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Abstract—In recent years, collaborative and group-oriented applications and protocols have gained popularity. These applications

typically involve communication over open networks; security thus is naturally an important requirement. Group key management is

one of the basic building blocks in securing group communication. Most prior research in group key management focused on

minimizing computation overhead, in particular minimizing expensive cryptographic operations. However, continued advances in

computing power have not been matched by a decrease in network communication delay. Thus, communication latency, especially in

high-delay long-haul networks, increasingly dominates the key setup latency, replacing computation delay as the main latency

contributor. Hence, there is a need to minimize the size of messages and, especially, the number of rounds in cryptographic protocols.

Since most previously proposed group key management techniques optimize computational (cryptographic) overhead, they are

particularly impacted by high communication delay. In this work, we discuss and analyze a specific group key agreement technique

which supports dynamic group membership and handles network failures, such as group partitions and merges. This technique is very

communication-efficient and provably secure against hostile eavesdroppers as well as various other attacks specific to group settings.

Furthermore, it is simple, fault-tolerant, and well-suited for high-delay networks.

Index Terms—Security, group key agreement, group communication, communication complexity, cryptographic protocols.

�

1 INTRODUCTION

SECURE group communication is an increasingly popular
research area having received much attention in recent

years. Since most group communication takes place over
the wide-open expanse of the Internet, security is a major
concern. The fundamental security challenge revolves
around secure and efficient group key management.
Centralized key management methods (key distribution)
are appropriate for 2-party (e.g., client-server or peer-to-
peer) communication as well as for large multicast groups.
However, many collaborative group settings (e.g., confer-
encing, white-boards, shared instruments, and command-
and-control systems) require distributed key management
techniques.

The majority of research in group key agreement (one
way of implementing distributed group key management)

was mainly concerned with increasing the security while
minimizing cryptographic computation cost. It has been

long held as an incontrovertible fact that heavy-weight
computation—such as large number arithmetic that forms
the basis of many modern cryptographic algorithms—is the

greatest burden imposed by security protocols. However,
the continuing increase in computation power of modern

workstations speed up the heavy-weight cryptographic

operations. For example, four years ago, a top-of-the-line
RISC workstation performed a 512-bit modular exponentia-
tion in around 24 ms. Four years later, an 850 MHz Pentium
III PC (priced at one-fifth of the old RISC workstation)
performs the same operation in under 1 ms.

In contrast, communication latency has not improved
appreciably. Network devices and communication lines
have become significantly faster and cheaper. The commu-
nication (especially via the Internet) has become both
accessible and affordable, which resulted in drastic increase
in the demand for network bandwidth. While computation
power and bandwidth are increasing, network delay has the
lower bound dictated by the speed of light.

Consequently, the half-around-the-world packet round
trip delay is likely to remain constant (at least for terrestrial
communication). In addition, interplanetary networking is
not too far off in the future. Consider, for instance, the
communication delay with a Mars Rover or other space
exploration device. More concretely, collaborative work
groups where the members are dispersed across continents
will expect considerable communication latency and would
thus benefit from protocols that minimize communication
rounds. Similarly, group teleconferences are becoming
increasingly popular.

The bottleneck shift from computation to communication
latency prompts us to look at cryptographic protocols in a
different light: allowing more liberal use of cryptographic
operations while attempting to reduce the communication
overhead. The latter includes both round and message
complexity. Communication overhead is especially relevant
in a peer group setting since group members can be spread
throughout a large network, e.g., the global Internet.

We consider a protocol first proposed by Steer et al. in
1988 [27]. It is one of the first group key agreement
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protocols. This protocol extends the 2-party Diffie-Hellman
key exchange and supposes the formation of a secure static
group. This protocol—referred to as STR (short for Skinny
TRee) hereafter—involves heavy computation and commu-
nication requirements: OðnÞ communication rounds and
OðnÞ cryptographic operations are necessary to establish a
shared key in a group of n members. We extend it to deal
with dynamic groups and network failures in a commu-
nication-efficient manner. Concretely, we construct an
entire group key management protocol suite that is
particularly efficient in a WAN environment where net-
work delay is high.

The remainder of this paper is organized as follows:
Section 2 explains our assumptions and requirements for
the reliable group communication system over wide area
network and cryptographic requirements of group key
agreement schemes. Notations used in the rest of this paper
are introduced in Section 3 and the actual protocol suite is
described in Section 4. Section 5 considers the security,
complexity, and implementation issues and performance of
STR is discussed in Section 6. The summary of related work
appears in Section 7 and conclusions appear in Section 8.
Security argument of the proposed protocols is provided in
the Appendix.

2 RELIABLE GROUP COMMUNICATION AND GROUP

KEY AGREEMENT

In this section, we set the stage for the rest of the paper with
a brief overview of the notable features of reliable group
communication and group key agreement.

As noted earlier, many current collaborative and dis-
tributed applications require a reliable group communica-
tion platform. In addition, many group communication
applications require security services which are built atop
secure group key management. This dependency is mutual
since practical group key agreement protocols themselves
rely on the underlying group communication semantics for
protocol message transport and strong membership seman-
tics. Implementing multiparty and multiround crypto-
graphic protocols without such support is foolhardy as, in
the end, one winds up reinventing reliable group commu-
nication tools.

2.1 Reliable Group Communication Semantics

Many modern collaborative and distributed applications
require a reliable group communication platform. Current
reliable group communication toolkits generally provide
one (or both) of two strong group communication seman-
tics: Extended Virtual Synchrony (EVS) [22] and View
Synchrony (VS) [15]. Both semantics guarantee that: 1)
group members see the same set of messages between two
sequential group membership events and 2) the sender’s
requested message order (e.g., FIFO, Causal, or Total) is
preserved. VS offers a stricter guarantee than EVS:
Messages are delivered to all recipients in the same
membership as viewed by the sender application when it
originally sent the message. In the context of this paper, we
require the underlying group communication to provide
VS. However, we stress that VS is needed for the sake of
fault tolerance and robustness; the security of our protocols

is in no way affected by the lack of VS. More details on the
interaction of key agreement protocols and reliable group
communication are addressed in [1].

2.2 Communication Delay

Due to the reliable group communication platform, network
delay is amplified by the necessary acknowledgments
between the group members. The speed of light puts a
lower bound on the minimum network delay. For example,
a laser pulse that travels through a fiber optic cable takes
� 10 ms to travel from New York to San Francisco, � 21 ms
from Paris to San Francisco, and � 40 ms from London to
Sydney. In practice, networks today are about 3 to 4 times
slower than the lower bound.

To put this into perspective, an 850MHz Pentium III PC
performs a single 512-bit modular exponentiation (one of
the most expensive, but most basic public key primitives) in
under 1 ms. Moreover, the speed of computers continues to
increase. Comparing this with the WAN network delay, it is
clear that reducing the number of communication rounds is
much more important in the long run (for an efficient group
key agreement scheme) than reducing the computation
overhead.

