Washington University, Washington, DC 20052.
E-mail: jstanton@gwu.edu.

. G. Tsudik is with the ICS Department, University of California, Irvine,
458 CS Building, Irvine, CA 92697-3425. E-mail: gts@ics.uci.edu.

Manuscript received 7 May 2002; revised 3 Mar. 2003; accepted 26 Sept.
2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 116498.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society

attack-resistant with the aid of various fault tolerance and
replication techniques, it is very difficult (in a scalable and
efficient manner) to make a centralized server present in
every possible group subset. We note that centralized
approaches work well in one-to-many multicast scenarios
since a key server (or a set thereof) can support continued
operation within an arbitrary partition as long as it includes
the source.

The requirement to provide continued operation in an
arbitrary partition can be overcome by dynamically select-
ing a group member to act as a group key server. However,
most centralized key distribution protocols do not provide
strong security properties such as key independence and
PFS. These properties can only be provided if the key server
maintains pairwise secure channels with each group
member in order to distribute group keys. Although this
approach seems appealing, each time a new key server
comes into play, significant costs must be incurred to set up
pairwise secure channels. In addition, this method has a
disadvantage (common to all centralized fixed-server
methods) in that it relies on a single entity to generate
good (i.e., cryptographically strong) random keys.

Our approach is to use a fully distributed, contributory
group key management algorithm where a group key is not
selected by one entity, but instead, is a function of each
group member’s contribution. This avoids the issues with
centralized trust, single point of failure (and attack), and the
requirement to establish pairwise secret channels, and
provides strong security properties such as forward and
backward secrecy, key independence, and PFS [3].

1.2 Goal and Contribution

Secure, robust, and efficient key management is critical for
secure group communication. However, designing key
management protocols that are robust and efficient in the
presence of network and process faults is a big challenge.
The goal of this work is to provide a robust and secure
group communication that offers Virtual Synchrony (VS) [4]
semantics. Our contribution is three-fold:

1. We present the first robust contributory key agree-
ment protocols that are resilient to any finite (even
cascading) sequence of events. Our protocols (basic
and optimized) are based on Group Diffie-Hellman
(GDH) [5] key agreement.

2. We design a robust and secure group communica-
tion service by combining our robust key agreement
with a reliable group communication service. We
prove that the resulting system preserves the Virtual
Synchrony properties as well as the security proper-
ties of GDH.

3. We provide an insight into the cost of adding
security services to GCS, focusing on group key
management costs. We describe the implementation
of a secure group communication service—Secure
Spread—based on our optimized robust key agree-
ment protocol and the Spread [6] group commu-
nication system. We present experimental results
measuring the delay incurred by a group installing a
secure membership following group membership
changes. The cost of establishing a secure group
when our protocol is used is compared with the cost
of establishing a secure group when a centralized
key management protocol, modified such that it

provides the same strong security properties as our
group key agreement, is used.

The rest of the paper is organized as follows: We present
our failure and security models in Section 2. Section 3
presents both the group communication service and the key
agreement protocol used in designing the robust secure
group communication service. We then describe our
protocols in Sections 4 and 5 and provide implementation
details and performance results in Sections 6 and 7,
respectively. Related work is overviewed in Section 8, and
the paper concludes with a brief summary in Section 9.

2 FAILURE MODEL AND SECURITY ASSUMPTIONS

We consider a distributed system composed of a group of
processes executing on one or more CPUs and coordinating
their actions by exchanging messages. Message exchange is
achieved via asynchronous multicast and unicast. While
messages can be lost, we assume that message corruption is
masked by a lower layer. Any process can crash and
recover. A crash of any component of a process (i.e., key
agreement layer or the group communication system) is
considered a process crash. We assume that the crash of one
of any component is detected by all the other components
and is treated as a process crash.

Due to congestion or outright failures, the network can
be split into disconnected fragments. At the group commu-
nication layer, this is referred to as a partition. When a
partition is repaired, disconnected components merge into a
larger connected component; this is referred to at the group
communication layer as a merge. While processes are in
separate disconnected components, they cannot exchange
messages. Since we are interested in a practical and
reasonably efficient solution, we do not consider Byzantine
failures in this work.

We do not assume authenticity of membership events.
Authentication of newmembers is obtained as part of group
key management. When members leave, no explicit authen-
tication of their departure is obtained. Furthermore, we do
not assume any access control mechanisms to enforce
membership policies, if any.We recognize that suchmechan-
isms are necessary in real group applications; their develop-
ment is the subject of recent and ongoing work [7], [8], [9].

Our adversary model takes into account only outside
adversaries, both passive and active. An outsider is anyone
who is not a current group member. Any former or future
member is an outsider according to this definition. We do
not consider insider attacks, as our focus is on the secrecy of
group keys and the integrity of group membership. The
latter means the inability to spoof authenticated member-
ship. Consequently, insider attacks are not relevant in this
context since a malicious insider can always reveal the
group key or its own private key, thus allowing for
fraudulent membership.

Passive outsider attacks involve eavesdropping with the
aim of discovering the group key(s). Active outsider attacks
involve injecting, deleting, delaying, andmodifying protocol
messages. Some of these attacks aim to cause denial of service
andwedo not address them.Attacks that aim to impersonate
a group member are prevented by the use of public key
signatures. Every protocol message is signed by its sender
and verified by all receivers. Other more subtle active attacks
aim to introduce a known (to the attacker) or old key. These
attacks are prevented by the combined use of timestamps,
unique protocol message identifiers. and sequence numbers

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 469

which identify the particular protocol run. This modification
of GDH was formally proven secure against active adver-
saries in [10], [11].

3 PROBLEM DEFINITION

Ourgoal is todesignasecuregroupcommunicationserviceby
combining a robust key agreement algorithm with a reliable
groupcommunicationsystem(GCS).Wedefine thesemantics
provided by the GCS and overview the GDH key agreement
protocol suite, both of which are used later in the paper.

3.1 Group Communication Service

A GCS provides two important services: group membership
and dissemination, reliability, and ordering of messages.
The membership service notifies the application of the
current list of group members every time the group
changes. The output of this notification is called a view.

Several different group communication models [12], [13]
have been defined in the literature, each providing a
different set of semantics to the application. Many commu-
nication models claim to offer Virtual Synchrony or some
variant thereof. Such claims are often based on a loose
definition of Virtual Synchrony stating that: Processes
moving together from one view to another deliver the
same set of messages in the former view. However, not all
the models offer the same set of properties and, to the best
of our knowledge, a canonical “Virtual Synchrony (VS)
Model” has not been defined in the literature. A good
survey of many flavors of virtual synchrony semantics can
be found in [14].

The ordering and reliability guarantees are provided
within a view. In order to specify when the ordering and
delivery properties are met, GCS delivers to the application
an additional notification referred to as a transitional signal.
Additional information provided with the view by a GCS is
what is referred to as the transitional set. This set represents
the set of processes that continue together with the process
to which the membership notification was delivered and
allows processes to locally determine if a state transfer is
required. Different transitional sets may be delivered with
the same view at different processes.

One property of the VS model that also has relevance for
security is the Sending View Delivery [14] property, which
requires messages to be delivered in the same view they
were sent in. This enables the use of a shared view-specific
key to encrypt data, since the receiver is guaranteed to have
the same view as the sender and, therefore, the same key.
To satisfy Sending View Delivery without discarding mes-
sages from group members, a GCS must block the sending
of messages before the new view is installed [15]. This is
achieved as follows: When a group membership change
occurs, the GCS sends a message, flush request, to the
application asking for permission to install a new view. The
application must respond with a flush acknowledgment
message which follows all the messages sent by the
application in the old view. After sending the acknowl-
edgment, the application is not allowed to send any
message until the new view is delivered.

3.1.1 Virtual Synchrony Semantics

The GCS is assumed to support VS semantics as defined
below. This set of properties is largely based on the survey in
[14] and the definition of related semantics in [12] and [16].

Wedefine that someevent occurred inview v at processp if
the most recent view installed by process p before the event
was v.

1. Self-Inclusion: If process p installs a view v, then p is a
member of v.

2. Local Monotonicity: If process p installs a view v after
installing a view v0, then v’s identifier idv is greater
than v0’s identifier idv0 .

3. Sending View Delivery: A message is delivered in the
view that it was sent in.

4. Delivery Integrity: If process p delivers a message m
in a view v, then there exists a process q that sent m
in v causally before p delivered m.

5. No Duplication: A message is sent only once. A
message is delivered only once to the same process.

6. Self Delivery: If process p sends a message m, then p
delivers m unless it crashes.

7. Transitional Set:

a. Every process is part of its transitional set for a
view v.

b. If two processes p and q install the same view

and q is included in p’s transitional set for this

view, then p’s previous view was identical to q’s

previous view.
c. If two processes p and q install the same view v

and q is included in p’s transitional set for v, then

p and q have the same transitional set for v.
8. Virtual Synchrony: Two processes p and q that move

together1 through two consecutive views v and v0

deliver the same set of messages in v.
9. FIFO Delivery: If messagem is sent before messagem0

by the same process in the same view, then any
process that deliversm0 deliversm beforem0.

10. Causal Delivery: If message m causally precedes
message m0 and both are sent in the same view, then
any process that deliversm0 deliversm beforem0.

11. Agreed Delivery:

a. Agreed delivery maintains all causal delivery
guarantees.

b. If agreed messages m and, later, m0 are
delivered by process p, and m and m0 are also
delivered by process q, then q delivered m
before m0.

c. If agreed messages m and, later, m0 are
delivered by process p in view v, and m0 is
delivered by process q in v before a transitional
signal, then q delivers m. If messages m and,
later, m0 are delivered by process p in view v,
and m0 is delivered by process q in v after a
transitional signal, then q delivers m if r, the
sender of m, belongs to q’s transitional set.

