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Abstract - In today‘s world of computer security, internei 
attacks such as DodDDos, worms, and spyware continue to 
cvolve as detection techniques improve. It is not easy, however, 
to disfinguish such new attacks using on/y knowledge of pre- 
exisling attacks. I n  this puper we concentrate on machine 
learning techniques for delecling affacks from internet 
anomalies. Our machine ieqrning framework consists of two 
major components: Genetic Algorithm (GA) for feature 
selection and Support Vector Machine (SVM} for packet 
classi/icaiioion. By experiment we also demonstrate that our 
proposed framework oui performs currently employed real- 
world M D S .  

Index terms - lntrusion Detection, Network Security, 
Anomaly Detection, Machine Learning 

I. INTRODUCTION 

The internet is a crucial aspect of daily life around the 
worId. Businesses, in particular, use the internet as an 
important aspect o f  their business model. In addition to 
using internet applications, such as the web and email, to 
generate revenue and communicate with customers, they 
often also store important and proprietary information on 
machines that are accessible through the internet. While 
this makes businesses operate more efficiently, it aIso 
makes them extremely vulnerable to attacks, both to steal 
data and to obstruct the operations of the business. In 
addition to the incentives for attackers, the intemet often 
provides a virtually risk-free environment for attackers 
involved in malicious activities. A high degree of 
anonymity, lackluster interest among law enforcement, 
and absent or easily bypassed attack prevention schemes 
all factor into this lawless frontier. Thus a multitude of 
systems have been designed or proposed to thwart 
internet-based attacks. Many of the most commonly used 
systems today are based on attack “signatures“, putative 
unique pattems or conditions which indicate an attack. 
However there are many drawbacks to signature-based 
Network Intrusion Detection Systems (NIDS). The first 
probIem is that these systems themselves become a single 
point of failure. If the deployed system is disabled, either 
surreptitiously or conspicuously, it often gives the 
attacker the time needed to compromise other systems and 
possibly gain a foothold in the network. At other times 
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NIDS may provide a false sense of security when they are 
not properly configured or, more importantly, maintained. 
Also, research has been done which shows that if the 
signatures are not sufficiently robust in describing the 
attack conditions then simple modifications can be made 
which will allow the attack to succeed, In addition to 
robustness of the signature, signature-based intrusion 
detection systems rely on humans to create, test, and 
deploy the signatures. Thus, it may take hours or days to 
generate a new signature for an attack, which can be too 
long when dealing with rapid attacks, such as are often 
seen in worm propagation. Some effort has been put into 
automatic signature generation, which does not require 
human intervention, but these systems are not yet ready 
for wide scale deployment. 
In order to offer a human-independent solution to the 
above-mentioned problem, anomaly detection systems 
based on machine learning, data mining or statistical 
algorithms have been proposed. These systems use a 
“normal behavior” model for detecting unexpected 
behavior. There are two categories of these approaches0 
supervised methods, which make use of pre-existing 
knowledge, and unsupervised methods, which do not. 
Several efforts to design anomaly detection algorithms 
using supervised methods are described in [I-31. The 
research of Debra Anderson at SRI [ l ]  and Jolo B. D. 
Cabrera [2] deals with statistical methods for intrusion 
detection. Wenke Lee’s research [3] focuses on 
theoretical measures for anomaly detection. In contrast, 
unsupervised schemes can make appropriate labels for a 
given dataset automatically. Anomaly detection methods 
with unsupervised features are explained in 14-61. MINDS 
[4] is based on data mining and data clustering methods. 
The researches of Eleazar Eskin [ 5 ]  are used to detect 
anomalous attacks independent of pre-existing knowledge. 
Stuart Staniford [6] is the author of SPADE for anomaly- 
based port scan detection in Snort. SPADE utilizes a 
statistical anomaly detection method with Bayesian 
probability. Even when good anomaly detection methods 
are used, the problems of high false alarm rates, difficulty 
in finding proper features, and high performance 
requirements still arise. Therefore, if it were possible to 
mix the advantages of both learning schemes in machine 
learning methods according to their characteristics in our 
problem domain, the combined approach could be used as 
an efficient means for detecting anomalous attacks. 
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II. PROPOSED FUMEWORK 

In this paper, we focus on a Machine Learning Model 
using a modified Support Vector Machine (SVM) that 
combines the benefits of supervised and unsupervised 
leaming. Moreover, we provide a preliminary feature 
selection process using DA to select more appropriate 
packet fields. Figure 1 illustrates the overall structure of 
our machine learning framework based on our Enhanced 
SVM approach. This framework consists of four 
components as foHowsOl .feature selection via DA; 2.data 
preprocessing; 3.data analysis via our modified SVM; and 
4.testing and comparison with real-world products. We 
are confident that this new framework will offer a robust 
and powerful tool to the anomaly detection arsenal. 