2.3 Group Key Agreement

A comprehensive group key agreement solution must
handle adjustments to group secrets subsequent to all
membership change operations in the underlying group
communication system. The following membership changes
are considered: We distinguish among single and multiple
member operations. We also distinguish between additive
and subtractive member operations. Single member
changes include member join or leave and multiple member
changes include group merge and group partition.

. Join occurs when a prospective member wants to
join a group.

. Leave occurs when a member wants to leave (or is
forced to leave) a group. There might be different
reasons for member deletion such as voluntary
leave, involuntary disconnect, or forced expulsion.
We believe that group key agreement must only
provide the tools to adjust the group secrets and
leave the rest up to the local security policy.

. Partition occurs when a group is split into smaller
groups. A group partition can take place for several
reasons, two of which are fairly common:

1. Network failure—this occurs when a network
event causes disconnectivity within the group.
Consequently, a group is split into fragments,
some of which are singletons while others
(those that maintain mutual connectivity) are
subgroups.

2. Explicit (application-driven) partition—this oc-
curs when the application decides to split the
group into multiple components or simply
exclude multiple members at once.

. Merge occurs when two or more groups merge to
form a single group (a group merge may be
voluntary or involuntary):
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1. Network fault heal—this occurs when a network
event causes previously disconnected network
partitions to reconnect. Consequently, groups on
all sides (and there might be more than two
sides) of an erstwhile partition are merged into a
single group.

2. Explicit (application-driven) merge—this occurs
when the application decides to merge multiple
preexisting groups into a single group. (The case
of simultaneous multiple-member addition is
not covered.)

At first glance, events such as network partitions and
fault heals might appear infrequent and dealing with them
might seem to be a purely academic exercise. In practice,
however, such events are common owing to network
misconfigurations and router failures. Moser et al. present
compelling arguments in support of these claims [22].
Hence, dealing with group partitions and merges is a
crucial component of group key agreement.

In addition to the aforementioned membership opera-
tions, periodic refreshes of group secrets are advisable so as
to limit the amount of ciphertext generated with the same
key and to recover from potential compromises of mem-
bers’ contributions or prior session keys.

2.4 Cryptographic Properties

In this section, we summarize the desired properties for a
secure group key agreement protocol. Following the model
of [18], we define four such properties:

Definition 1.

. Group Key Secrecy guarantees that it is computa-
tionally infeasible for a passive adversary to discover
any group key.

. Forward Secrecy (not to be confused with Perfect
Forward Secrecy or PFS) guarantees that a passive
adversary who knows a contiguous subset of old group
keys cannot discover subsequent group keys.

. Backward Secrecy guarantees that a passive adver-
sary who knows a contiguous subset of group keys
cannot discover preceding group keys.

. Key Independence guarantees that a passive adver-
sary who knows any proper subset of group keys
cannot discover any other group key not included in
the subset.

The relationship among the properties is intuitive. Back-
ward and Forward Secrecy properties (often called Forward
and Backward Secrecy in the literature) assume that the
adversary is a current or a former group member. The other
properties additionally include the cases of inadvertently
leaked or otherwise compromised group keys.

Our definition of group key secrecy allows partial
leakage of information. Therefore, it would be more
desirable to guarantee that any bit of the group key is
unpredictable. For this reason, we prove a decisional
version of group key secrecy in Appendix A. In other
words, the decisional version of group key secrecy
guarantees that it is computationally infeasible for a passive
adversary to distinguish any group key from random
number.

Other, more subtle, active attacks aim to introduce a

known (to the attacker) or old key. These are prevented by

the combined use of: sender information, timestamps,

unique protocol message identifiers, and sequence numbers

which identify the particular protocol run.
All protocol messages include the following attributes:

. sender information: name of the sender, or, equiva-
lently, signer.

. group information: unique name of the group.

. membership information: names (and other infor-
mation) of current group members.

. protocol identifier: protocol being used (fixed as
“STR”).

. message type: unique message identifier for each
protocol message.

. key epoch: strictly increasing counter. Whenever a
new membership event occurs, each member incre-
ments key epoch. If two groups G1 and G2 merge,
the resulting epoch is:

epochnew ¼ maxðepochG1
; epochG2

Þ þ 1:

Key epoch is the same across all current group

members. If a group member receives a protocol

message with a smaller than current epoch, it

terminates the protocol (suspected replay).
. time stamp: current time. Loose time synchroniza-

tion among group members is assumed.

We assume that a group member rejects any message

which does not match its expectations. Since all messages

are signed, we also assume PKI for all protocol parties.

Since no other long-term secrets or keys are used, we are not

concerned with Perfect Forward Secrecy (PFS) as it is

achieved trivially.
In this paper, we do not assume key authentication to be

part of group key management. All communication

channels are thus considered public but authentic. The

latter means that all messages are digitally signed by the

sender with some sufficiently strong public key signature

method such as DSA or RSA (and using a long-term private

key).1 All receivers are required to verify signatures on all

received messages and check the aforementioned fields.

Consequently, our security model is different from some

recent related work [9], [10] that does not assume authentic

channels.

3 NOTATION

We use the following notation throughout the rest of this

paper:
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1. Furthermore, as discussed above, all protocol messages are assumed
to contain: 1) sender/group information, 2) a prototol identifier (i.e., STR
here) to distinguish among multiple protocols, 3) a unique message
identifier to distinguish among messages within a protocol, and 4) a key
epoch identifier to capture the instance of the protocol.



Fig. 1 shows an example of an STR key tree. The tree has
two types of nodes: leaf and internal. Each leaf node is
associated with a specific group member. An internal node
INðiÞ always has two children: another (lower) internal node
INði�1Þ and a leaf node LNðiÞ. The exception is INð1Þ which is
also a leaf node corresponding to M1. (Note that, conse-
quently, r1 ¼ k1.)

Each leaf node LNðiÞ has a session random ri chosen and
kept secret by Mi. The blinded version thereof is
bri ¼ �ri mod p. Every internal node INðjÞ has an associated
secret key kj and a public blinded key (bkey)
bkj ¼ �kj mod p. The secret key ki ði > 1Þ is the result of a
Diffie-Hellman key agreement between the node’s two
children (k1 is an exception and is equal to ri.), which is
computed recursively as follows:

ki ¼ ðbki�1Þri mod p ¼ ðbriÞki�1 mod p ¼ �riki�1 mod p if i > 1:

The group key in Fig. 1 is the key associated with the root

node: k4 ¼ �r4�
r3�

r2r1

.
We note that the root (group) key is never used directly

for the purposes of encryption, authentication, or integrity.
Instead, such special-purpose subkeys are derived from the
root key, e.g., by applying a cryptographically secure hash
function to the root key. All bkeys bki are assumed to be
public.

