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Abstract

An electronic cash system allows users to withdraw

coins, represented as bit strings, from a bank or broker,

and spend those coins anonymously at participating mer-

chants, so that the broker cannot link spent coins to the

user who withdraws them. A variety of schemes with var-

ious security properties have been proposed for this pur-

pose, but because strings of bits are inherently copyable,

they must all deal with the problem of double-spending. In

this paper, we present an electronic cash scheme that in-

troduces a new peer-to-peer system architecture to prevent

double-spending without requiring an on-line trusted party

or tamper-resistant software or hardware. The scheme

is easy to implement, computationally efficient, and prov-

ably secure. To demonstrate this, we report on a proof-of-

concept implementation for Internet vendors along with a

detailed complexity analysis and selected security proofs.

1. Introduction

The physical world has untraceable, transferable,

double-spending-protected cash; the current Internet does

not. There are systems that allow on-line payments using

credit card transactions or bank accounts, but these 1) are

not cost-effective for small transactions as the fees paid by

merchants for credit card transactions are typically higher

than a dollar, 2) do not provide anonymity, allowing credit

card companies to track spending and giving merchants ac-

cess to sensitive credit card and/or bank information, and

3) do not offer security.1 The credit card business model

evolved before the advent of ubiquitous networked commu-

nication and cheap computing, and has retained the old pric-

ing structure, vastly over-estimating communication and

processing costs. While Rivest defines micro-payments as

payments of less than $10 [36], the market has shown that

merchants are willing to accept credit card transactions as

1Consider the many public cases where stored credit card information

has been compromised [20]. Internet transactions also present more risk

and consequently the fees are higher. Also, outside the US, customers are

liable for fraud committed with their credit cards. The success of Ukash [1]

in EU countries demonstrates that many users are willing to go through

extra hurdles to avoid credit card use on the Internet.

low as two dollars, and in case of large-volume transac-

tions, such as Apple’s iTunes music store, as low as one dol-

lar. This paper deals with what we call “mini-payments” for

values similar to typical physical coins, occupying roughly

the gap between fractional cent payments that incur more

cost than their value and payments which can be handled

profitably through the credit card infrastructure.

The use of untraceable and anonymous mini-payments

could enable a number of interesting and new on-line ap-

plications, and could be applied to alter existing business

models. Advertising-supported web sites could remove

ads entirely and charge a penny or so for access; long-

term site subscriptions could be replaced with short-term;

donation-dependant sites could be advertisement-free, rely-

ing on numerous small donations; software “bundles” could

be “unbundled”. As the psychological barrier when donat-

ing smaller amounts is lower, the potential for donation-

generated income from mini-payments is likely higher than

that from large donations from a smaller number of users,

benefiting vendors providing free software [36] who would

welcome donations of any size. Price discrimination is also

not an issue in case of donations. Such business models

only work if mini-payment processing transactions are al-

most free and the mini-payment themselves are easy and

intuitive for customers to use. The “killer app” for mini-

payments may be unclear, but if the “long tail” argument

holds for digital goods, surely it holds for digital cash!

There are many potential benefits to such a system, but

several problems remain to be solved. One major attack

on electronic currency is double-spending, where a user

may spend an electronic coin more than once. Unless the

merchant accepting the coin verifies each coin immediately,

double-spending poses a significant threat. Individual

coins may be worth little, but the danger of large groups

doing concurrent double-spending using the same coin is

non-trivial. Many e-cash schemes have been suggested

in the past, but all of them either require the presence of

an on-line third party, tamper-proof hardware or client

accounts at the bank. Tamper-proof hardware creates a

significant hurdle for proliferation of such a scheme, since

most current machines have none. Requiring an on-line

third party creates a single point of failure, and creates
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administrative and equipment expenses (especially during

peak hours). Moreover, it is not always clear which entity

should be endowed with such a role.

Foregoing on-line detection, however, introduces delay

in double-spending detection (until the coins are deposited)

and therefore requires clients to leave security deposits or

credit cards at the bank. Leaving credit card information is

a deterrent to proliferation, which grows stronger every day

due to constantly publicized attacks on private information

and compromise of home computers. E-cash without on-

line double spending detection exacerbates these problems:

even if the credit card information is secure against attack-

ers, the security of the coins themselves can create signif-

icant problems. This is because if the coin itself is stolen

by an attacker, it can be used freely to double-spend; in the

end, the victim will have to cover the damage.

If we demand double-spending to be non-prosecutable,

a natural requirement is to make e-cash completely anony-

mous and untraceable: this would shield clients against lia-

bility for fraud committed with the coins and also allow easy

transfer of coins to others. However, in this case, real-time

double-spending detection becomes a critical requirement.2

Overview of the paper. The primary contribution of this

paper is development of a lightweight, provably secure dis-

tributed anonymous e-cash protocol that does not require

a trusted on-line third party, tamper-proof hardware or se-

curity deposits, and provides real-time double-spending de-

tection. This protocol is presented in Sections 4 and 5. We

demonstrate the efficacy of this protocol in several ways:

1) derivation of security requirements in Section 3 and se-

curity proof in Section 6, 2) Analysis of the computational

and communication complexity in Section 7, 3) a prototype

implementation and experimental results in Section 7.