12. Safe Delivery:

a. Safe delivery maintains all agreed delivery
guarantees.

b. If process p delivers a safe message m in view v
before the transitional signal, then every process q

470 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

1. If process p installs a view v with process q in its transitional set and
process q installs v as well, then p and q are said to move together.

of view v deliversm unless it crashes. If process p
delivers a safe message m in view v after the
transitional signal, then every process q that
belongs to p’s transitional set delivers m after
the transitional signal unless it crashes.

13. Transitional Signal: Each process delivers exactly one
transitional signal per view.

3.2 GDH Contributory Key Agreement Protocol

GDH IKA.2 [5] is an extension of the 2-party Diffie-Hellman
key exchange protocol [17] to groups. The shared key is
never transmitted over the network, even in encrypted
form. Instead, a set of partial keys (that are used by
individual members to compute the group secret) is sent.
One particular member, group controller, is charged with
the task of building and distributing the set. This is done by
passing a token between the members of the group to
collect contributions of the new members. The group
controller is not fixed and has no special security privileges.

The protocol works as follows: When a merge event
occurs, the current controller refreshes its own contribution
to the group key (to prevent any incoming members from
discovering the old group key), generates a new token, and
passes it to one of the new members. When the chosen new
member receives the token, it adds its own contribution and
then passes the token to the next new member.2 Eventually,
the token reaches the last new member. This new member,
who is slated to become the new controller, broadcasts the
token to the group without adding its contribution. Upon
receiving the broadcast token, each group member (old and
new) factors out its contribution and unicasts the result
(called a factor-out token) to the new controller. The new
controller collects all the factor-out tokens, adds its own
contribution to each of them, builds the set of partial keys,
and broadcasts it to the group. Every member can then
obtain the group key by factoring in its contribution.

When some of the members leave the group, the
controller (who, at all times, is the most recent remaining
group member) removes their corresponding partial keys
from the set of partial keys, refreshes each partial key in the
set, and broadcasts the set to the group. Every remaining
member can then compute the shared key. Note that, if the
current controller leaves the group, the newest remaining
member becomes the group controller.

4 BASIC ROBUST ALGORITHM

This section discusses the details of a basic robust group key
agreement algorithm (GKA). We describe the algorithm and
prove its correctness, i.e., we show that it preserves virtual
synchrony semantics presented in Section 3.1. Throughout
the remainder of the paper, we use the term GCS to mean a
group communication system providing virtual synchrony
semantics.

4.1 Algorithm Description

The GDH IKA.2 protocol, briefly presented in Section 3.2, is
secure and correct. Security is preserved independently of
any sequence of membership events, while correctness
holds only as long as no additional group view change

takes place before the protocol terminates. To elaborate
further, consider what happens if a leave or partition event
occurs while the protocol is in progress, e.g., while the
group controller is waiting for individual unicasts from all
group members. Since the GDH protocol does not incorpo-
rate a membership protocol (including a fault-detection
mechanism), it is not aware of the membership change and
the group controller does not proceed until all factor-out
tokens (including those from departed members) are
collected. Therefore, the system simply blocks. Similar
scenarios are also possible if one of the new members
crashes while adding its contribution to a group key. In this
case, the token never reaches the new group controller and
the GDH protocol, once again, blocks.

If the nested event is additive (join or merge), the
protocol operates correctly. In other words, it runs to
completion and the nested event is handled serially.
However, this is not optimal since, ideally, multiple
additive events ought to be “chained,” effectively reducing
broadcasts and factor-out token implosions. As the above
examples illustrate, the GDH protocol does not operate
correctly in the face of certain cascaded membership events
(specifically, when the interrupting events are subtractive
events). This behavior basically violates the high degree of
robustness and fault tolerance of the GCS.

We propose a basic solution as follows: Each time a
membership change occurs, the group deterministically
selects a member (say, the oldest) to initiate the GDH merge
protocol. The algorithm uses the membership service to
consistently choose that member and the FIFO and Agreed
ordering services to ensure that, if one member installs a
secure view, all other members eventually install the same
view. The approach we propose is twice as expensive in
computation and requires OðnÞ more messages for the
common case with no cascading membership events, n
being the group size. We discuss it because it is simpler and
it allows us to show algorithm correctness with respect to
the group communication semantics and stated security
goals. In Section 5, we present an optimized algorithm that
offers better performance and uses the basic algorithm as a
“subroutine” in exceptional cases.

Since the output of the algorithm is a secure GCS,
VS semantics as defined in Section 3.1 must be preserved.
To achieve this, our algorithm takes extra care to provide
delivery of the correct views, transitional signal, and
transitional sets to the applications, as well as the list of
connected group members.

We model the algorithm as a state machine (see Fig. 2),
where transitions from one state to another take place
based on the event that occurred. An event is defined as
receiving a particular type of message. In Fig. 2, all
transitions numbered with the same number denote the
same set of events and actions for that particular state.
The following types of messages are used: GDH messages
(see [18]) (partial_to ken_msg, final_token_msg, key_
list_msg, fact_out_msg); membership notification mes-
sages (memb_msg); transitional signal messages (trans_
signal_msg); data messages (data_msg); flush mechanism
messages (flush_request_msg, flush_ok_msg).

Fig. 1 presents the secure GCS protocol stack. Our group
key agreement (GKA) protocol interacts with both the
application and GCS and implements the blocking mechan-
ism as follows: When a flush_request_msg message is
received from GCS, it is delivered to the application. When

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 471

2. The set of new members and its ordering is decided by the underlying
group communication system. The actual order is irrelevant to GDH.

the application acknowledgment message is received, it is
sent down to the GCS.

A process starts executing the algorithm by invoking the

join primitive of the key agreement module, which translates

into aGCS join call. In any state of the algorithm, aprocess can

voluntarily leave by invoking the leave primitive of the key

agreement module, which translates into a GCS leave call.

The set of events that can trigger transitions from one
state to another are presented in Table 1. The events are
associated with a specific group and are received by the
GKA. Note that both User_Message and Data_Message
events are associated with a data_msg message received by
the GKA, but, in the first case, the source of the message is
an application, while, in the second case, the source is the
GCS. Also note that all messages specific to the GDH
protocol are particular cases of data_msg. We define
specific messages and associate events with them to
simplify the description of the protocol.

Each state of the algorithm (in Fig. 2) is described by
three types of events: events that trigger transitions, events
that are considered illegal (in which case, an error is
returned to the application), and events that should not
occur when the algorithm operates correctly. The following
states are used:

. SECURE (S): group is functional, all members have
the group key and can communicate securely;
possible events are: Data_Message, User_Message,
Secure_Flush_Ok, Flush_Request, and Transitional_
Signal; receiving a Secure_Flush_Ok without receiv-
ing a corresponding Flush_Request is illegal;

. WAIT_FOR_PARTIAL_TOKEN (PT): process iswait-
ing for the token accumulating contributions; possible

472 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

Fig. 1. Secure GCS protocol stack.

Fig. 2. Basic GKA.

events are: Partial_Token, Flush_Request, and Tran-
sitional_Signal; User_Message and Secure_Flush_Ok
are illegal;

. WAIT_FOR_FINAL_TOKEN (FT): process is waiting
for the token containing all contributions; possible
events are: Final_Token, Flush_Request, and Transi-
tional_Signal; User_Message and Secure_Flush_Ok
are illegal;

. COLLECT_FACT_OUTS (FO): process is waiting for
n� 1 factor out messages; possible events are:
Fact_Out, Flush_Request, and Transitional_Signal;
User_Message and Secure_Flush_Ok are illegal;

. WAIT_FOR_KEY_LIST (KL): process is waiting for
the set of partial keys; possible events are: Key_List,
Flush_Request, Transitional_Signal; User_Message,
and Secure_Flush_Ok are illegal;

. WAIT_FOR_CASCADING_MEMBERSHIP (CM):
process is waiting for membership and transitional
signal messages; possible events are: Membership,
Transitional_Signal, Data_Message (possible only
the first time the process gets in this state),
Partial_Token, Final_Token, Fact_Out, and Key_List
(they correspond to GDH messages from a previous
instance of the GKA when cascaded events happen);
User_Message and Secure_Flush_Ok are illegal.

The state machine is built around the CM state, which is
used to restart the protocol. Four other states are just a map
of the GDH merge protocol and are used to pass the token
accumulating contributions and used to build the set of
partial keys. The S state is the operational state. The
pseudocode corresponding to the state machine from Fig. 2
and the correctness proofs are presented in Appendix 1
which can be found on the Computer Society Digital
Library at http://computer.org/tpds/archives.htm.

4.2 Security Considerations

The GDH protocol was proven secure against passive
adversaries in [5]. As evident from the state machine in

Fig. 2, the protocol remains intact, i.e., all protocol messages
are sent and delivered in the same order as specified in [5].
More precisely, with no cascaded events, our protocol is
exactly the same as the original GDH join protocol [5]. In the
case of a cascaded event, the protocol is the same as the
IKA.2 [5] group key agreement protocol. Since both of these
protocols are proven secure, our robust protocol is, there-
fore, also provably secure. In this context, security means
that it is computationally infeasible to compute a group key
by passively observing any number of protocol messages.
As discussed in Section 2, stronger, active attacks are
averted by the combined use of timestamps, protocol
message type, and protocol run identifiers, explicit inclu-
sion of message source and destination and, most impor-
tantly, digital signatures by the source of the message.
These measures make it impossible for the active adversary
to impersonate a group member or to interfere with the key
agreement protocol and thereby influence or compute the
eventual group key [10], [11].

5 AN OPTIMIZED ROBUST ALGORITHM

In this section, we show how the algorithm presented in the
previous section can be optimized, resulting in lower-cost
handling of common, noncascaded events, while preserving
the same set of group communication and security
guarantees.