Figure I .  Overall Framework 
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The first component includes field selection using OA. 
We use CIA to choose more appropriate fields from a 
packet. This offers better performance for packet 
preprocessing and increases detection rate. The algorithm 
selects optimized packet fields through the natural 
evolutionary process. Appropriate fields are first sefected 
off-line and then this knowledge is used for analyzing 
fiItered packets in real-time. 
The second component processes data to refine filtered 
packets for high correction performance. In preprocessing 
this data, packets that passed the first component are 
preprocessed to enter OUT fiamework as SVM leaming 
inputs. 
The third component includes our machine leaming 
approach. We make a model with S V M  using two kinds 
of machine learning methodsU soft margin SVM 
(supervised method) one-class SVM (unsupervised 
method). We propose an Enhanced SVM approach to 
provide the high performance of soft margin SVM and the 
novelty detection capability of one-class SVM. Therefore, 
our Enhanced SVM incorporates both supervised and 
unsupervised features. 
SVM is already known to the best algorithm for binary 
classification 17-91. It has been successfully applied to a 
number of pattern recognition appIications [IO]. Recently, 
it has also been applied to information security for 

intrusion detection [ 1 1-1 31. However, the most significant 
reason for choosing SVM is that it can be used for either 
supervised or unsupervised learning. Supervised SVM has 
reIativeIy fast processing and high correction performance 
when compared to existing artificial neural networks and 
unsupervised SVM. However, one serious disadvantage in 
supervised S V M  is that it requires labeled information for 
leaming. Moreover, in all SVM learning, it is difficult to 
deal with consecutive variations of leaming inputs 
without additional preprocessing. Therefore, in our 
machine learning framework, we propose an Enhanced 
SVM approach which incorporates the high performance 
of supervised SVM and unlabeled capability of 
unsupervised SVM. 
The final component is to prove our approach both 
experimentally and in terms of current real world 
solutions. Experimental analysis of OUT proposed 
framework considers packet filtering and field selection 
resuhs, comparison among SVM approaches, and m-fold 
cross validation. Real world tests compare our framework 
with well known NIDS such as Snort and Bro. These 
results verify that our proposed model met our 
expectations by out-performing current real-world and 
experimental security solutions. 
The rest of this paper is organized as followsCUIn section 
111, OA techniques are introduced for providing better 
performance of our approach. In section IV, we present 
our major machine Ieaming approach including two 
existing supervised and unsupervised SVMs. In section V 
and VI, experimental methods are explained with data 
preprocessing, data description and parameter settings. In 
the last section, we conclude with a summary and 
discussion of h ture  work. 

111. AN APPROACH OF OENETIC ALDORITHM 

OA is a model used to mimic the behavior of evdutionary 
processes in nature [14-151. It is known to be an ideal 
technique for finding solutions to optimization problems. 
OA uses three operators to produce the next generation 
from the current Ureproduction, crossover, and mutation. 
Reproduction determines which individuals are chosen for 
crossover and how many offspring each selected 
individual produces. The selection uses a probabilistic 
survival of the fittest mechanism based on a problem- 
specific evaluation of the individuals. The crossover then 
generates new chromosomes within the population by 
exchanging randomly selected segments from within 
existing chromosomes. Finally, the mutation allows 
(rarely) the random mutation of existing chromosomes so 
that new chromosomes may contain parts not found in 
any existing chromosomes. This whale process is 
repeated probabilistically, moving from generation to 
generation, with the expectation that at the end, we are 
able to choose an individual which closely matches our 
desired conditions. When the process terminates, the best 
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chromosome selected from among the final generation is 
the solution. To apply this “process of evolution” to our 
problem domain, we have to define the following three 
components0 individual gene presentation and 
initialization, evaluation hnction modeling, and a specific 
function of genetic operators and their parameters. 
For the first operation, we transform TCPiIP packets into 
binary gene strings. We convert each TCP and IP header 
fields into a one bit binary gene value, ‘0’ or ‘l’, ‘ I ’  
means that the corresponding field exists and ‘0’ means it 
does not. The initial population consists of a set of 
randomly generated 24-bit strings including 13 bits for IP 
fields and 11 bits for TCP fields. The total number of 
individuals in the population should be carefully 
considered. If the population size is too small, all gene 
chromosomes soon converge to the same gene string thus 
making it impossible for the genetic model to generate 
new individuals. In contrast, if the population size is too 
large, the modd spends too much time calculating gene 
strings, negatively affecting the overall effectiveness of 
the method. 