The basic key agreement protocol is as follows: We
assume that all members know the structure of the key tree
and their initial position within the tree. (There are many
ways to order members unambiguously.) Furthermore,
each member knows its session random and the blinded
session randoms of all other members. The two members
M1 and M2 can first compute the group key corresponding
to INð2Þ. M1 computes:

k2 ¼ ðbr2Þr1 mod p ¼ �r1r2 mod p; bk2 ¼ �k2 mod p

k3 ¼ ðbr3Þk2 mod p; bk3 ¼ �k3 mod p
. . .
kN ¼ ðbrNÞkN�1 mod p:

Next, M1 broadcasts all bkeys bki with 1 � i � N � 1.
Armed with this message, every member then computes kN

as follows. (Asmentioned above,membersM1 andM2 derive
the group key without additional broadcasts.) AnyMi (with
i > 2) knows its session random ri and bki�1 from the
broadcast message. Hence, it can derive ki ¼ bkrii�1 mod p. It
can then compute all remaining keys recursively up to the
group key from the public blinded session randoms: ki ¼
brki�1i mod p (i � N).

Following every membership change, all members
independently update the key tree. Since we assume that
the underlying group communication system provides view
synchrony (see Section 2.1), all members who correctly
execute the protocol recompute an identical key tree after
any membership event. The following proposition describes
the minimal requirement for a group member to compute
the group key:

Proposition 1. If all members know the blinded session randoms
of all other members, at least two members can compute the
group key.

This follows directly from the recursive definition of the
group key. In other words, bothM1 andM2 (the members at
the lowest leaf nodes) can obtain the group key by
computing pairwise keys recursively and using blinded
session randoms of other members.

Proposition 2. Any member can compute the group key, if it
knows: 1) its own secret share, 2) the bkey of its sibling subtree,
and 3) blinded session randoms of members higher in the tree.

Proof. This also follows from the definition of the group
key. To compute the group key, member Mi needs 1) ri,
2) bki�1, and 3) briþ1; briþ2; . . . ; brN . tu

The protocols described below benefit from a special role
(called sponsor) assigned to a certain group member
following each membership change. A sponsor reduces
communication overhead by performing “housekeeping”
tasks that varydependingon the typeofmembership change.
The criteria for selecting a sponsor are described below.

4 STR PROTOCOLS

We now describe the protocols that make up the STR key
management suite: join, leave, merge, and partition. All
protocols share a common framework with the following
features:

. Each group member contributes an equal share to
the group key; this share is kept secret by each group
member.
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. The group key is computed as a function of all
current group members’ shares.

. As the group grows, new members’ shares are
factored into the group key while the remaining
members’ shares (except for sponsor which changes
its session randomly to provide key independence)
stay unchanged.

. As the group shrinks, departing members’ shares are
removed from the new group key and at least one
remaining member changes its share.

. All protocol messages are signed by the sender, i.e.,
we assume an authenticated broadcast channel.

. In a join or a merge, sponsor is associated with the
topmost leaf node of each key tree.

. In a leave or a partition, sponsor is located
immediately below the deepest leaving node.

4.1 Join

We assume the group has n users, fM1; . . . ;Mng, when the

group communication system announces the arrival of a

new member. Both the new member and the prior group

members receive this notification simultaneously. As

shown in Fig. 2, the new member Mnþ1 broadcasts a join
request message that contains its own bkey bknþ1 (which is
the same as its blinded session random brnþ1). Upon
receiving this message, the current group’s sponsor Mn

refreshes its session random, computes brn; kn; bkn, and
sends the current tree BTðnÞ to Mnþ1 with all bkeys.

Next, each member Mi increments n ¼ nþ 1 and creates
a new root key node INðnÞ with two children: the root node
INðn�1Þ of the prior tree Ti on the left and the new leaf node
LNðnÞ corresponding to the new member on the right. Note
that every member can compute the group key (see
Proposition 2) since:

. All existing members only need the new member’s
blinded session random.

. The new member needs the blinded group key of the
prior group.

In a join operation, the sponsor is always the topmost leaf
node, i.e., the most recent member in the current group.
Fig. 3 shows an example of a new member M5 joining a
group. To provide forward secrecy, the sponsorM4 updates
its session random r4.
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Fig. 3. Tree update in JOIN.



As described, JOIN takes two communication rounds
and five cryptographic operations to compute the new
group key (four by the sponsor and two by everyone else.)
As will be discussed in Section 5.1.2, the JOIN protocol
provides backward secrecy.

4.2 Leave

We again have a group of n members when a member Md

ðd � nÞ leaves the group. If d > 1, the sponsor Ms is the leaf
node directly below the leaving member, i.e., Md�1.
Otherwise, the sponsor is M2. Upon hearing about the
leave event from the group communication system, each
remaining member updates its key tree by deleting the
nodes LNðdÞ corresponding to Md and its parent node INðdÞ.
The nodes above the leaving node are also renumbered. The
former sibling INðd�1Þ of Md is promoted to replace (former)
Md’s parent. The sponsor Ms selects a new secret session
random, computes all keys (and bkeys) just below the root
node, and broadcasts BTðsÞ to the group. This information
allows all members (including the sponsor) to recompute
the new group key. Fig. 4 describes the leave protocol in
detail.

Fig. 5 shows that if member M4 leaves the group, other
members delete the leaving node along with its parent.
Then, the sponsor M3 picks its new session random r3,
computes br03; k

0
3; bk

0
3, and broadcasts the updated tree BT4.

Upon receiving the broadcast, all members (including M3)
compute the group key k4. Note that M4 cannot compute

the group key (even though it knows all bkeys) since its
session random is no longer a part thereof.2

The LEAVE protocol takes one communication round
and involves a single broadcast. The cryptographic cost
varies depending upon two factors: 1) the position of the
departed member and 2) the position of the remaining
member needing to compute the new key.

The total number of serial cryptographic operations in
the leave protocol can be expressed as (assuming n is the
original group size):

. 2ðn� dÞ þ 1þ ðn� dÞ þ 1 ¼ 3n� 3dþ 2 when d > 2.

. 3n� 7 when d ¼ 1; 2.

In the worst case, M1, M2, or M3 leaves the group. The cost
for this leave operation is equal to 3n� 7. The expected
leave cost is 3ðn=2Þ þ 2.

The LEAVE protocol provides forward secrecy since a
former member cannot compute the new key owing to the
sponsor’s changing the session random. The protocol also
provides key independence since knowledge of the new key
cannot be used to derive the previous keys; this is, again,
due to the sponsor refreshing its session random. For details
of key independence, see Section 5.1.2.

4.3 Partition

A network fault (or severe congestion) can cause a partition
of the group. To the remaining members, this actually
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Fig. 4. LEAVE Protocol.

Fig. 5. Tree update in LEAVE.

2. r5 and br5 are renumbered and are denoted as r04 and br04, respectively.



appears as a concurrent leave of multiple members. With a
minor modification, the LEAVE protocol can handle multi-
ple leaving members in a single round. The only difference
is in sponsor selection. In case of a partition, the sponsor is
the leaf node directly below the lowest-numbered leaving
member. (If M1 is the lowest-numbered leaving member,
the sponsor is the lowest-numbered surviving member.)