5.1 Algorithm Description

The basic algorithm presented in Section 4 is robust even
when cascaded group events occur. Every time a member-
ship notification is delivered by the GCS, the algorithm
“forgets” all previous key agreement information (i.e., the
set of partial keys) and restarts the merge protocol, selecting
a member from the new group to initialize it. Thus, this
algorithm costs more than necessary since it does not
attempt to use the existing accumulated information (partial
keys) and avoid unnecessary computation.

We propose to improve the basic protocol by using
optimized protocols for each type of group change (join,
leave, partition, merge, or a combination of partition and
merge) and by taking advantage of the already existing set
of partial keys. We also utilize the basic algorithm to handle
more complex cascaded membership events. For example,
in case of a leave, the leave protocol is invoked, which
requires the group controller to remove the leaving
member(s) from the set, refresh the set of partial keys,
and broadcast it. Thus, leave events can be handled
immediately, with lower communication and computation
costs than those of the basic algorithm. In Section 5.2, we
discuss how a combined event—including both joins and
leaves—can be handled by a modified version of the GDH
merge protocol.

The optimized algorithm is modeled by a state machine
that, in addition to the states in the basic algorithm, uses
two more states, as shown in Fig. 3. Each state is described
by three types of events: events that trigger transitions,
events that should never occur when the algorithm operates
correctly, and events that are considered illegal:

. WAIT_FOR_SELF_JOIN (SJ): initial state wherein a
process that joins a group enters the state machine;
the process is waiting for the membership message

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 473

TABLE 1
Events Received by GKA

that notifies the group about its joining. In case a
network event happens between the join request and
the membership notification delivery, the GCS will
report a network event and the transitional set will
contain only the joining member; possible event is
Membership; User_Message and Secure_Flush_Ok
are illegal.

. WAIT_FOR_MEMBERSHIP (M): process is waiting
for a membership notification; possible events are:
Transitional_Signal, Data_Message, and Member-
ship; User_Message and Secure_Flush_Ok events
are illegal.

While a process starts the basic algorithm in the CM state,

in the optimized algorithm, a process starts the algorithm in

state SJ, by invoking the Join primitive. At any time, a

process can voluntarily leave the algorithm by invoking the

Leave primitive. The main difference between the robust

and the optimized algorithm is that, in case of a member-

ship change, the process moves to the M state and tries to

handle the event depending on its nature (subtractive,

additive, or both). In case of cascading memberships,

everything is abandoned and the basic algorithm is invoked

by moving to the CM state.
The pseudocode corresponding to the state machine

from Fig. 3 and the corectness proofs are presented in

Appendix 2 which can be found on the Computer Society

Digital Library at http://computer.org/tpds/archives.htm.

5.2 Handling Bundled Events

Most group events are homogeneous in nature: leave

(partition) or join (merge) of one or more members.

However, a GCS can decide to bundle several such events

if they occur within a very short time interval. The main

incentive for doing so is to reduce the impact and overhead

on the application.
Recall that GDH defines two separate protocols for leave

and merge. Each of them can trivially handle bundled

events of the same type: The GDH merge protocol can

accommodate any combination of bundled merges, while

the GDH leave protocol can do the same for any

combination of partitions. A more interesting scenario is

when a single membership event bundles merges/joins

with leaves/partitions. One way to handle such an event is

to first invoke GDH leave to process all leaves/partitions

and then invoke GDH merge to process joins/merges.

However, this is inefficient since the group would perform

two separate key agreement protocols where only one is

truly needed. Since both GDH protocols are initiated by the

group controller, we propose the following optimized

solution. After processing all leaves/partitions, the group

controller can suppress the usual broadcast of new partial

keys and, instead, forward the resulting set to the first

merging/joining member thereby initiating a merge proto-

col. This saves an extra round of broadcast and at least one

cryptographic operation for each member.

474 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

Fig. 3. Optimized GKA.

5.2.1 Security Considerations

Recall that, in the merge protocol, the current controller
begins by refreshing its contribution (to the group key) and
forwarding the result to the first merging member. This
message actually contains a set of partial keys, one for each
”old” member and an extra partial key for the first new
member. This message is also signed by the controller and
includes the list of allmembersbelievedby the controller tobe
in the group at that instant. In the optimized protocol, the
controller effectively suppresses all partial keys correspond-
ing tomemberswho are leaving the group. Thismodification
changes nothing as far as any outside attacks or threats are
concerned. The only issue of interest iswhether anymembers
leaving thegroupcanobtain thenewkey.Weclaim that this is
impossible since the set of partial keys forwarded by the
controller is essentially the same as the partial key set
broadcast in the normal leave protocol. Therefore, former
members are no better off in the optimized than in the leave
protocol. Also, the new (merging)members are still unable to
compute any prior group keys just as in the plain merge
protocol. This is because the information available to the new
members in the optimized protocol is identical to that in the
plain merge.

6 IMPLEMENTATION

We implemented the optimized algorithm described above
using the Spread [6] GCS and the Cliques key agreement
library. In this section, we overview the Spread and Cliques
toolkits and present the concrete outcome of this work, the
Secure Spread library.

6.1 The Spread Toolkit

Spread [6] is a general-purpose GCS for wide and local-area
networks, where any group member can be both a sender
and a receiver. Although designed to support small to
medium-size groups, it can accommodate a large number of
collaboration sessions, each spanning the Internet.

The main services provided by the system are reliable
and ordered delivery of messages (FIFO, causal, total/
Agreed order, safe) and a membership service in a model
that considers benign network and computer faults
(crashes, recoveries, partitions and merges). Spread sup-
ports two well-known semantics, Virtual Synchrony (VS)
[13], [16] and Extended Virtual Synchrony (EVS) [12], [19].
In this work, we use only the latter.

The Spread toolkit is publicly available and is being used
by several organizations in research, educational, and
production settings. It supports cross-platform applications
and has been ported to several Unix platforms as well as to
Windows and Java environments.

6.2 The Cliques Toolkit

Cliques is a cryptographic toolkit providing key manage-
ment services for dynamic peer groups. The toolkit assumes
the existence of a communication platform for transporting
protocol messages and maintaining group membership. It
includes several protocol suites: GDH, CKD, TGDH [20],
STR [21], [22], and BD [23]. GDH is based on group
extensions of the 2-party Diffie-Hellman key exchange [5]
and provides fully contributory group key agreement.

TGDH, STR, and BD are Diffie-Hellman-based protocols
that make different trade offs of communication and
computation.

All Cliques protocol suites offer key independence,
perfect forward secrecy, and resistance to known key
attacks. (See [3] for precise definitions of these properties.)
In this paper, we focus only on the GDH protocol suite
within the Cliques toolkit.

6.3 The Secure Spread Library

The Secure Spread library provides client data confidenti-
ality and integrity. It is built on top of the VS Spread client
library; it uses Spread as its communication infrastructure
and Cliques [18] library for key management.

Fig. 4 shows the architecture of our secure GCS. The
Flush library is the component of the Spread Toolkit
providing the Virtual Synchrony model as described in
Section 3.1.3

The core of the library is the Client Agreement Module,
which is the connection between the library and the GCS.
When it receives a notification from GCS about a group
membership change, the module starts the key agreement
protocol. When the key agreement protocol completes and a
new key is available, the module delivers a secure group
membership change notification to the application.

The library has two components: Key Agreement
Selector and Encryption Selector that allow, respectively,
the selection of a specific key agreement module and a
specific encryption module.

Secure Spread currently has two different modules for
key agreement, both using primitives provided by the
Cliques library: the robust optimized GDH protocol (pre-
sented in this paper) and a centralized key management
protocol (described below), both having the same security
properties. The architecture allows each group to run its
own key agreement protocol. The library uses Blowfish for
encryption.

6.4 Centralized Key Distribution Protocol

In general, centralized key distribution protocols do not
provide key independence since, for efficiency reasons, they
rely on previous group or subgroup keys to distribute new

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 475

3. Actually, the Flush library provides all the properties we described
in Section 3.1 but one. It does not deliver exactly one transitional signal
per view. However, in the Flush library the Flush_Request and
Transitional_Signal events are delivered in AGREED order. Using this
property, with a minor modification, our GKA can avoid generating
unnecessary transitional signals for the application.

Fig. 4. Secure spread architecture.

keys. When using such a method, the compromise of some
group keys can lead to the compromise of other group keys.
To compare protocols having the same security properties,
we designed a Centralized Key Distribution (CKD) scheme
that provides the same level of security as GDH, as far as
key independence and PFS [3].

The group secret is always generated by one member,
the current group controller.4 Following each membership
change, the controller generates a new secret and distributes
it securely to the group. Of course, an efficient symmetric
cipher can be used to securely distribute the group key.
However, the resulting security properties would differ
from those of our key agreement protocol, which relies
solely on the Decision Diffie-Hellman assumption [24] and
the Discrete Logarithm Problem [3]. Therefore, to provide
an equivalent level of security, we encrypt the group key
via modular exponentiation.

The controller in CKD is always the oldest member.
Regardless of the group operation, the CKD protocol
consists of two phases (see also Algorithm 1):

1. Each group member and the controller agree on a
unique pairwise key using authenticated two-party
Diffie-Hellman. This key does not need to change as

long as both users remain in the group. If the
controller leaves the group, the new controller has to
perform this operation with every member. If a
regular member leaves, the controller simply dis-
cards this pairwise key.

2. The group controller unilaterally generates and
distributes the group secret.

7 PERFORMANCE EVALUATION

In this section, we compare the GDH key agreement
protocol with the CKD protocol presented in Section 6.4,
in a LAN environment. We evaluate the time it takes the
system to establish secure membership for the most
common group events: join and leave.