Table 1. TCPiIP anomalv and communication score 

Addressing the second process, we create a fitness 
function for evaluating individuals. The fitness function 
consists of an object functionf(X1 and its transformation 
function gcf(x)). 

F ( m  = s ( f ( 0  (1) 
In equation (l) ,  the object function’s values are converted 
into a measure of relative fitness by fitness function 
F ( X )  with transformation function g(x). To create our 
own objective function, we use the anomaly and 
communication scores shown in Table I. 

The anomaly score refers to MIT Lincoln Lab datasets, 
covert channels, and other anomaly attacks [16-171. The 

scores increase in proportion to the frequency of a field 
being used for anomaly attacks. Communication scores 
are divided into three kinds of scores in accordance with . 
their importance during communication. ‘S ’  fields have 
static values, “De” field values are dependent on 
connection status, and field values for “Dy” can change 
dynamically. We can derive a polynomial equation which 
has the above-mentioned considerations as coefficients. 
As the combination of an anomaly score and a 
communication scare, the coefficients of this derived 
polynomial equation have the property of being weighted 
sums. Our objective function j ( x )  consists of two 
polynomial functions, A ( X )  and ~(,y), shown in (2). 

S(x)  = 4X) + N ( X )  
= A(X,  (4)) + NX‘ (x, )I> (2) 

~ ( 4  is our anomaly scoring function and N(X) is our 
communication scoring function. Variable X is a 
population, x, (xi j is a set of all individuals, and k is the 
total population. x, is an individual with 24 attributes. To 
prevent equation (3) from generating too many features, a 
bias term p is used as followsU 

S ’ V k  (A 1) = f ( X ,  (Xi)) -.U 

= A ( X , ( x , ) ) + N ( X , ( x , ) ) - p  (3) 

Here, p is the bias term of the new objective function 
f’(x, (x, )j  whose boundary is o < p c ~ax(f(x~ )) . In 
case of A ( X ,  (.,I), we can derive the proper equation as 
follows 0 

A m =  W , ( x , ) )  

=A(* ;+  ...+ x, +X/) 

= u p +  ...+ Q ~ x ~ + ~ , x , ,  i , j={1 ,... 24) (4) 

) is a set of coefficients in the where A={ a, ... u 2 ,  a, 
polynomial equation and each coefficient represents an 
anomaly score. From equation (4j, we use the bias term to 
satisfy the condition (5). Thus, we can choose a 
reasonable number of features without over-fitting and we 
can derive the new anomaly scoring hnction (6) with the 
bias t e m p ,  as followsU 

A ( X ) = g x ,  +...+ u,x, +a,x,  

f w A t X ) )  (5) 

A ‘ ( X )  = (a,x, +. ... t o2x2 + a , x I )  - p A ,  

0 < p A  < Mur(A(X) ) ,  0 < A ’ ( X )  < Max(A(X) )  ( 6 )  

For N ( X , ( ~ , ) )  , we develop an appropriate function 
having the same derivation as equation (6 ) .  

N4 = N 4  (4 1)) a=l p = ~  r=l i , j={ i  ...Jd 
=hyx, +...+% +3) 
=a(., +x, +s +*I, +x;2  +*I, +-%r+J45 +*19+Xll”% +a+ 

it% f*r +x;, +xzJ +rix, +X6 +% +s, +x;, +%, +%a +%Oh (2 
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where N is a set of communication scores, and the 
coefficients a, /, y mean static(S), dependent(De) and 
dynamic(Dy) respectively. In equation (7), we give the 
bias term by the same method as (5)  and (6) as follows0 

N ( X ) = a ( x , ) + P ( x , ) + y ( x , )  