After deleting all leaving nodes, the sponsor Ms

refreshes its session random (key share), computes keys
and bkeys going up the tree—as in the plain leave protocol
—terminating with the computation of �kn�1 mod p. It then
broadcasts the updated key tree BTðsÞ containing only
blinded values. Each member (including Ms) can now
compute the group key.

Fig. 6 shows an example where the sponsor deletes all
nodes of leaving members and computes all necessary keys
and bkeys in the first round. In this example, M1 is the
sponsor sinceM2 left the group. After picking a new session
random r1, the sponsor computes k2 and �k2 mod p, and
broadcasts the whole tree. Upon receiving this message,
every member can compute the new group key k3. Note that
session randoms and blinded session randoms are renum-
bered as in the leave protocol.

The computation and communication complexity of this
protocol is identical to that of the leave protocol. The same
holds for its security properties.

4.4 Merge

We now describe the merge protocol. We assume that, as in
the join case, the communication system simultaneously
notifies all group members (in all groups) about the merge
event. Moreover, reliable group communication toolkits
typically include a list of all members that are about to merge
in the merge notification. More specifically, we require that
each member be able to distinguish the group it was in from
the group that it is merging with. This assumption is not
unreasonable, e.g., it is satisfied in SPREAD [1].

It is natural to graft the smaller tree atop the larger tree. If
any two trees are of the same height, we can use any
unambiguous ordering to decide which group joins which.
(For example, lexicographical order of the identifiers of the
respective sponsors.) When merging two trees, the lowest-
numbered leaf of the smaller tree becomes the right child of
a new intermediate node. The left child of the new
intermediate node becomes the root of the larger tree.

Using this technique recursively, we can merge multiple
trees. k-ary merge protocol is shown in Fig. 7.

In the first round of the merge protocol, all sponsors
(members associated with the topmost leaf node in each
tree) exchange their respective key trees containing all
blinded session randoms.3 The highest-numbered member
of the largest tree becomes the sponsor of the second round
in the merge protocol. After refreshing its session random,
this sponsor computes every (key, bkey) pair up to the
intermediate node just below the root node using the
blinded session randoms of the other group members. It
then broadcasts the key tree with the bkeys and blinded
session randoms to the other members. All members now
have the complete set of bkeys, which allows them to
compute the new group key.

Fig. 8 shows an example of merging two trees. After the
merge notification, the sponsors M4 and M7 broadcast their
key trees containing all blinded session randoms. Upon
receiving these broadcast messages, every member in both
groups reconstructs the key tree. The smaller tree with three
members is placed on top of the large tree with four
members. Every member generates a new intermediate
node INð5Þ and makes it the parent of the old root node INð4Þ
of the larger tree and the previous leftmost leaf node LNð5Þ.
Both intermediate nodes INð1Þ and INð2Þ of the previous
smaller tree then need to be renumbered as INð6Þ and INð7Þ,
respectively. The new intermediate node INð5Þ also becomes
the child of the previous lowest intermediate node INð6Þ.
Using the previous blinded group key at INð4Þ of the larger
group and blinded session random br5 and br6, the sponsor
in the second round, M4, computes all intermediate keys
and bkeys (k4; bk4; k5; bk5; k6; bk6) except the root node.
Finally, it broadcasts BT ð4Þ that contains all bkeys and
blinded session randoms up to INð6Þ.

4 Upon receipt of the
broadcast, every member can compute the group key.

In summary, the merge protocol runs in two commu-
nication rounds.

5 DISCUSSION

We now discuss security, efficiency, and other practical
issues related to STR key management.

5.1 Security

As discussed earlier in the paper, the main security
requirements of group key agreement are: group key
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3. Bkeys do not need to be exchanged this time.
4. In fact, it need not broadcast unchanged bkeys, fbk1; bk2; bk3g.



secrecy, forward/backward secrecy, and key independence.
In this section, we prove that STR provides those four
security requirements.

5.1.1 Group Key Secrecy

Before considering group key secrecy, we briefly examine
key freshness. Every group key is fresh since at least one
member in the group generates a new random key share for
every membership change.5 The probability that the new
group key is the same as any old group key is negligible
due to the bijectiveness of the ðf � gÞ function.

We note that the root (group) key is never used directly

for the purposes of encryption, authentication, or integrity.

Instead, special-purpose subkeys are derived from the this

key, e.g., by applying a cryptographically secure hash

function, i.e., Hðgroup keyÞ is used for such applications.
As discussed in Section 2.4, decisional group key secrecy

is more meaningful if subkeys are derived from a group

key. Decisional group key secrecy of STR protocol is related

to the imbalanced tree decision Diffie-Hellman assumption

mentioned in Section 2.2. This assumption ensures that

there is no information leakage other than public bkey

information.
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Fig. 7. MERGE Protocol.
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We can also derive the subkeys based on the Shoup’s
hedge technique [26] as follows: Compute the key as:
Hðgroup keyÞ � Hðgroup keyÞ, where H is a random oracle.

It follows that, in addition to the security in the standard
model based on the imbalanced Tree Decision Diffie-
Hellman assumption, the derived key is also secure in the
random oracle model [6] based on the imbalanced Tree
Computational Diffie-Hellman assumption.

5.1.2 Key Independence

We now give an informal proof that STR satisfies forward
and backward secrecy or, equivalently, key independence.
In order to show that STR provides key independence, we
only need to show that the former (prospective) member’s
view of the current tree is exactly the same as the passive
adversary’s view. This is because the advantage of the
former (prospective) member is the same as the passive
adversary and the view of the passive adversary does not
reveal any information about the group key by Theorem 3.

We first consider backward secrecy, which states that a
new member who knows the current group key cannot
derive any previous group keys. Let Mnþ1 be the new
member. The sponsor for the join event changes its session
random and, consequently, the root key of the current key
tree is changed. Therefore, the view of Mnþ1 with respect to
the prior key trees is exactly the same as the view of an
outsider. Hence, the new member does not gain any
advantage compared to a passive adversary.

This argument can be easily extended to a merge of two
or more groups. When a merge happens, the sponsor at the
top leaf node of the largest tree changes its session random.
Therefore, each member’s view on other member’s tree is
exactly the same as the view of a passive adversary. This
shows that the newly merged member has exactly the same
advantage about any of the old key tree as a passive
adversary.

Now, we consider forward secrecy, meaning that a
passive adversary who knows a contiguous subset of old
group keys cannot discover subsequent group keys. Here,
we consider partition and leave at the same time. Suppose
Md is a former group member who left the group.
Whenever subtractive event happens, the sponsor located
immediately below the deepest leaving leaf node refreshes
its session random and, therefore, all keys known to leaving
members will be changed accordingly. Therefore, Md’s view
is exactly the same as the view of the passive adversary.

This proves that STR provides a decisional version of key
independence.

5.1.3 Other Security Properties

As discussed in Section 2.4, all protocol messages consist of
sender information, group information, membership infor-
mation, message type, key epoch, and time stamp. We also
assumed that receiver rejects any message that does not
match its expectation and all channels are authentic (i.e., all
messages are signed). Therefore, we claim that STR
provides implicit key authentication.