Cryptography relies on expensive exponentiations, so it
seems that measuring CPU time will be a good approach
demonstrating the cryptographic overhead. Table 2 pre-
sents the number of serial exponentiations for a join or leave
event, where n is the group size before the operation, while
m and p represent the number of new and partitioned
members, respectively. A more relevant measure for a GCS
is the latency that a user experiences from the moment the
group change was detected until the new secure group is
established. This time is greater than just the analytical
cryptographic cost since it includes network latency. It can
also exhibit increased computation cost if several processes
compete for the same CPU.

Our experimental testbed is a cluster of 13 667 MHz
Pentium III dual-processor PCs running Linux. Each
machine runs a Spread server, while group members are
uniformly distributed on the machines. Therefore, more
than one process can be running on a single machine (which
is frequent in many collaborative applications).

Each member measures the time it took to complete the
key agreement and establish a secure view. We compute the
average cost of the membership service and secure
membership with GDH and CKD, respectively. This time
was averaged over 20 distinct runs of the experiment.

Since CKD is particularly expensive if the current
controller leaves the group, we take this into account by
considering that, with 1=n probability, the member leaving
the group is the group controller.

Experiments performed on our testbed for the insecure
GCS show that the average cost of sending and delivering
one agreed multicast message is almost constant, ranging

476 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

4. We use the term current to mean that a controller can fail or be
partitioned out, thus causing the controller role to be reassigned to the
oldest surviving member.

TABLE 2
Communication and Computation Costs

between 0:75 and 0:92 milliseconds for a group size ranging
between 2 to 50 members. The cost of the membership
service (see Figs. 5 and 6) is negligible with respect to key
agreement overhead, varying between 2 and 8 milliseconds
for a group size between 2 and 50 members. We use 1,024-
bit RSA signatures for message origin and data authentica-
tion, with the public exponent of 3 to reduce the verification
overhead. On our hardware platform, the RSA sign and
verify operations take 9:6 and 0:2milliseconds, respectively.
For the short-term group key, we use both 512 and 1,024-bit
Diffie-Hellman parameter p and 160-bit q. The cost of a
single exponentiation is 1:7 and 5:3 milliseconds for a 512
and a 1,024-bit modulus, respectively.

Figs. 5 and 6 present the respective costs of:

1. our robust GDH key agreement protocol,
2. the centralized protocol (CKD), and
3. the insecure group communication membership

service.

Note that the cost of the membership service is insignificant
when compared to key agreement overhead.

For join (Fig. 5), the contributory protocol is more
expensive than CKD. For example, for a group of
20 members, the time to install a secure membership is

about 142 milliseconds for the contributory protocol, while,
for the centralized protocol, it is about 91 milliseconds,
when the 512-bit modulus is used. The difference between
CKD and GDH comes from exponentiation and signature
verifications: extra operations in GDH include n verifica-
tions, one RSA signature, and one modular exponentiation.

For leave events (see Fig. 6), the centralized protocol is
more expensive. For the 512-bit modulus, for a group of
20 members, it takes about 49 milliseconds to establish
secure membership with the contributory protocol, while
the centralized protocol takes about 58 milliseconds. The
overhead of the centralized protocol over the contributory
protocol comes from one exponentiation, plus the cost of
establishing n� 1 secure channels if the leaving member is
the group controller.

Both protocols scale linearly with group size in the
number of exponentiations. Performance deteriorates when
1,024-bit modulus is used for shared key generation, as
shown in Figs. 5 and 6.

8 RELATED WORK

In this section, we consider related work in group key
management and reliable group communication.

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 477

Fig. 5. Join—average time.

Fig. 6. Leave—average time.

8.1 Group Key Management

Cryptographic techniques for securing all types of multicast
or group-based protocols require all parties to share a
common key. This requires a group key management
protocol to generate new group keys and update existing
keys. Group key management protocols generally fall into
two classes:

. Protocols designed for large-scale (e.g., IP Multicast)
groups, with a one-to-many communication para-
digm and relatively weak security requirements [25],
[26]. Most of such protocols are centralized key
distribution schemes.

. Protocols designed to support medium size tightly
coupled dynamic peer groups, with a many-to-many
communication paradigm and strong security re-
quirements [23], [5]. Both distributed group key
distribution and group key agreement methods are
applicable to such settings.

Many protocols of the first type are being developed in the
context of IETF/IRTF: Group Key Management Protocol
(GKMP) [25], Multicast Key Management Protocol (MKMP)
[27], Scalable Multicast Key Distribution [28], the Intrado-
main Group Key Management work of [26], One-way
Function Trees [29], Group Secure Association Key Manage-
ment Protocol (GSAKMP) [30], GSAKMP-light [31], Group
Domain of Interpretation (GDOI) [32], while [33] defines an
architecture for large scale group key management. Since
the focus of our work is on dynamic peer groups key
management, we discuss only distributed group key
distribution and contributory key agreement protocols.

Most group key agreement schemes [5], [22], [23], [20],
[34], [21] extend the well-known Diffie-Hellman key
exchange [17] method to groups of n parties. Steer et al.
proposed a group key agreement protocol [22] for static
conferencing. While the protocol is well-suited for adding
new group members as it takes only two rounds and two
modular exponentiations, it is relatively expensive when
excluding members. In 1994, Burmester and Desmedt [23]
proposed an efficient protocol that takes only three rounds
and three modular exponentiations per member to generate
a group key. This protocol allows all members to recompute
the group key for any membership change with a constant
small CPU cost. However, it requires 2n broadcast
messages, which can be expensive on a wide area network.
Tzeng and Tzeng also proposed an elegant authenticated
key agreement scheme based on secure multiparty compu-
tation [34]. Their protocol is optimized in terms of
communication rounds, but also uses 2n simultaneous
broadcast messages. The resulting group key does not
provide PFS, which represents a major drawback.

Steiner et al. address dynamic membership issues [5] in
group key agreement and propose a family of protocols
based on straight forward extensions of the two-party
Diffie-Hellman protocol. Their protocol suite is fairly
efficient in leave and partition operation, but the merge
protocol requires as many rounds as the number of new
members to complete key agreement. The entire protocol
suite has been proven secure with respect to both passive
and active attacks. Follow-on work yielded more efficient
protocols in either communication or computation [20], [21].

Dynamic group key distribution methods are also
amenable to dynamic peer groups. Centralized Key Dis-
tribution (CKD) is a simple example of distributed key

distribution (see Section 6.4), where the oldest group
member acts as a key distribution center and, in the event
of a partition or a leave of the center, the role shifts to the
oldest remaining member. Rodeh et al. proposed more
advanced key distribution protocols, combining a key tree
structure with dynamic key server election [35] or taking
advantage of efficient data structures such as AVL trees
[36]. Although they have some of the disadvantages of key
distribution schemes, the communication and computation
costs are appreciably lower than those in CKD.

8.2 Reliable Group Communication

Reliable group communication in LAN environments has a
long history beginning with ISIS [37], and more recent
systems such as Transis [38], Horus [39], Totem [40], and
RMP [41]. These systems explored several different models
of group communication such as Virtual Synchrony [4] and
Extended Virtual Synchrony [12]. More recent work in this
area focuses on scaling group membership to wide-area
networks [42], [43]. Research on securing group commu-
nication is fairly new. The only implementations of GCS
that focus on security (in addition to ours) are the
SecureRing [44] project at UCSB, the Horus/Ensemble
work at Cornell [35], and the Rampart system at AT&T [45].

Some GCSs (Rampart and SecureRing) address Byzan-
tine failures. They suffer from limited performance since
they use costly protocols and rely intensively on public key
cryptography. Rampart builds the group multicast proto-
cols over a secure group membership protocol, while
SecureRing system protects a low-level ring by authenticat-
ing each transmission of the token and data message
received.

The Ensemble work is state-of-the-art in secure reliable
group communication. It allows application-dependent
trust models and optimizes certain aspects of the group
key generation and distribution protocols. Ensemble
achieves data confidentiality by using a shared group key
obtained by means of group key distribution protocols. In
comparison with our approach, although efficient, the
scheme does not provide forward secrecy, key indepen-
dence, and PFS.

Some other approaches focus on building highly config-
urable dynamic distributed protocols. Cactus [46] is a
framework that allows the implementation of configurable
protocols as composition of microprotocols. Survivability of
the security services is enhanced by using redundancy [47].

Another toolkit that can be used to build secure group
oriented applications is Enclaves [48]. It provides group
control and communication (both unicast and multicast)
and data confidentiality. The system uses a centralized key
distribution scheme where a member of the group (group
leader) selects a new key every time the group changes and
securely distributes it to all group members. The main
drawback of the system is that it does not address failure
recovery when the leader of the group fails.

Antigone [49] is a framework that provides mechanisms
which allow flexible application security policies. The
system implements group rekeying mechanisms in two
flavors: session rekeying—all group members receive a new
key, and session key distribution—the session leader
transmits an existing session key. Both schemes present
problems, distributing the same key when the group

478 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

changes breaks PFS, while the session rekeying mechanism

does not recover from the leader’s failure.

9 CONCLUSIONS

In this paper, we showed that, although difficult, it is

possible to harden security protocols to make them robust

to asynchronous network events. In particular, we demon-

strated how robust contributory key agreement protocols

can be designed by taking advantage of group communica-

tion services. We presented two such robust protocols based

on the GDH key protocol suite and the Virtual Synchrony

group communication semantics. We also showed how

such protocols can be used to design secure group

communication services and argued that, by integrating

them with a GCS supporting Virtual Synchrony, group

communication membership and ordering guarantees are

preserved. We exemplified by presenting Secure Spread, a

client library that uses Spread as its GCS and relies on a

group key management protocol that is robust to process

crashes and network partitions and merges and protects

confidentiality of the data even when long-term keys of the

participants are compromised.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the

National Security Agency under the LUCITE program and

by grant F30602-00-2-0526 from the US Defense Advanced

Research Projects Agency. Parts of this work have appeared

as conference publications in ICDCS 2000 [1] and ICDCS

2001 [2].