<Ma*iWX)) (8) 
"(W = a ( r , ) + P ( X a ) + Y ( X r )  - P , v *  O<P" <M4JvY(X)) 

:. 0 < "(X) c M m ( N [ X ) )  (9) 

where x e ,  are a set of elements with the 

coefficients a, p, Y respectively. From equation ( 6 )  and 
(9), we can derive our entire objective equation (ID) as 
fOllOWSU 

J-(X*(.r,)) =A'(*+ nr(,Y) 
=b,x, + .. . + w 2  +o,x,) -PA + 4d f &I + f i x ,  1 - /JN 

=(Q,X, +...+ U,X,  +a,X,) tdXm)+flX,)+AX,)-(pA +A$,) 

=(fl,X, + .. . +Q,X, + a , X , )  + NX,) + WX,) +fi.Y,) -,U, 

O<" ( X J  < M d ( X *  (4 )) (1 0) 

The relative fitness is calculated using the proposed 
objective function (1 0), and converted into the normalized 
fitness function F(.x, ) using a rank-based transformation 
function, This rank-based transformation overcomes the 
scaling problems of the proportional fitness assignment. 
The reproductive range is limited so that no small group 
of individuals generates an excessive number of offspring. 
The ranking method introduccs a uniform scaling across 
the population, 
The last component for genetic modeling is to define a 
specific function of genetic operators and their related 
parameters. We will decide the related parameters in 
Section VI. 

IV. AN ENHANCED SVM APPROACH 

A .  Existing W M s  : Sofr Murgin and One-Class SYM 

SVM is basically used as a supervised learning method. A 
supervised SVM approach, soft margin SVM, employs 
slack variables and penalty functions in order to decrease 
misclassified data and solve non-separable problems [ 131, 
In the case of non-separable problems, forcing zero 
training error will lead to poor generalization. To take into 
account the fact that some data points may be 
misclassified we introduce soft margin SVM using a 

vector of slack variables = (4, ,..,, 5,)' that measure 
the degree to which the constraints are violated (1 I) .  

S U b J C C t  t O . Y , ( W ' + ( J , )  6 )  2 I -{,, 5, b 0, t 1, ,/ (1 1) 

where c is a regularization parameter that controls the 
trade-off between maximizing the margin and minimizing 
the training error. If c is too small, insufficient stress is 

placed on fitting the training data. If c is too large, the 
algorithm will over-fit the dataset. In practice, a typical 
SVM approach such as soft margin SVM performed 
better than other machine learning methods. In case of an 
intrusion detection application, supervised machine 
learning approaches based on SVM were superior to 
intrusion detection approaches using artificial neural 
networks. Therefore, the high classification capability and 
processing performance of the soft margin SVM approach 
make it useful tool for anomaly detection. However, 
because soft margin SVM is a supervised learning 
approach, it requires that the given dataset be labeled. 
On the other hand, single class learning for classifying 
outliers can be used as an unsupervised SVM [14]. This 
SVM method does not require pre-existing knowledge for 
classification. One-class SVM identifies outliers amongst 
positive examples and uses them as negative examples. In 
anomaly detection, if we consider anomalies as outliers, 
the one-class SVM approach can be applied to classify 
anomalous packets as outliers. As was done in the first 
paper about one-class SVM, we assume that outliers exist 
near the origin of a two-dimensional axis mapped from 
high dimensional space. Then in order to separate the 
dataset from the origin we need to solve the following 
quadratic programming problem (1 2)U 

1 2 1 '  
@ ( w , b , E )  = Tuwll + -2 d 1.1 Minimize w . b . -  

subjectto , v , ( w r # ( x , ) ) 2 p - t , ,  { , > O , i = l ,  ..., I (12) 

- p 

where v is a parameter that controls the trade-off between 
maximizing the distance from the origin and containing 
most of the data in the region related by the hyperplane, 
and corresponds to the ratio of outliers in the training set, 
Then the decision €unction f ( x )  = sgn(( w . ~ ( X ) + b )  - p )  

will be positive for most examples xi contained in the 
training set. In practice, even though one-cIass SVM has 
the capability of outlier detection, this approach is more 
sensitive to a given dataset than other machine learning 
schemes. It means that deciding on an appropriate 
hyperplane for classifying outliers is more difficult than in 
a supervised SVM approach. 