Furthermore, the independence of the session key from
any long-term keys guarantees PFS. Finally, the loss of a
group key does not endanger any other session. Therefore,
STR is secure against a known key attack.

5.2 Practical Considerations

5.2.1 Protocol Unification

Although described separately in Section 4, the four STR
operations (join, leave, merge, and partition) actually
represent different strands of a single protocol. We justify
this claim with an informal argument below.

Obviously, join and leave are special cases of merge and
partition, respectively. We observed that merge and
partition can be collapsed into a single protocol since, in
either case, the key tree changes and the remaining group
members lack some number of bkeys that prevents them
from computing the new root key. In a partition, the
remaining members (in any surviving group fragment)
reconstruct the tree where some bkeys are missing. In the
case of a merge, let us suppose that k groups (Tree T1

through Tk) are merging. After the first round of the merge
protocol, all members reconstruct the new tree unambigu-
ously and independently where all bkeys from the sponsor
node up to the root node are missing, similarly to the
partition protocol. The sponsor in merge is located at the
topmost leaf node of the highest key tree. As discussed in
Sections 4.4 and 4.3, every member reconstructs the key tree
after a partition and a merge in one and two rounds,
respectively.

From these outlines of the merge and partition protocol,
we can find some similarities:

. Whenever new membership event happens, all
current group members first reconstruct the key tree.

. The resulting key tree has missing bkeys from the
parent node of the sponsor to the root node, as well
as the sponsor’s blinded session random.

. The sponsor generates new session random and
computes all keys and bkeys from its parent node up
to the node just below the root node. It then
broadcasts the whole key tree containing only bkeys
and blinded session randoms.

. Using the broadcast message, any member can
compute the group key.

This apparent similarity between partition and merge
allows us to combine the protocols stemming from all
membership events into a single, unified protocol. Fig. 9
shows the pseudocode. The incentive for this is threefold.
First, unification allows us to simplify the implementation
and minimize its size. Second, the overall security and
correctness are easier to demonstrate with a single protocol.
Third, we can now claim that (with a slight modification)
the STR protocol is self-stabilizing and fault-tolerant as
discussed below.

5.2.2 Cascaded Events

Since network disruptions are random and unpredictable, it
is natural to consider the possibility of so-called cascaded
membership events. (In fact, cascaded events and their impact
on group protocols are often considered in group commu-
nication literature, but, alas, not often enough in the security
literature.) A cascaded event occurs, in its simplest form,
when one membership change occurs while another is
being handled. Event here means any of: join, leave,
partition, merge, or a combination thereof. For example, a
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partition can occur while a prior partition is being dealt
with, resulting in a cascade of size two. In principle,
cascaded events of arbitrary size can occur if the underlying
network is highly volatile.

As discussed before, STR protocol requires at most two
rounds. One might wonder why robustness against
cascaded failure is important for only a 2-round protocol.
We give a couple of examples that illustrate (potential)
failure of the STR protocol.

. Suppose a network partition breaks a group G into
groups G1 and G2. The sponsor MG1 needs to
compute missing keys and bkeys. While computing
these keys, another partition breaks G1 into two other
groups G11 (containing MG1 ) and G21. Based on the
partition protocol description, the members in group
G21 still wait for the message from MG1 to process the
previous partition.

. Suppose a merge event happens whereby groups G1
and G2 form a single group G. The sponsors MG1 and
MG2 in each group broadcast their tree information.
In the next round, while a sponsor computes the
missing bkeys, a member M1 originally in group G11
leaves the group. If the leaving member is the
sponsor, the STR protocol cannot proceed for every
other member is waiting for the message from this
member.

The protocols described above cannot cope with these
situations. However, we can modify the protocol in Fig. 9 to
handle such cascaded events.

We claim that the STR protocol is self-stabilizing, i.e.,
robust against cascaded network events. This is quite rare as
most multiround cryptographic protocols are not geared
toward handling of such events. In general, self-stabilization
is a very desirable feature since lack thereof requires
extensive and complicated protocol “coating” to either
1) shield the protocol from cascaded events or 2) harden it
sufficiently to make the protocol robust with respect to
cascaded events (essentially, by making it reentrant).

The high-level pseudocode for the self-stabilizing proto-
col is shown in Fig. 10. The changes from Fig. 9 are minimal
(lines 15-18 are added).

6 PERFORMANCE ANAYSIS AND COMMUNICATION

EFFICIENCY

6.1 Performance Comparison

We analyze both communication and computation costs for
the join, leave,merge, andpartition protocols. In doing so,we
focus on the number of: rounds, messages, and serial
exponentiations. We distinguish among serial and total
measures. The serial measure assumes parallelization within
each protocol round and represents the greatest cost incurred
by any participant in a given round. The total measure is the
sum of all participants’ costs in a given round.

We compare STR protocols to TGDH which has been
known to be most efficient in both communication and
computation. For a detailed comparison with other group
key agreement protocols such as GDH.3 [28], BD (Burme-
ster-Desmedt) [11] can be found in [2].

Table 1 summarizes the communication and computa-
tion costs of both protocols. The numbers of current group
members, merging members, merging groups, and leaving
members are denoted as: n, m, k, and p, respectively.

The height of the key tree constructed by the TGDH
protocol is h. The overhead of the TGDH protocol depends
on the tree height, the balancedness of the key tree, the
location of the joining tree, and the leaving nodes. In our
analysis, we assume the worst-case configuration and list
the worst-case cost for TGDH.

The number of modular exponentiations for a leave
event in STR depends on the location of the deepest leaving
node. We thus compute the average cost, i.e., the case when
the n

2 th node leaves the group. For all other events and
protocols, exact costs are shown.

In the current implementations of TGDH and STR, all
group members recompute bkeys that have already been
computed by the sponsors. This provides a weak form of
key confirmation since a user who receives a token from
another member can check whether his bkey computation is
correct. This computation, however, can be removed for
better efficiency and we consider this optimization when
counting the number of exponentiations.

It is clear that the computation cost of STR is fairly high:
OðmÞ for merge and OðnÞ for subtractive events. However,
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as mentioned in Section 1, this high cost becomes negligible

when STR is used in a high-delay wide-area network.

Evidence to support this claim can be found in [2].

6.2 Lower Bound for Dynamic Group Key
Agreement

In [5], Becker and Wille proved the lower bound for

communication complexity of static group key agreement,

i.e., how n group members share a common group key

without considering subsequent additive/subtractive

events. When assuming bradcast channel, they prove the

following theorem:

Theorem 1 (Becker and Wille). Let P be a static group key

agreement protocol for n parties allowing broadcasts.

1. For the number of messages mðPÞ required by P, it
holds that mðPÞ � n.

2. For the number of rounds rðPÞ required by P, it holds
that rðPÞ � 1.

However, it is commonly assumed that at least two

rounds are required for group key agreement.

Assumption 1. Let P be a static group key agreement protocol

for n parties allowing broadcasts when n > 3. Using the same

notation above, rðPÞ � 2.