REFERENCES

[1] Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T.
Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik, “Secure Group
Communication in Asynchronous Networks with Failures: Inte-
gration and Experiments,” Proc. 20th IEEE Int’l Conf. Distributed
Computing Systems, pp. 330-343, Apr. 2000.

[2] Y. Amir, Y. Kim, C. Nita-Rotaru, J. Schultz, J. Stanton, and G.
Tsudik, “Exploring Robustness in Group Key Agreement,” Proc.
21st IEEE Int’l Conf. Distributed Computing Systems, pp. 399-408,
Apr. 2001.

[3] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. 1996.

[4] K.P. Birman and T. Joseph, “Exploiting Virtual Synchrony in
Distributed Systems,” Proc. 11th Ann. Symp. Operating Systems
Principles, pp. 123-138, Nov. 1987.

[5] M. Steiner, G. Tsudik, and M. Waidner, “Key Agreement in
Dynamic Peer Groups,” IEEE Trans. Parallel and Distributed
Systems, vol. 11, no. 8, Aug. 2000.

[6] Y. Amir and J. Stanton, “The Spread Wide Area Group
Communication System,” Johns Hopkins Univ., Center of
Networking and Distributed Systems, Technical Report 98-4, 1998.

[7] Y. Amir, C. Nita-Rotaru, and J. Stanton, “Framework for
Authentication and Access Control of Client-Server Group
Communication Systems,” Proc. Third Int’l Workshop Networked
Group Comm., Nov. 2001.

[8] Y. Kim and G. Tsudik, “Membership Control in Peer Groups,”
Proc. Workshop New Directions on Scalable Cyber-Security, Mar. 2003.

[9] Y. Kim, D. Mazzocchi, and G. Tsudik, “Admission Control in
Collaborative Groups,” Proc. Second IEEE Int’l Symp. Network
Computing and Applications, Apr. 2003.

[10] E. Bresson, O. Chevassut, and D. Pointcheval, “Provably
Authenticated Group Diffie-Hellman Key Exchange—The
Dynamic Case,” Proc. Asiacrypt, 2001.

[11] E. Bresson, O. Chevassut, D. Pointcheval, and J.-J. Quisquater,
“Provably Authenticated Group Diffie-Hellman Key Exchange,”
Proc. Eighth ACM Conf. Computer and Comm. Security, Nov. 2001.

[12] L.E. Moser, Y. Amir, P.M. Melliar-Smith, and D.A. Agarwal,
“Extended Virtual Synchrony,” Proc. IEEE 14th Int’l Conf.
Distributed Computing Systems, pp. 56-65, June 1994.

[13] A. Fekete, N. Lynch, and A. Shvartsman, “Specifying and Using a
Partitionable Group Communication Service,” ACM Trans. Com-
puter Systems, vol. 19, no. 2, pp. 171-216, May 2001.

[14] G.V. Chockler, I. Keidar, and R. Vitenberg, “Group Communica-
tion Specifications: A Comprehensive Study,” ACM Computing
Surveys, no. 4, pp. 427-469, Dec. 2001.

[15] R. Friedman and R. van Renesse, “Strong and Weak Virtual
Synchrony in Horus,” Cornell Univ., Computer Science, Technical
Report 95-1537, Aug. 1995.

[16] J. Schultz, “Partitionable Virtual Synchrony Using Extended
Virtual Synchrony,” master’s thesis, Dept. of Computer Science,
Johns Hopkins Univ., Jan. 2001.

[17] W. Diffie and M.E. Hellman, “New Directions in Cryptography,”
IEEE Trans. Information Theory, vol. 22, pp. 644-654, Nov. 1976.

[18] G. Ateniese, O. Chevassut, D. Hasse, Y. Kim, and G. Tsudik,
“Design of a Group Key Agreement API,” Proc. DARPA
Information Security Conf. and Exposition, Jan. 2000.

[19] Y. Amir, “Replication Using Group Communication over a
Partitioned Network,” PhD dissertation, Inst. of Computer
Science, The Hebrew Univ. of Jerusalem, Israel, 1995.

[20] Y. Kim, A. Perrig, and G. Tsudik, “Simple and Fault-Tolerant Key
Agreement for Dynamic Collaborative Groups,” Proc. Seventh
ACM Conf. Computer and Comm. Security, pp. 235-244, Nov. 2000.

[21] Y. Kim, A. Perrig, and G. Tsudik, “Communication-Efficient
Group Key Agreement,” Proc. Int’l Conf. Information Security IFIP
SEC, June 2001.

[22] D. Steer, L. Strawczynski, W. Diffie, and M. Wiener, “A Secure
Audio Teleconference System,” Proc. Conf. Advances in Cryptology,
Aug. 1990.

[23] M. Burmester and Y. Desmedt, “A Secure and Efficient Con-
ference Key Distribution System,” Proc. Conf. Advances in
Cryptology, May 1994.

[24] D. Boneh, “The Decision Diffie-Hellman Problem,” Lecture Notes in
Computer Science, vol. 1423, pp. 48-63, 1998.

[25] H. Harney and C. Muckenhirn, “Group Key Management
Protocol (GKMP) Specification,” RFC 2093, July 1997.

[26] T. Hardjono, B. Cain, and I. Monga, “Intradomain Group Key
Management Protocol,” Sept. 2000.

[27] D. Harkins and N. Doraswamy, “A Secure Scalable Multicast Key
Management Protocol (MKMP),” Nov. 1997.

[28] T. Ballardie, “Scalable Multicast Key Distribution,” RFC 1949,
1996.

[29] D. Balenson, D. McGrew, and A. Sherman, “Key Management for
Large Dynamic Groups: One-Way Function Trees and Amortized
Initialization,” 2000.

[30] H. Harney, A. Schuett, U. Meth, and A. Colegrove, “GSAKMP,”
Feb. 2003.

[31] H. Harney, A. Schuett, and A. Colegrove, “GSAKMP Light,” July
2002.

[32] M. Baugher, T. Hardjono, H. Harney, and B. Weis, “The Group
Domain of Interpretation,” Dec. 2002.

[33] M. Baugher, R. Canetti, L. Dondeti, and F. Lindholm, “Group Key
Management Architecture,” 2002.

[34] W.-G. Tzeng and Z.-J. Tzeng, “Round-Efficient Conference-Key
Agreement Protocols with Provable Security,” Proc. Conf. Advances
in Cryptology, Dec. 2000.

[35] O. Rodeh, K. Birman, and D. Dolev, “The Architecture and
Performance of Security Protocols in the Ensemble Group
Communication System,” ACM Trans. Information and System
Security, vol. 4, no. 3, pp. 289-319, Aug. 2001.

[36] O. Rodeh, K. Birman, and D. Dolev, “Using AVL Trees for Fault
Tolerant Group Key Management,” Cornell Univ., Computer
Science, Technical Report 2000-45; Hebrew Univ., Computer
Science, Technical Report 2000-1823, 2000.

[37] K.P. Birman and R.V. Renesse, Reliable Distributed Computing with
TheIsis Toolkit. IEEE Press, Mar. 1994.

[38] Y. Amir, D. Dolev, S. Kramer, and D. Malki, “Transis: A
Communication Sub-System for High Availability,” Proc. 22nd
Int’l Symp. Fault-Tolerant Computing Systems, pp. 76-84, 1992.

AMIR ET AL.: SECURE GROUP COMMUNICATION USING ROBUST CONTRIBUTORY KEY AGREEMENT 479

[39] R.V. Renesse, K. Birman, and S. Maffeis, “Horus: A Flexible Group
Communication System,” Comm. ACM, vol. 39, pp. 76-83, Apr.
1996.

[40] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D. Agarwal, and P.
Ciarfella, “The Totem Single-Ring Ordering and Membership
Protocol,” ACM Trans. Computer Systems, vol. 13, no. 4, pp. 311-
342, Nov. 1995.

[41] B. Whetten, T. Montgomery, and S. Kaplan, “A High Performance
Totally Ordered Multicast Protocol,” Proc. Theory and Practice in
Distributed Systems, Int’l Workshop, p. 938, Sept. 1994.

[42] T. Anker, G.V. Chockler, D. Dolev, and I. Keidar, “Scalable Group
Membership Services for Novel Applications,” Proc. Workshop
Networks in Distributed Computing, 1998.

[43] I. Keidar, K. Marzullo, J. Sussman, and D. Dolev, “A Client-Server
Oriented Algorithm for Virtually Synchronous Group Member-
ship in WANs,” Proc. 20th Int’l Conf. Distributed Computing
Systems, pp. 356-365, Apr. 2000.

[44] K.P. Kihlstrom, L.E. Moser, and P.M. Melliar-Smith, “The
SecureRing Protocols for Securing Group Communication,” Proc.
IEEE 31st Hawaii Int’l Conf. System Sciences, pp. 317-326, Jan. 1998.

[45] M.K. Reiter, “Secure Agreement Protocols: Reliable and Atomic
Group Multicast in Rampart,” Proc. Second ACM Conf. Computer
and Comm. Security, pp. 68-80, Nov. 1994.

[46] M.A. Hiltunen and R.D. Schlichting, “Adaptive Distributed and
Fault-Tolerant Systems,” Int’l J. Computer Systems Science and Eng.,
vol. 11, no. 5, pp. 125-133, Sept. 1996.

[47] M.A. Hiltunen, R.D. Schlichting, and C. Ugarte, “Enhancing
Survivability of Security Services Using Redundancy,” Proc. Int’l
Conf. Dependable Systems and Networks, June 2001.