B. Our Enhanced SVMApproach 

In our problem domain, most of the intemet traffic has 
normal features, and the amount of anomalous traffic is 
relatively small. In other words, we can see that the 
number of outliers we hope to detect i s  extremely small in 
comparison with normal traffic. Therefore, the single 
classifier of one-class SVM does not always need to try to 
maximize the distance from the origin for classifying 
outliers. Moreover if our SVM approach can be run in 
soft margin SVM, the proposed SVM approach will show 
a higher detection rate and processing performance than 
an unsupervised SVM approach such as one-class SVM. 
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In one-class SVM learning (12), important parameters for 
deciding the hyperplane are 

parameter has the following meaning0 1 1 ~ 1 1  has to be 

decreased and p has to be increased in order to obtain 
maximum margin between the origin and hyperplane. In 

The minimization condition and subject condition of ( I  6) 
1 '  k . Each have to satisfy the approximation conditions of 
vl ,=I 

I IWIL P .  - E L  c - 1 and E 1 , respectively. Therefore, in our 
VI 

proposed SVM approach, we can expect the unlabeled 
learning feature of one-class SVM and the relatively low 
false alarm and high correction rate of soft margin SVM. 

case of -E 1 '  6; , this parameter is related to the 
vl  i=J 

V. EXPERIMENT METHODS 

violation of outlier and has to be decreased. Moreover, in 
soft margin SVM learning (1 l), the bias term basically is 
related to the distance between the origin and hyperplane. 
If the bias term is decreased, the hyperplane moves closer 
to the origin like a one-class SVM classifier. If the bias 

Our experiments use the IDS evaluation dataset from MIT 
Lincoln Lab [I71 and known SVM toolkits [lS-191. We 
describe the MIT Lincoln Lab dataset and SVM setup 
parameters and kernel functions. 

term b of (1 1) is deleted then we derive equation (13) as 
fOllOWSU 

subjectto y i ( w r # ( x , ) )  2 I - c,, Ci  2 0 , i  = 1 ,..., I (13) 

Therefore, by carefully adjusting the parameters of one- 
class SVM and soft margin SVM, we can derive an 
Enhanced S V M  that offers the unlabeled classification 
capability of one-class SVM as well as the high detection 
performance of supervised soft margin SVM. 
if we compare (1 3) with (1 2), 

sofl-SVMwithout CI bias one-classSVM 

In minimization condition (14), cc ;=,{; of soft 

margin SVM is the trade-off value used to adjust the 
training error in order to obtain the maximum margin 

between the origin and the hyperplane. - 2 <,k of one- 

class S V M  also measures the degree to which outliers are 
in violation. Thus, by manipulating c in soft margin 
SVM we can approximate both terms to be equal. In 
subject condition ( 1 9 ,  the p of one-class SVM is a 
parameter used to obtain the maximum margin between 
the origin and hyperplane. However, we do not need to 
worry about maximizing the p value because anomalous 
data in OUT domain can be classified by the hyperplane 
near to the origin. We can regard the value of p as a 
very small number like '1'. With all of these parameter 
approximations, we derive an Enhanced SVM in 
following equation (1 6). 

1 '  

vi ; = I  

I 
C Z -  

V l  

Subject to y , ( w ' $ ( x , ) )  2 p - 6 ,  0 5 p E 1 (16) 

A .  Data Description 

The 1999 DARPA IDS datasct was collected at MIT 
Lincoln Lab to evaluate intrusion detection systems, and 
contained a wide variety of intrusions simulated in a 
military network environment. All the network traffic, 
including the entire payload of each packet, was recorded 
in tcpdump format and provided for evaluation. The data 
consists of three weeks of training data and two weeks of 
test data. For this dataset, we use attack-free training data 
for normal behavior modeling and attack data is used for 
testing and the construction o f  the anomaiy scores in 
Table I .  Real network data is used in comparison tests 
with real NIDS. Moreover, our attack datasets include our 
own generated attacks such as covert channels, 
malformed packets, and some Denial of Service attacks. 
The simulated attacks include one of following five 
categories and they have DARPA attacks and generated 
attacks 
In order to make the dataset mare realistic, we organized 
many of the attacks so that the resulting data set consisted 
of 1 to 1.5% attacks and 98.5 to 99% normal traffic. For 
the supervised learning algorithm, the learning dataset had 
the characteristics of the dataset described above. This 
dataset contained 100,000 normal data packets and 1,000 
to 1,500 abnormal packets for training and evaluating. For 
the unsupervised learning methods such as Enhanced 
SVM and one-class SVM, the dataset contained 100,000 
normal packets for training and 1,000 to 1,500 various 
kinds of packets for testing. The training dataset 
contained only normal traffic because these methods 
feature unlabeled leaming ability. For testing, the 
combined dataset containing both normal packets and 
abnormal packets was used. In our SVM experiments, we 
used SVMlight [lS] for a supervised SVM and Libsvm 
for an unsupervised SVM [19]. 