Indeed, finding an one-round group key agreement is a

well-known open problem [8]. When group size is 3, there

exists one round group key agreement based on Bilinear

map using Weil paring [17]. This work shows that we can

design one round group key agreement protocol for any n,

if a multilinear map exists. Unfortunately, the existence of a

multilinear map is unknown [8].
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Based on Theorem 1 and Assumption 1, we can easily

find the bound for communication complexity of dynamic

group key agreement.

Theorem 2 (Communication complexity of dynamic group

key agreement). Let P be a static group key agreement

protocol for n (n > 3) parties allowing broadcasts.

. For any subtractive events rðPÞ � 1 and mðPÞ � 1,
when the number of remaining group members is
greater than 2.

. For any additive events rðPÞ � 2 andmðPÞ � k, when
k groups are merging.6

Proof (Sketch). In a contributory group key agreement,

group key is determined by participating entities

contribution. Furthermore, to provide key independence,

each group key should be independent from the

previous keys/future group keys. In other words, for

any additive/subtractive events, at least one member in

the group has to change its random secret. Therefore, at

least one message (and one round) is required to let

others know about this change. This provides rough

lower bounds of communication for both additive/

subtractive events:

rðPÞ � 1 and mðPÞ � 1: ð1Þ

Now, let us tighten the bound based on each event. In the

case of subtractive events, we are done by the rough

bound described in (1).
So, the remainder of this proof will focus on finding a

tighter lower bound for additive events. We will consider
only the merge of k groups since join is a special case of
merge when one group has only one user. One of the
most important observations for merge is that the merge
of k groups can be seen as a static group key agreement
of k members. If this is the case, then we are done since
our lower bounds for additive events are the same as
those for static group key agreement provided in
Theorem 1 and Assumption 1.

Now, it remains to show that the merge of k groups is
equivalent to the static group key agreement of
k members. Since there are k groups merging, it is
obvious that at least k messages need to be exchanged to
share each group information. This is because the group
key is a function of all group members’ contribution and
each group information contains current group mem-
bers’ contribution. In fact, the merge of k groups can be
seen as a group formation of k members whose session
random is the current group key sk and the blinded key
is gsk ðmod pÞ, where the blinded key is never known to
other group members. Therefore, lower bounds of
communication for additive events are equvalent to
those of static group key agreement. Consequently, any
additive events of group key agreement (when k groups
are involved) requires rðPÞ � 2 and mðPÞ � k. tu

From Theorem 2, the communication costs of STR are

near optimal (it requires one more message than the

optimal protocol does). However, it can be easily modified
to achieve optimal communication efficiency: When a
merge even happens, a partition is chosen unambiguously
(such as the partition that has a group member whose
alphabetical order precedes all other members). All spon-
sors in other partition send tree information to the partition
(k� 1 messages). Upon receiving these messages, the
sponsor in the partition can compute all of the required
blinded keys and it broadcasts the whole key tree contain-
ing only blinded keys (one more message). Finally, all
members can compute the group key.

This protocol has optimal communication costs:
k messages and two rounds. However, this has an obvious
drawback: When the group including the sponsor has only
one member, whole n� 1 blinded keys need to be
recomputed. On the other hand, if we can choose a highly
populated partition, we can save a number of modular
exponentiation. Therefore, in the first round of merge, the
sponsor in every partition sends their tree information
(k messages) and the sponsor in the biggest group will act
as the sponsor to broadcast a new set of bkeys. Note that the
number of the round is more sensitive for the performance
of multiround multiparty protocol than the number of the
message as shown in [2].

7 RELATED WORK

Group key management protocols come in three different
flavors: contributory key agreement protocols, centralized,
decentralized group key distribution scheme, and server-
based key distribution protocols. Since the focus of this
work is to provide a common key to the dynamic peer
group, we only consider the first two below.

7.1 Group Key Agreement Protocols

We begin by first summarizing the early (and theoretical)
group key agreement protocols which did not consider
dynamic membership operations and only supported group
formation.

The earliest attempt to obtain contributory group key
agreement built upon 2-party Diffie-Hellman (DH) is due to
Ingemarsson et al. (called ING) for teleconferencing [16]. In
the first round of ING, every member Mi generates its
session random Ni and computes �Ni . In the subsequent
rounds k to n� 1, Mi computes Ki;k ¼ ðKi�1 mod n;k�1ÞNi ,
where Ki�1 is the message received from Mi�1 in the
previous round k� 1 when n is the number of group
members. The resulting group key is of the form:

Kn ¼ �N1N2N3...Nn:

The ING protocol is inefficient:

1. Every member has to start synchronously,
2. n� 1 rounds are required to compute a group key,
3. It is hard to support dynamic membership opera-

tions due to its symmetricity, and
4. n sequential modular exponentiations are required.

Another group key agreement developed for teleconfer-
encing was proposed by Kim et al. [18]. This protocol
(called TGDH, for Tree-based Group Diffie-Hellman) is of
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particular interest since its group key structure is similar to
that of STR.

TGDH is well-suited for member leave operation since it
takes only one round and logðnÞ modular exponentiations.
Member addition, however, is relatively costly since—in
order to keep the key tree balanced—the sponsor performs
logðnÞ exponentiations. Also, in the event of partition, as
many as logðnÞ rounds may be necessary to stabilize the key
tree. This is where STR offers a clear advantage.

Burmester and Desmedt construct an efficient protocol
(called BD) which takes only two rounds and three modular
exponentiations per member to generate a group key [11].
This efficiency allows all members to recompute the group
key for any membership change by performing this
protocol. However, according to [28], most (at least half)
of the members need to change their session random on
every membership event. The group key in this protocol is
different from STR and TGDH:

Kn ¼ �N1N2þN2N3þ...þNnN1 :

A shortcoming of BD is the high communication overhead.
It requires 2n broadcast messages and each member needs
to generate two signatures and verify 2n signatures.

Becker and Wille analyze the minimal communication
complexity of contributory group key agreement in general
[5] and propose two protocols: octopus and hypercube. Their
group key has the same structure as the key in TGDH. For
example, for eight users, their group key is:

Kn ¼ �ð�
�r1r2 �r3r4 Þð��r5r6 �r7r8 Þ:

The Becker/Wille protocols handle join and merge opera-
tions efficiently, but themember leaveoperation is inefficient.
Also, the hypercubeprotocol requires the group to be of size 2n

(for some integer n); otherwise, the efficiency slips.
Asokan and Ginzboorg look at the problem of small-

group key agreement, where the members do not have
previously set up security associations [3]. Their motivating
example is a meeting where the participants want to
bootstrap a secure communication group. They adapt
password authenticated DH key exchange to the group
setting. Their setting, however, is different from ours since
they assume that all members share a secret password,
whereas we assume a PKI where each member can verify
any other members authenticity and authorization to join
the group.