[48] L. Gong, “Enclaves: Enabling Secure Collaboration over the
Internet,” IEEE J. Selected Areas in Comm., vol. 15, no. 3, pp. 567-
575, Apr. 1997.

[49] P. McDaniel, A. Prakash, and P. Honeyman, “Antigone: A Flexible
Framework for Secure Group Communication,” Proc. Eighth
USENIX Security Symp., pp. 99-114, Aug. 1999.

Yair Amir received the BS (1985) and MS
(1990) degrees from the Technion and the PhD
degree (1995) from the Hebrew University of
Jerusalem. Prior to receiving the PhD, he gained
extensive experience building C3I systems. He
is currently with the Department of Computer
Science, The Johns Hopkins University, where
he has been an assistant professor since 1995
and an associate professor since 2000. He has
been a member of the program committees of

the IEEE International Conference on Distributed Computing Systems
(ICDCS) in 1999 and 2002, the ACM Conference on Principles of
Distributed Computing (PODC) in 2001, and the IEEE International
Conference on Dependable Systems and Networks (DSN) in 2001 and
2003. He is a member of the IEEE Computer Society.

Yongdae Kim received the PhD degree from
the Computer Science Department at the Uni-
versity of Southern California (USC) in May
2002. He is an assistant professor in the
Department of Computer Science and Engineer-
ing and a member of the Digital Technology
Center (DTC) at the University of Minnesota,
Twin Cities, Minneapolis. From 1993 to 1998, he
was a research staff member at the Electronics
and Telecommunication Research Institute

(ETRI), Korea. From January 2001 until July 2002, he was working as
a research scientist at the University of California at Irvine. His acdemic
interests include network security and cryptography. More information
about his research is available at http://www.cs.umn.edu/~kyd.

Cristina Nita-Rotaru received the BS and MSc
degrees in computer science from the Politech-
nica University of Bucharest, Romania, in 1995
and 1996 and the MSE and PhD degrees in
computer science from The Johns Hopkins
University in 2000 and 2003. She is currently
an assistant professor in the Computer Science
Department at Purdue University. Her research
interests include secure distributed systems,
network security protocols, and security aspects

in wireless ad hoc networks. She is a member of the ACM and the IEEE.

John L. Schultz received the BS degree in
computer science and electrical engineering in
1999, and the MSE degree in computer science
in 2001 from The Johns Hopkins University. He
is a cofounder and the lead engineer of an
information services company. He is also a
minor partner in a small software company. His
research interests include distributed systems
and algorithms, their security, and software
infrastructure.

Jonathan Stanton received the BA degree in
mathematics in 1995 from Cornell University and
the MSE and PhD degrees in computer science
from The Johns Hopkins University in 1998 and
2002. He is currently an assistant professor in
the Computer Science Department at George
Washington University. He also holds an ap-
pointment as an adjunct assistant professor in
the Computer Science Department of The Johns
Hopkins University. His research interests in-

clude distributed systems, secure distributed messaging, network
protocols, and middleware support for clustered systems. He is a
member of the ACM and the IEEE Computer Society.

Gene Tsudik received the PhD in computer
science from the Univeristy of Southern Califor-
nia in 1991; his dissertation focused on access
control in internetworks. He is a professor in the
Computer Science Department at the University
of California, Irvine. He has been active in the
area of internetworking, network security, and
applied cryptography since 1987. Before joining
the Univeristy of California, Irvine in 2000, he
was a project leader at IBM Research, Zurich

Laboratory (1991-1996) and the USC Information Science Institute
(1996-2000). Over the years, his research interests included: internet-
work routing, firewalls, authentication, mobile network security, secure
e-commerce, anonymity, secure group communication, digital signa-
tures, key management, ad hoc network routing and, more recently,
database privacy and secure storage. Some of his notable research
contributions include: interdomain policy routing (IDPR), IBM Network
Security Program (KryptoKnight), IBM Internet Keyed Payment (iKP)
protocols, Peer Group Key Management (CLIQUES), and Mediated
Cryptographic Services (SUCSES). Professor Tsudik has more than 80
refereed publications and seven patents. He is currently serving as
associate dean of research and graduate studies in the School of
Information and Computer Science at the University of California, Irvine.
He is a member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

480 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 5, MAY 2004

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 33

APPENDIX I

BASIC ALGORITHM: PSEUDO-CODE AND CORRECTNESS PROOF

The pseudo-code describing our basic algorithm is presented in Algorithms 2, 3, 4, 5, 6, 7,

and 8. Each algorithm describes the actions specifi c to a state. There are two types of actions:

group communication operation (message delivery, message unicast, message broadcast, or send

a flush acknowledgment) and GDH key agreement specifi c operation (computation on the token

or access to GDH state information).

The algorithms and proofs rely on two formal properties of the VS semantics that were not

precisely specifi ed earlier. They are the Flush Acknowledgment and Blocked Messages properties.

Flush Acknowledgment: For processes already part of a group, a new membership is

preceded by a flush request message delivery. The new membership is delivered only

after these processes send a flush acknowledgment. For a joining process, no flush

request is delivered and the membership notifi cation is the fi rst message delivered to

it.

Blocked Messages: The GCS does not allow a process to send messages between the

time the flush acknowledgment is sent until the time the new membership is delivered

to the process.

We use several simple procedures:

• alone: given a list of all members of a group, it returns TRUE if the process invoking it is

the only member of the group, FALSE otherwise;

• ready: given a key list message, it returns TRUE when the list is ready to be broadcast (it

contains all the partial keys), FALSE otherwise;

• last: given a list and a name of a process, it returns TRUE if the process is the last one on

the GDH list, FALSE otherwise;

• is in: given an item and a list, returns TRUE if the list contains the item, FALSE otherwise;

• empty: given a list, returns TRUE if the list is empty, FALSE otherwise;

• choose: given a list, deterministically chooses a member on the list and returns that member;

• -: the subtraction operator for list;

We also use some important data structures. The Membership data structure keeps information

regarding a membership notifi cation:

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 34

• mb id, the unique identifi er of the view;

• mb set, the list of all the members of this view;

• vs set, the transitional set associated with this notifi cation;

• merge set, the members from the new view that are not in the transitional set of the new

view;

• leave set, the members from the previous view that are not in the transitional set of the

new view.

GCS-s usually provide only the fi rst three pieces of information in a membership notifi cation.

The merge set and leave set can be computed by either the GKA or the GCS by using the

membership set of the previous membership notifi cation, and the current membership notifi cation.

To simplify the presentation of the pseudo-code of the algorithm we assume that the merge set

and leave set are provided by the GCS as part of the membership notifi cation5.

Algorithm 2 Initialization of global variables

New memb msg.vs set := EMPTY

New memb msg.merge set := EMPTY

New memb msg.leave set := EMPTY

New memb msg.mb set := Me

New memb msg.mb id := 0

VS set := EMPTY

First transitional := TRUE

VS transitional := FALSE

First cascaded membership := TRUE

Wait for sec flush ok := FALSE

KL got flush req := FALSE

Event := NULL

Clq ctx := NULL

Group key := NULL

State := WAIT FOR CASCADING MEMBERSHIP

/* for opt. Alg., replace the above line with:

State := WAIT FOR SELF JOIN */

5Note that the way we defi ne the leave set, it includes not only the members that left the group, but also the members that

are not yet completely synchronized with the rest of the group.

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 35

Every process executes the algorithm for a specifi c group and maintains a list of global

variables (see Algorithm 2): Group name is the name of the group for which the algorithm is

executed; Group key is the shared secret of the group; Me is the process executing the algorithm;

Event is the current event being handled; Clq ctx keeps all the cryptographic context required

by the GDH protocol, and includes the list of partial keys, the group key and the list of group

members; New memb msg is the new membership that will be delivered; VS set is used to com-

pute the transitional set delivered to the application with a new membership. Five global boolean

variables are used in order to facilitate the updating of the VS set variable, the transitional signal

delivery, the correctness of the Secure Flush Ok events and the delivery of secure membership

notifi cations: First transitional, First cascaded membership, Wait for sec fl ok, VS transitional

and KL got flush reg. The names of all global variables are capitalized whereas all other variables

(lowercase) are assumed to be local.

For communication, we use the FIFO service to send all of the protocol messages, with the

exception of the list of the partial keys for which we used the AGREED service. We choose to

use a more expensive service for the last broadcast to reduce the complexity of the algorithm

and the proofs.

A. Correctness Proof

We now prove that the above algorithm preserves the Virtual Synchrony Model described in

Section III-A.

In the following, the term secure membership notification denotes a notifi cation delivered by

the GKA to the application. The term VS membership notification denotes a notifi cation delivered

by the GCS to the GKA. A secure view is a view installed by the GKA and a VS view is a view

installed by the GCS.

Some useful observations can be made about membership notifi cations and application mes-

sages. The GKA discards VS membership events, not every VS view delivery event has a

corresponding secure view delivery event. The secure membership notifi cation is built and saved

in the CM state (see Algorithm 8). For every VS membership received in the CM state, the

list of members, the view identifi er and the transitional set of the new secure membership are

updated in the New memb msg variable. User messages are delivered immediately as they are

received, they are not delayed or reordered.

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 36

Algorithm 3 Code executed in SECURE (S) state

case Event is

Data Message:

deliver(data msg)

User Message:

broadcast(data msg)

Flush Request:

Wait for sec flush ok := TRUE

deliver(flush request msg)

Secure Flush Ok:

if (Wait for sec flush ok)

Wait for sec flush ok := FALSE

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

/* for opt. Alg., replace above line with:

State := WAIT FOR MEMBERSHIP */

else

illegal, return an error to the user

endif

Transitional Signal:

deliver(trans signal msg)

First transitional := FALSE

VS transitional := TRUE

All other events:

not possible

The following two lemmas are obvious from the algorithm description and they represent the

flush mechanisms properties.