B. Parameter Setup 

SVM includes a variety of kernel finclions and their 
parameters. In the case of soft margin SVM, we have to 
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decide a regularization parameter c . The kernel function 
transforms a given set of vectors to a possibly higher 
dimensional space for linear separation. For the parameter 
selection of our SVM learning, we referred to the 
experimental results of SVM which include a range of 
basic SVM parameters, various kernel functions, and their 
performance arguments. In our experiments, we set the 
parameters as followsOc between 0.9 and 10, d in the 
polynomial kernel at 1, 0 in a radial basis kernel at 
'0.0001, and K and Q in a sigmoid kernel at 0.00001, 
respectively. The SVM kernel functions we considered 
were h e a r ,  polynomial, radial basis kernels, and sigmoid. 

VI. EXPERIMENT RESULTS 

A .  Field Selection using GA 

In this experiment, we made preliminary tests using the 
typical genetic parameter values mentioned in the 
literature [15] in order to find reasonable genetic 
parameters. Table I1 describes the four-time preliminary 
test results. In this result, the final fitness value refers to 
the last resultant value calculated by our proposed 
objective equation. 

Case # I  Case #2 

Case #3 Case #4 
Fig. 2. Evolutionary Process according to preliminary test 

Figure 2 shows four graphs of UA feature selection with 
the fitness function of (10) according to the parameters of 
Table 11. In Case # 1  and Case #2, the resultant graphs 
seem to have rapidly converging values because of a 

reproduction rate that is too low, and a too high crossover 
and mutation rate. In Case #3, the graph seems to be 
constant because of a high reproduction rate. The fourth 
and final graph, Case #4, seems to be converging to the 
appropriate values. The detailed experimental results of 
Case #4 are described in Table 111. 

'CRCorrection Rate, FPEalsc Positive, FNFatse Negativc, PTCProcessing Timc 
(SVM learning timc with 2000 packcts) 

Although we found the appropriate OA condition for our 
problem domain using the preliminary tests, we tried to 
select the optimal settings from among all the options. 
Through the experiment using soft margin SVM learning, 
we knew the final generations were well-optimized. 
Oenerations 9 1-100 showed the best correction rate and 
relatively fast processing time. When comparing 
generations 16-30 with generations 46-60, it is interesting 
to note that fewer fields do not always guarantee faster 
processing because the processing time is also dependant 
on the field values. 

B. Comparison among {he Three SVMs and Cross 
Validation Tests 

In this resultant analysis, the three SVMs were tested as 
followsflsoft margin SVM as a supervised method, one- 
class SVM as an unsupervised method, and our proposed 
Enhanced SVM. The results are summarized in table TV. 
Each SVM approach was tested with four kinds of 
different SVM kernet hnctions. The high performance of 
soft margin SVM is not surprising since it is a well- 
developed supervised method. Also, the supervised 
capability of soft margin SVM is not suitable for 
detecting novel attacks. In the case of one-class SVM, the 
RBF kernel provided the best performance (94.65%); 
however, the false positive rate was high. Moreover, we 
could not see the results of the sigmoid kernel experiment 
because the sigmoid kernel of one-class SVM was 
overfitted. The overfitting of kernel functions also 
appeared in the Enhanced SVM experiment. It seems that 
Enhanced SVM's sensitivity to feature mapping using a 
kernel function is related to its using two kinds of 
machine learning methods. In conclusion, our Enhanced 
SVM experiment with sigmoid kernel performed the best, 
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Kemcls Correction 
Rate (%) 

producing a correction performance similar to soft margin 
SVM and a lower false positive rate than one-class SVM. 