Tzeng and Tzeng propose an authenticated key agree-
ment scheme that is based on secure multiparty computa-
tion [29]. This scheme also uses 2 �N broadcast messages.
Although the cryptographic mechanisms are quite elegant,
a shortcoming is that the resulting group key does not
provide perfect forward secrecy (PFS). If a long-term secret
key is broken and/or published, all previous and future
group keys (where that key was used) are also revealed.

Steiner et al. first address dynamic membership issues
[4], [28] in group key agreement and propose a family of
Group Diffie Hellman (GDH) protocols based on straight-
forward extensions of the two-party Diffie-Hellman. GDH
provides contributory authenticated key agreement, key
independence, key integrity, resistance to known key
attacks, and perfect forward secrecy. Their protocol suite

is fairly efficient in leave and partition operation, but the
merge protocol requires as many rounds as the number of
new members to complete key agreement.

Perrig extends the work of one-way function trees (OFT,
originally introduced by McGrew and Sherman [20]) to
design a tree-based key agreement scheme for peer groups
[23]. However, this work does not consider group merges
and partitions.

7.2 Decentralized Group Key Distribution Protocols

Decentralized group key distribution protocols can be
preferred to contributory group key agreement protocols
since they rely on an inexpensive symmetric key encryption
technique. However, all group key distribution schemes
assume a secure channel that is, in practice, implemented
by public key cryptosystem (e.g., Diffie-Hellman). Further-
more, they require the leader to establish multiple secure
two-party channels between itself and other group mem-
bers in order to securely distribute the new key. Maintain-
ing such channels in dynamic groups can be expensive
since setting up each channel involves a separate two-party
key agreement. When a group is dynamic, the amortized
number of secure channel becomes Oðn2Þ. Another dis-
advantage is the reliance on a single entity to generate good
(i.e., cryptographically strong, random) keys.

The first decentralized group key distribution scheme is
due to Caronni et al. [12]. They propose efficient protocols
for small-group key agreement and large-group key
distribution. Unfortunately, their scheme for autonomous
small group key agreement is not collusion resistant.

Dondeti et al. modified OFT (One-way Function Tree)
[20] to provide dynamic server election [14]. This protocol
has the same key tree structure and uses similar notations
(e.g., keys, blinded keys). Other than the expensive
maintainence of secure channels described above, this
protocol has expensive communication cost: Even for single
join and leave, this protocol can take OðhÞ rounds to
complete when h is the height of the key tree. The authors
do not consider merge and partition event and also
implementation. One advantage different from others is
that their group key does not depend on a single entity.

Rodeh et al. [24] propose a decentralized group key
distribution protocol extended from the LKH protocol [30].
It tolerates network partitions and other network events.
Even though this approach cannot help incurring basic
disadvantages discussed above, the authors reduce the
communication and computational cost. In addition, the
authors use the AVL tree to provide provable and efficient
tree height.

8 CONCLUSION

In this paper, we described a provably secure contributory
group key agreement protocol (STR) optimized for com-
munication. STR supports all dynamic peer group opera-
tions: join, leave, merge, and partition. Furthermore, it
easily handles cascaded (nested) membership events and
network failures.

Assuming that Moore’s Law continues to hold, the
computational cost of cryptographic operations will gradu-
ally decrease. Eventually, communication latency, which
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has a lower-bound dictated by the speed of light, will

dominate the cost of computation in determining the

running time of group key agreement protocols. STR is

already the most efficient group key agreement protocol

over high-delay wide-area networks; it will become more

advantageous as processor speeds increase.

APPENDIX A

DECISIONAL IMBALANCED GROUP DIFFIE-HELLMAN

PROBLEM

A.1 2-party Decision Diffie-Hellman Problem

Our proofs require a specific group setting. In this section,

we introduce a specific group (G) and define the 2-party

Decision Diffie-Hellman (DDH) problem on G.
Let k be a security parameter and n be an integer. All

algorithms run in probabilistic polynomial time with k and

n as inputs.
For concreteness, we consider a specific group G:
On input k, algorithm gen chooses, at random, a pair

ðq; �Þ, where q is a 2k-bit value7 and q and p ¼ 2q þ 1 are

both prime. Before introducing G, we first consider a groupbGG, which is a group of squares modulo prime p. The group

can be described more precisely as follows: Consider an

element � which is a square of a primitive element b�� of

multiplicative group ZZ�p, i.e., � ¼ b��2. (Without loss of

generality, we may assume � < q.) Then, group bGG can be

represented as:

bGG ¼ �i mod p j i 2 ½1; q	
� �

:

An attractive variation of this group is to represent the

elements by the integers from 0 to q � 1. The group

operation is slightly different: Let a function f be defined as

fðxÞ ¼ x if x � q
p� x if q < x < p:

�

Using this f function, we can introduce the group G as

G ¼ fð�i mod pÞ j i 2 ZZq

� �
:

Group operation on group G is defined as

a � b ¼ fða � b ðmod pÞÞ, where a; b 2 G.

Proposition 3. Let gðxÞ ¼ �x mod p. Then, the function f � g is

a bijection from ZZq to ZZq.

Proof. To see this, suppose f � gðxÞ ¼ f � gðyÞ. Then, this can
be written and fðXÞ ¼ fðY Þ, where integer X ¼ �x mod p

and Y ¼ �y mod p. Now, we can have four different

cases:

. X � q; Y � q: In this case, fðXÞ ¼ X and fðY Þ ¼
Y and, hence, X ¼ Y . Now, we have an equationb��2ðx�yÞ ¼ 1 mod p. Since b�� is a generator for ZZ�p, its
order (i.e., 2q) has to divide 2ðx� yÞ. This implies
that q has to divide x� y and, finally, x ¼ y since
0 < x; y � q.

. X > q; Y > q: In this case, fðXÞ ¼ p�X and
fðY Þ ¼ p� Y and, hence, X ¼ Y . The rest is the
same as above.

. X � q; Y > q: This case is impossible, since
ðXp Þ ¼ 1 and ðp�Yp Þ ¼ �1 since p 
 3 mod 4 and
X ¼ p� Y .

. X > q; Y � q: This is also impossible by similar
reasoning.

Therefore, f � g is an injection. It is also a surjection since
the sizes of the domain and codomain are the same. tu

Proposition 4. When a distribution r is uniform and random in
G, f � gðrÞ is still uniform and random in G since f � g is
bijective.

Groups of this type are also considered by Chaum [13]. It
is generally assumed that DDH is intractable in these
groups [7]. More concretely, the 2-party Decision Diffie-

Hellman assumption on group G is that, for all polynomial
time attackers A, for all polynomials QðkÞ 9k0 8k > k0, for
X0 :¼ N1N2 and X1 :¼ N3 with N1; N2; N3 2R G uniformly
chosen and, for a random bit b, the following equation
holds:

Prob½Að1k;G;�;�N1 ;�N2 ;�XbÞ ¼ b	 � 1=2
�� �� < 1=QðkÞ:

A.2 Decisional Imbalanced Tree Group Diffie-Hellman
Problem

We start with the easier problem where a key tree is
completely imbalanced. Fig. 11 shows the structure and the
notation for the imbalanced tree.