Lemma 1.1: The GKA blocks an application from sending messages between the time a

secure flush ok msg message was sent and the delivery of the new secure membership.

Lemma 1.2: When a group membership change occurs, the GKA delivers a flush request msg

message to processes already part of the group. The new secure membership is delivered only

after they answer with a secure flush ok message. For a joining process no flush req is delivered

and the secure membership is the fi rst message delivered to it.

We now prove the following lemmas.

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 37

Algorithm 4 Code executed in WAIT FOR PARTIAL TOKEN (PT) state

case Event is

Partial Token:

if (!last(Clq ctx, Me))

partial token msg := clq update key(Clq ctx)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else

fi nal token msg := partial token msg

broadcast(FIFO, fi nal token msg)

State := COLLECT FACT OUTS

endif

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible

Lemma 1.3: The only state where VS membership notifi cations are received by the GKA is

CM.

Proof: By the Flush Acknowledgment property of the GCS, a membership notifi cation

delivery is preceded by the process sending a flush ok msg message, unless the process is joining.

By the algorithm, immediately after sending a flush ok msg message, the process transitions to

the CM state and does not leave the CM state until it receives a Membership event. A joining

process starts executing the algorithm in the CM state and does not leave it until it receives a

membership event.

Lemma 1.4: The only states where user messages are received by the GKA from the GCS

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 38

Algorithm 5 Code executed in WAIT FOR KEY LIST (KL) state

case Event is

Key List:

if (!VS transitional)

Clq ctx := clq update ctx(Clq ctx, key list msg)

Group Key := clq extract key(Clq ctx)

New memb msg.vs set := Vs set

deliver(New memb msg)

First transitional := TRUE

First cascaded membership := TRUE

State := SECURE

if (KL got flush req)

Wait for sec flush ok := TRUE

deliver(flush request msg)

endif

endif

Flush Request:

if (VS transitional)

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

else

KL got flush req := TRUE

endif

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

if (KL got flush req)

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 39

Algorithm 6 Code executed in WAIT FOR FINAL TOKEN (FT) state

case Event is

Final Token:

fact out msg := clq factor out(Clq ctx, fi nal token msg)

new gc := clq get new gc(Clq cxt)

unicast(FIFO, fact out msg, new gc)

KL got flush req := FALSE

State := WAIT FOR KEY LIST

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible

are S and CM. User messages are delivered by the GKA to the application only in the S and

CM states.

Proof: After receiving a VS membership notifi cation in the CM state (by Lemma 1.3 this

is the only state where membership notifi cations are received) the process moves to one of the

states FT, PT, FO, KL, or S. The transition to state S installs a new secure view, so in that state

the process can send and receive user messages. In any of the FT, PT, FO, KL or CM states the

process is not allowed to send application messages.

If an application message is received in any of the FT, PT, FO or KL states, this can be

a message sent in the previous secure view in state S, or a message sent by a process that

completed the key agreement before this process did, have already installed the new secure view

and sent messages. The fi rst case is not possible because it contradicts Sending View Delivery.

In the second case, note that the key list message is broadcast as an agreed message, so a user

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 40

Algorithm 7 Code executed in COLLECT FACT OUTS (FO) state

case Event is

Fact out:

key list msg := clq merge(Clq ctx, fact out msg,key list msg)

if (ready(key list msg))

broadcast(AGREED, key list msg)

KL got flush req := FALSE

State := WAIT FOR KEY LIST

endif

Flush Request:

send flush ok()

State := WAIT FOR CASCADING MEMBERSHIP

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible

message can not be received in the KL state before the key list message because it was sent after

its sender processed the key list message (it contradicts the Causal Delivery property). Therefore,

the only states where a process can receive user messages are S and CM. Since user messages

are delivered as soon as they are received, they are delivered only in the S and CM states.

Lemma 1.5: When process p installs a secure view v, the view includes p and the v’s identifi er

is the identifi er of the most recently installed VS view.

Proof: By the algorithm, the view-to-be-installed is updated only when a membership

notifi cation is received from GCS (see Algorithm 8, Marks 1 and 2), which, by Lemma 1.3,

occurs only in the CM state.

There are two transitions that install secure views. The fi rst transition corresponds to a

Membership event occurrence in the CM state, indicating that process p is alone. In this case,

the secure membership notifi cation is immediately delivered with p (the only one) in it and it

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 41

Algorithm 8 Code executed in WAIT FOR CASCADING MEMBERSHIP (CM) state

case Event is

Data Message:

deliver(data msg)

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

Membership:

if (First cascaded membership)

VS set := New memb msg.mb set

First cascaded membership := FALSE

endif

VS set := VS set - memb msg.leave set

if (!empty(memb msg.leave set) && First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

if (!alone(memb msg.mb set))

if (choose(memb msg.mb set) == Me)

clq destroy ctx(Clq ctx)

Clq ctx := clq fi rst member(Me)

merge set := memb msg.mb set - Me

partial token msg := clq update key(Clq ctx, merge set)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else /* not chosen */

clq destroy ctx(Clq ctx)

Clq ctx := clq new member(Me)

State := WAIT FOR PARTIAL TOKEN

endif

else /* alone */

clq destroy ctx(Clq ctx)

Clq ctx := clq fi rst member(Me)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

deliver(New memb msg)

First transitional := TRUE

First cascaded membership := TRUE

State := SECURE

endif

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 42

contains the most recent VS identifi er.

The second transition corresponds to a Key List event occurrence in the KL state. In this case,

at the time the new secure view is delivered, it indicates the VS group members list, and as

GCS provides Self Inclusion, p is guaranteed to be on that list. In this case, when the secure

view is delivered, it indicates the most recent VS identifi er.

1) Self Inclusion:

Theorem 1.1: When process p installs a secure view, the view includes p.

Proof: This holds due to Lemma 1.5.

2) Local Monotonicity:

Theorem 1.2: If process p installs a secure view v sec after installing a secure view v sec′

then the identifi er of v sec is greater than the identifi er of v sec′.

Proof: The algorithm does not create view identifi ers, but uses the identifi ers provided by

the VS membership notifi cations without reordering them. By Lemma 1.5, p always delivers

a secure view with the same identifi er as the most recent VS identifi er. Therefore, because it

delivers a subsequence of VS identifi ers and because GCS provides Local Monotonicity, the

GKA provides Local Monotonicity too.

3) Sending View Delivery:

Theorem 1.3: A message is delivered by the GKA in the secure view that it was sent in.

Proof: By Lemma 1.4, messages are delivered by the GKA only in the S and CM states.

In the S state, the secure view is the most recent VS view (by Lemma 1.5), so by Sending View

Delivery of GCS, the theorem holds.

As specifi ed by the algorithm, a process moves to the CM state after the application agreed

to close the membership by sending a flush ok message (see Algorithm 3). Since the GKA

delivers a message immediately after it was received and GCS provides Sending View Delivery,

all the messages sent in a VS view will be delivered before the next VS view was received, and

therefore, before a new secure view is installed.

4) Delivery Integrity:

Theorem 1.4: If process p delivers a message m in a secure view v, then there exists a process

q that sent m causally before p delivered m.

Proof: If a process p delivers a message m in v, then there exists a process q that sent m

in v, by Theorem 1.3. Also, by transitivity, the GKA delivers a message m causally after it was

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 43

sent because:

• GKA sends m immediately after it was sent by the application.

• GCS delivers message m causally after it was sent (Delivery Integrity).

• GKA delivers m immediately after it was received from the GCS.

5) No Duplication:

Theorem 1.5: A message is sent only once using the GKA. A message is delivered only once

to the same process by the GKA.

Proof: By the algorithm, an application can send messages only in the S state, so a message

is sent only once. Also, messages are delivered only in the S and CM states, immediately upon

receipt from the GCS. Since GCS guarantees no duplication, the theorem holds. The GKA

generates GDH messages, but these are never delivered to the application so they do not affect

the No Duplication property.

6) Self Delivery:

Theorem 1.6: If process p sends a message m, then p delivers m unless it crashes.

Proof: By the algorithm, a message is sent by the application via the GCS, the GKA never

discards application messages and it delivers them immediately after receiving them. Since GCS

provides Self Delivery, the theorem is true.

7) Transitional Set:

Theorem 1.7: Every process is part of its transitional set for a secure view v sec.

Proof: This is true by the protocol (the way the transitional set is computed for a secure

view), and by the Self Inclusion property of the GCS.

Lemma 1.6: If process p installed a secure view v sec with process q in the members set,

they both install the same next VS view, and p’s VS transitional set includes q, then q must have

installed v sec.

Proof: By the protocol, a process installs a secure view with more than one member only

in the KL state. A process in the KL state installs a secure view if and only if it receives a

key list msg message before a transitional signal for the current VS view. Because p and q move

together to the new VS view and the key list msg is an agreed message, by the Agreed Delivery

properties of GCS, q must also receive the key list msg message before the transitional signal.

Therefore, q must also have installed v sec.

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 44

Theorem 1.8: If two processes p and q install the same secure view v sec, and q is included

in p’s transitional set for this view, then p’s previous secure view was identical to q’s previous

secure view.

Proof: By the algorithm, the transitional set for a new secure membership notifi cation is

initialized to be the same as the previous secure view member set. Furthermore, members reported

by VS membership notifi cations as not being in the VS transitional set (i.e. the leave set), are

removed from this set and no members are added. Due to this, if q is included in p’s secure

transitional set then q must have been included in all of p’s VS transitional sets since the last

secure view delivered at p. Additionally, p and q must have installed the same sequence of

VS views prior to v sec because they both installed the VS view corresponding to v sec and

because of the GCS Transitional Set property number two. Therefore, by Lemma 1.6, q must

have installed the same previous secure view as p.