Falsc Positive False Negative 
Ratc (%) Rare (%) 

~~ 

soft margin 
SVM 

Inner product 90.13 10.55 4% 
Polynomial 91.10 5.00 10.45 
REF 98.65 2.55 lt.09 
Sigmoid 93.03 3.90 12.73 
Inner Product 53.41 48.00 36.00 

oneclass 
SVM 

Enhanced 
SVM 

Validation Set # I  
Validation Sct#2 
Validatton Set # 3  

Average 

Polynomial 54.06 45.00 46.00 
RBF 94.65 20.45 44.00 
Sigmoid 

87.74 10.20 21.21 Sigmoid 

Even though all validation sets were attack-free datasets 
from the MIT Lincoln Lab dataset, there were many 
differences between Validation Sets #1 , #2 and Validation 
Set #3. As a matter of fact, this test depended closely on 
how well the collected leaming sets consisted of a wide 
variety of normal and abnormal features. The training 
with Validation Set #2 showed the best correction rate 
across all three of the cross validation tests and a low 
false positive rate. In other words, Validation Set #2 has 
well-organized normal features and was optimal for 
training. 

Test# I - Normal 
TesW -Attacks 
TesM -Attacks 
Tcst#4 - Real 

C. Comparison with Real NIDS 

96.56 3.44 
70.00 30.00 
77.78 22.22 
97.29 2.71 

Finally, we compared our proposed approach with real 
NIDS using real data. Real network traffic was captured 
from our Institute, and treated as a black box with respect 
to attacks contained within. Snort and Bro are some of the 
most well-known and best performance NIDS. Snort and 
Bro did not require training datasets because they are 

signature based NIDS. However, for our Enhanced SVM, 
we used Validation Set #2 as the training set. In this 
experiment, four kinds of test sets were used as follows. 
Test #1 was an attack-free MIT Lincoln Lab dataset 
which was not used in training. Test #2 included ten sorts 
of attacks from our generated attacks. Test #3 was 
comprised of nine kinds of attack data from DARPA IDS 
Test. Test #4 was real data collected by our Institute. 
Table VI. Real world test results 

Test sets Correction False Positive Falsc Negative 
Rate (%) Rate (Oh) Rate (%) 

ITest#l -Normal I 92.40 I 7~60 I 
68.70 31.30 
74.47 25.53 
99.99 

Test#l -Normal 94.77 
Test#2 -Attacks 80.00 20.00 
T e d 3  -Attacks 88.88 11.12 Snort 
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The results of Test #4 using our approach showed that 
there were virtually no attacks. After analyzing this result 
we determined that the classifier in our Enhanced S V M  
was not sufficiently refined. This is in part due to the fact 
that knowledge for classification was gathered from the 
MIT Lincoln Lab Dataset. Thus, when we apply our 
framework to a real environment, it will be necessary to 
use a more realistic profiling method for defining what 
constitutes normal data in a given environment. 

VII. CONCLUSION 

The overall goal of our Enhanced SVM approach was to 
provide a general framework for detection and 
classification of novel attacks in network traffic. Four 
preliminary tests using OA for optimized field selection 
indicated to us early on that this method had a relatively 
fast processing time and a better correction rate. As for 
the SVM component, we proposed our own SVM 
classification approach and data preprocessing for 
producing better SVM inputs. Specifically, we designed 
an Enhanced SVM incorporating both a high-performance 
supervised scheme and an unsupervised scheme that 
operates without the use of labels. Moreover we used m- 
fotd cross validation methods and real-world experiments 
to verify our results and prove the relative effectjveness of 
our framework over existing NIDS. Snort and Bro are 
recognized as well developed signature-based detection 
systems however our Enhanced SVM approach 
combining two machine learning techniques offers a new 
and promising method for detecting novel attacks. As 
expected from our SVM approach, our model, like NIDS, 
exhibited a low false-positive rate but without the use of 
labels that signature-based NIDS requires. We assert that 
our SVM framework is a significant contribution to 
anomaly detection and justifies deployment in real world 
environments. 
Future work will involve making a profile of normal 
packets using appropriate methods such as data mining 
and data clustering. If we better define normal profiles 
and extract their formalized preventative packet groups, 
we expect that our approach will be able to classify novel 
attacks better. After profiling normal packets, we can also 
apply this framework to real-world TCPiIP traffic and 
consider a more reahtic packet association based on 
statistical traffic distribution. 
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