For ðq; �Þ  genðkÞ; n 2 IN and X ¼ ðR1; R2; . . . ; RnÞ for
Ri 2 G and an imbalanced key tree IT with n leaf nodes
which correspond to Ri, we define the following random
variables:

. Ki: ith level key

. BKi: ith level blinded key, i.e., �Ki mod p

. Ri: ith level session random chosen uniformly 2R G,
where G is the group mentioned in the previous
section. For i ¼ 1, Ri ¼ Ki.

. BRi: ith level blinded session random, i.e., �Ri mod p.
For i ¼ 1, BRi ¼ BKi.

. Ki is recursively defined as follows:

Ki ¼ �Ki�1Ri ¼ BKRi

i�1 ¼ BRKi�1
i ;
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Ki and Ri are secret, and BKi and BRi are public. In

Section 4, BKi and BRis will be publicly available, while Ki

will be known to group members and Ri will be known

only to a single member. The root node Ki will be used as a

group key.
For ðq; �Þ  genðkÞ; n 2 IN and X ¼ ðR1; R2; . . . ; RnÞ for

Ri 2 G and an imbalanced key tree IT with n leaf nodes

which correspond to Ni, we can define public and secret

values collectively as below:

viewðq; �; n;X:IT Þ :¼ fBKi j 1 � i � ng [ fBRi j 1 � i � ng
¼ f�Kði;X;IT Þ mod p j 1 � i � n� 1g [ fBRi j 1 � i � ng

¼ f��R1R2
; ��R3�

R1R2

; . . . ; ��Rn�1...�
R1R2

g [ f�R1 ; �R2 ; . . . ; �Rng
Kðq; �; n;X; IT Þ :¼ �Kn�1Rn :

Since ðq; �Þ are obvious from the context, we omit them in

view() and K(). Also, for simplicity, we sometimes use Kn

instead of Kðn;X; IT Þ. The viewðn;X; IT Þ represents all

public information, and the root secret key isKðn;X; IT Þ. Let
the following two randomvariables be defined by generating

ðq; �Þ  genðkÞ and choosingX randomly from G:

. An :¼ ðviewðn;X; IT Þ; yÞ and

. Dn :¼ ðviewðn;X; IT Þ; KnÞ.
The operator “�poly ” denotes polynomial indistinguish-

ability as in [28].

Proposition 5. Let K and R be l-bit strings such that R is a

random and K is a Diffie-Hellman key. We say that K and R

are polynomially indistinguishable if, for all polynomial

time distinguishers, A, the probability of distinguishingK and

R is smaller than ð12þ 1
QðkÞÞ, for all polynomial QðlÞ.

The following is a main lemma (induction argument) for

the DITGDH problem.

Lemma 1. If the DDH assumption holds and An�1 �poly Dn�1,

then An �poly Dn.

Proof. Assume that there exists a polynomial algorithm that

can distinguish between An and Dn. We will show that

this algorithm can be used to distinguish An�1 and Dn�1
or solve the 2-party DDH problem.

Consider the following equations when X1 ¼
ðR1; R2; . . . ; Rn�1Þ and IT1 is a subtree rooted at the left
child of the root node:

An :¼ ðviewðn;X; IT Þ; yÞ
¼ ðviewðn� 1; X1; IT1Þ; BKn�1; BRn; yÞ
¼ ðviewðn� 1; X1; IT1Þ; �Kðn�1;X1Þ; �Rn ; yÞ
Bn :¼ ðviewðn� 1; X1; IT1Þ; �r; �Rn ; yÞ
Cn :¼ ðviewðn� 1; X1; IT1Þ; �r; �Rn ; �rRnÞ
Dn :¼ ðviewðn;X; IT Þ; Kðn;X; IT ÞÞ
¼ ðviewðn� 1; X1; IT1Þ; BKn�1; BRn; �

Kðn�1;X1;IT1ÞRnÞ
¼ ðviewðn� 1; X1; IT1Þ; �Kðn�1;X1;IT1Þ; �Rn ; �Kðn�1;X1;IT1ÞRnÞ:

Since we can distinguish An and Dn in polynomial
time, we can distinguish at least one of (An and Bn) or
(Bn and Cn) or (Cn and Dn).

. An and Bn: Suppose one can distinguish An and
Bn in polynomial time. We will show that this
distinguisher AABn

can be used to solve the
DITGDH problem with height n� 1. Suppose
we want to decide whether P 0n�1 ¼ ðviewðn�
1; X0; IT 0Þ; r0Þ is an instance of the DITGDH
problem or r0 is a random number. To solve this
problem, we generate a random number r00 and
compute �r00 . Using P 0n�1 and ðr00; ; �r00 Þ pair, we
can generate a distribution

Pn ¼ ðviewðn� 1; X0; IT 0Þ; �r0 ; �r00 ; yÞ;

where y 2R G. Now, we put Pn as an input of

AABn
. If Pn is an instance of An (Bn), then P 0n�1 is

an instance of Dn�1 (An�1) by Proposition 4,

respectively.
. Bn and Cn: Suppose we can distinguish Bn and Cn

in polynomial time. We will show that this

distinguisherABCn
can be used to solve the 2-party

DDH problem in group G. Note that �r is an

independent variable from viewðn� 1; X1; T1Þ.
Suppose we want to test whether ð�a; �b; �cÞ is a
DDH triple or not. To solve this problem, we

generate a key tree T 0 of height n� 1 with

distributions X0. Now, we generate a new

distribution:

Pn ¼ ðviewðn� 1; X1; T1Þ; �a; �b; �cÞ:

If Pn is an instance of Bn (Cn), then ð�a; �b; �cÞ is a
valid (invalid) DDH triple, respectively.

. Cn and Dn: Suppose one can distinguish Cn and

Dn in polynomial time. We will show that this

distinguisher ACDn
can be used to solve the

DITGDH problem with height n� 1. Suppose

we want to decide whether P 0n�1 ¼ ðviewðn�
1; X0; IT 0Þ; r0Þ is an instance of the DITGDH

problem or r0 is a random number. To solve this
problem, we generate a random number r00 and

compute �r00 . Using P 0n�1 and ðr00; �r00 Þ pair, we

generate a distribution:

Pn ¼ ðviewðn� 1; X0; IT 0Þ; �r0 ; �r00 ; �r0r00Þ:

Note that we can compute �r0r00 since we know �r0

and r00. Now, we put Pn as an input of ACDn
. If Pn

is an instance of Cn (Dn), then P 0n�1 is an instance

of Dn�1 (An�1) by Proposition 4. tu

Lemma 2. If the DDH assumption holds, then A3 �poly D3.

The proof is similar to the above. The only difference is that

we can break the 2-party DDH asumption using AAB3
or

ACD3
.

Using induction and Lemmas 1 and 2, the following

theorem can be easily proven.

Theorem 3 (DITGDH problem). If the 2-party DDH problem

is hard, then DITGDH is also hard.
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