To show that q installed no intermediary secure views, the same proof is repeated reversing

p and q’s roles with the additional information that p is in q’s secure transitional set because of

the way the set is computed and GCS Transitional Set property number two.

Theorem 1.9: If two processes p and q install the same secure view, and q is included in p’s

transitional set for this view, then p is included in q’s transitional set for this view.

Proof: Assume p and q install the same secure view, q is included in p’s transitional set

for this view, but p is not included in q’s transitional set for this view. Two cases are possible.

First, q’s previous secure view was not the same as p’s secure view. In this case, by theorem 1.8,

q is not included in p’s transitional set, contradicting our assumption.

Second, q’s previous secure view was the same, but an intermediary VS notifi cation delivered

to q did not include p in its transitional set. Since p and q install the same secure view, it

must be that p and q install the same VS view at some point. The fi rst such view installed at q

preserves that p is not in q’s transitional set by GCS Transitional Set property number one. By

GCS Transitional Set property number two, p must not have q in its transitional set for that view.

By the protocol, then q is removed from p’s secure transitional set, and because p’s transitional

set never grows q will not be in p’s secure transitional set when p and q install the new secure

view, which contradicts our assumption.

8) Virtual Synchrony:

Theorem 1.10: Two processes p and q that move together through two consecutive secure

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 45

views, deliver the same set of messages in the former view.

Proof: User messages are delivered by the GKA only in the S or CM states (Lemma 1.4)

and VS membership notifi cations are received by the GKA only in the CM state (Lemma 1.3).

By the way we compute the transitional set), if process p and q move together from v1 sec to

v2 sec, then p and q moved together through the sequence of VS views v1 to v11, ..., v1n−1

to v1n, v1n to v2 6. Therefore, by the GCS Virtual Synchrony, processes p and q deliver the

same set of messages between v1 and v11, v11 and v12, ... v1n and v2. No other messages are

delivered between v2 and v2 sec installations because any such message has to be sent in v2

according to the GCS Sending View Delivery property.

By the protocol, upon sending the flush ok msg message that concludes v1 each process moves

to the CM state and will not send data messages before installing v2 sec. In particular, it will

not send messages between v2 and v2 sec. Therefore, p and q deliver the same set of messages

in v1 sec.

9) FIFO, Causal, Agreed and Safe Delivery:

Lemma 1.7: All the user messages delivered by the GCS are immediately delivered by the

GKA, maintaining the ordering properties indicated by the GCS delivery for each message.

Proof: By the protocol, the messages delivered by a process in secure view v sec, are

messages delivered by the GCS in a VS view v. Since messages are delivered to the application

in the order they were received from the GCS, without being delayed, no application messages

are dropped or duplicated, and no phantom messages are generated, the messages delivered in

v sec, support the same ordering requirements as they were delivered in v.

Theorem 1.11: If message m is sent before message m′ by the same process in the same

secure view, then any process that delivers m′ delivers m before m′.

Proof: This holds by Lemma 1.7.

Theorem 1.12: If message m causally precedes message m′, and both are sent in the same

secure view, then any process that delivers m′ delivers m before m′.

Proof: This is true by Lemma 1.7.

Theorem 1.13: If messages m and m′ are delivered at process p in this order, and m and m′

are delivered by process q then q delivers m′ after it delivered m.

6Note that n can be zero with the in-between set potentially empty (v1 to v2).

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 46

If messages m and m′ are delivered by process p in secure view v1 sec in this order, and m′ is

delivered by process q in secure view v2 sec and message m was sent by a process r which is

a member of secure view v2 sec, then q delivered m.

Proof: This is true by Lemma 1.7 and because the secure transitional set is the intersection

of all the VS transitional sets.

Theorem 1.14: If process p delivers a safe message m in secure view v sec before the

transitional signal, then every process q of v sec delivers m unless it crashes.

If process p delivers a safe message m in secure view v sec after the transitional signal, then

every process q that belongs to p’s transitional set delivers m after the transitional signal unless

it crashes.

Proof: The claims are true because the GKA delivers messages with the same ordering

guarantees with which they were delivered by the GCS (by Lemma 1.7), the fi rst transitional

signal received from GCS is delivered to the application and because the secure transitional set

is the intersection of all the VS transitional sets.

10) Transitional Signal:

Theorem 1.15: Each process delivers exactly one transitional signal per view.

Proof: GCS Transitional Signal property number one guarantees that exactly one transitional

signal per view will be delivered by the GCS. In case of cascaded memberships, more than one

transitional signal is received by the GKA from the GCS, but only the fi rst one will be delivered

to the application (see Mark 3 in Algorithms 3, 5, 4, 6, 7, 8).

APPENDIX II

OPTIMIZED ALGORITHM: PSEUDO-CODE AND CORRECTNESS PROOF

The pseudo-code corresponding to the state machine from Fig. 3 is presented in Algorithms

2, 3, 4, 5, 6, 7, 8, 9 and 10.

The description of the protocol we use two additional fi elds (merge set and leave set) of the

membership notifi cation to determine the cause of the group view change. In addition, we use

a modifi ed version of the procedure clq update key that can handle combined network events.

A. Correctness Proof

The proof that the optimized algorithm described above provides the virtual synchrony seman-

tics presented in Section III-A is very similar to the proof we provided for the basic algorithm.

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 47

Algorithm 9 Code executed in WAIT FOR SELF JOIN (SJ) state

case Event is

Membership:

VS set := New memb msg.mb set

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

First cascaded membership := FALSE

if (!alone(memb msg.mb set))

if (choose(memb msg.mb set) == Me)

Clq ctx := clq first member(Me)

merge set := memb msg.merge set

partial token msg :=

clq update key(Clq ctx, merge set)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

State := WAIT FOR FINAL TOKEN

else

Clq ctx := clq new member(Me)

State := WAIT FOR PARTIAL TOKEN

endif

else

Clq ctx := clq first member(Me)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

deliver(New memb msg)

First cascaded membership := TRUE

State := SECURE

endif

VS transitional := FALSE

User Message, Secure Flush Ok:

illegal, return an error to the user

All other events:

not possible

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 48

Algorithm 10 Code executed in WAIT FOR MEMBERSHIP (M) state

case Event is

Data Message:

deliver(data msg)

Transitional Signal:

if (First transitional)

deliver(trans signal msg)

First transitional := FALSE

endif

VS transitional := TRUE

Membership:

VS set := New memb msg.mb set

VS set := VS set - memb msg.leave set

New memb msg.mb id := memb msg.mb id

New memb msg.mb set := memb msg.mb set

New memb msg.vs set := Vs set

First cascaded membership := FALSE

if (!alone(memb msg.mb set))

merge set := memb msg.merge set

leave set := memb msg.leave set

if (!empty(leave set) && empty(merge set))

if (choose(memb msg.mb set) == Me)

key list msg := clq leave(Clq ctx, leave set)

broadcast(AGREED, key list msg)

endif

State := WAIT FOR KEY LIST

else

if (is in(choose(memb msg.mb set), memb msg.vs set))

/* old member */

if (choose(memb msg.mb set) == Me)

partial token msg :=

clq update key(Clq ctx,leave set,merge set)

next member := clq next member(Clq ctx)

unicast(FIFO, partial token msg, next member)

endif

State := WAIT FOR FINAL TOKEN

else /* new member */

clq destroy ctx(Clq ctx)

Clq ctx := clq new member(Me)

State := WAIT FOR PARTIAL TOKEN

endif

endif

else /* alone */

Clq ctx := clq fi rst member(Me)

Group key := clq extract key(Clq ctx)

New memb msg.vs set := Me

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 49

There are some differences in the optimized algorithm: 1) secure memberships can be installed

in three states, CM, SJ and M; 2) application messages are delivered in the S and M states; 3)

membership notifi cations are received from the GCS in the CM, SJ, and M states; 4) a process

is not allowed to send user messages while performing the GKA , therefore a process can not

send user messages in any of the SJ, M, CM, PT, FT, FO, or KL states.

Using a reasoning similar to the one we used in the proof for the basic algorithm, the following

lemmas can be proved.

Lemma 2.1: The only states where VS membership notifi cations are received are the SJ, CM

and M states.

Lemma 2.2: The only states where user messages can be received are S and M. User messages

are delivered to the application only in the S and M states.

All the Virtual Synchrony Model properties described in Section III-A can be proven by using

the above lemmas and the properties provided by the underlying GCS. We exemplify this, by

proving the Virtual Synchrony property. Due to the similarity with the proofs we presented for

the basic algorithm, we do not include a proof for each property.

1) Virtual Synchrony:

Theorem 2.1: Two processes p and q that move together through two consecutive secure views,

deliver the same set of messages in the former view.

Proof: User messages are delivered to the application only in the S and M states (Lemma

2.2) and VS membership notifi cations are received only in the SJ, CM and M states (Lemma 2.1).

By the way we compute the transitional set, if process p and q move together from v1 sec to

v2 sec, then they moved together through the sequence of VS views v1 to v11, ..., v1n−1 to v1n,

v1n to v2. If n is zero, v2 will be received in the M state, otherwise, v11 is received in the M

state and all other possible VS views (including v2) will be received in the CM state. Therefore,

by the GCS Virtual Synchrony property, processes p and q deliver the same set of messages

between v1 and v11, v11 and v12, ... v1n and v2. No other messages are delivered between v2

and v2 sec installations because any such message has to be sent in v2 by the GCS Sending

View Delivery property.

By the protocol, upon sending the flush ok msg message that concludes v1 each process moves

to the M state and will not send data messages before installing v2 sec. In particular, it will not

send messages between v2 and v2 sec. Therefore, p and q deliver the same set of messages in

October 26, 2003 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, ID 116498.1 50

v1 sec.

October 26, 2003 DRAFT

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