Our system is a “bearer” system, where the client holds

a bit-string representing the coin. The coin is not bound

to anyone except the broker who exchanges it for real-

world cash. Due to our real-time double-spending detection

scheme, we do not require tamper-proof hardware. This

system design is a three-party model, with the broker as a

dedicated (but not necessarily on-line) server, the merchant

as a drop-in module for an existing web server, and the

client as a browser plug-in. The client purchases coins from

the broker using a dedicated web interface and the browser

plug-in stores the coins in a file, where each coin is assigned

non-malleably to a witness(es) selected randomly from all

merchants participating in the mini-payment network. A

web server taking mini-payments signals the service avail-

ability to the client, who then displays the payment user in-

terface (the mode of display depends whether the payment

2Incidentally, absence of real-time double-spending detection can also

create room for attacks using stolen credit cards: an attacker can buy a few

coins using the stolen credit card (to stay under the radar) and then freely

double-spend these coins; the credit card companies (or card owner) will

have to cover the losses.

is optional or required to view content). To submit a mini-

payment, the client contacts the merchant and transmits a

coin. The merchant, in turn, submits the coin for signa-

ture by the coin’s designated witness(es). If the witness(es)

have seen the coin before, they can prove this to the mer-

chant by extracting some secret information from two in-

stances of the coin and the merchant would then reject the

payment, thus providing immediate double-spending detec-

tion. If not, the witness(es) sign the coin and return it to the

merchant, who then accepts the payment. Signed coins can

be cashed at the broker at any time. Note that the coin con-

tains a secret value that is not revealed to protect the coin

from third-party theft. Instead, an efficient non-interactive

proof of knowledge of that value is provided.

2. Related Work

E-cash should not be confused with micro-payments,

which deal with payments as low as a fraction of a cent [25,

38, 33, 32, 31, 24, 23, 18, 22, 21, 4] and require optimization

for performance. Thus, the more promising schemes use a

probabilistic approach [25, 23] when deciding whether to

charge a client: the resulting inaccuracy, though, may not be

forgivable in case of larger and less frequent payments. E-

cash is also different from electronic cheques, which work

just like like normal cheques – they are not anonymous and

require overhead similar to credit card processing.

The idea of untraceable electronic cash was first intro-

duced by Chaum [11], who used blind signatures to ensure

that the e-cash cannot be traced back to the client. This ini-

tial proposal required an on-line broker to clear coins before

merchants would provide their services, to protect against

double-spending. The first off-line untraceable electronic

cash was proposed by Chaum et. al. [12]; in this scheme,

each coin contains a hidden reference to the coin owner:

if the coin is spent once it is untraceable, while spending

a coin twice allows the broker to extract the identity hid-

den inside the coin. The scheme in [12] requires clients

to set up accounts at the broker and leave a security de-

posit or credit card. The scheme also uses an inefficient

cut-and-choose technique to verify correctness of the blind

information. The first efficient untraceable off-line e-cash

scheme was suggested by Brands [7], and further improved

by Chan et. al. [9, 10]. Brands’ scheme also incorporated

the idea of “wallets with observers” [13], in which a tamper-

proof device used by the client offered a first-line real-time

defense against double-spending. Several properties have

been explored in successive works, including “divisibility”

of coins [28, 27, 30, 15], compactness [8], tracing of coins

spent illegitimately [17, 39], and coin transferability [14].

E-Cash can be used not only in traditional customer-

merchant systems but also in P2P systems. PPay [40] uses

e-cash as a payment system for P2P systems, leveraging

the fact that peers are clients and merchants at the same

27th International Conference on Distributed Computing Systems (ICDCS'07)
0-7695-2837-3/07 $20.00  © 2007



time: thus, clients can pay with the (transferable) coins

that they obtain from selling their own goods, minimiz-

ing the number of interactions with the bank/broker. The

WhoPay scheme [37] extends the idea of PPay and ensures

that coins are anonymous as well as distributing broker load

to the peers themselves. In addition, the paper suggests

a mechanism for real-time double-spending detection by

which the P2P system is used as a distributed database for

spent coins and queried using a DHT routing layer such as

Chord [34]. Hoepman [19] discusses the same idea in more

depth and evaluates different scenarios for the location of

stored, spent coins. However, neither approach can pro-

vide hard guarantees against double-spending, especially

when some fraction of P2P nodes are compromised: the dis-

tributed database cannot be fully trusted unless secure rout-

ing and honesty of peers are guaranteed and can only sup-

port probabilistic guarantees. A similar approach, which we

call the witness approach, was successfully applied to fair-

ness enforcement in P2P file-archiving systems [29]. The

witness approach provides probabilistic guarantees as well

but also ensures security against targeted attacks since wit-

nesses change dynamically and at random times. In this

paper, we adapt the witness approach [29] to ensure real-

time double-spending prevention: however, Section 4 out-

lines several non-trivial changes applied to ensure that the

system provides hard, rather than probabilistic, guarantees.

3. Basic Requirements and Observations

A generic e-cash system consists of 1) the bank that

clears credit/debit card or bank payments but may not know

anything about e-cash; 2) brokers which interact with the

bank and are involved in the printing and redemption of

coins; 3) on-line merchants who accept e-cash coins as pay-

ment for services and cash them using the broker; and 4)

clients who obtain e-cash from the broker (or through other

means) and then use it to buy services from merchants.

A mini-payment scheme suitable for widespread adoption

should satisfy the following requirements:

Decentralized environment. As in off-line e-cash sys-

tems [12], there should be no centralized on-line trusted

party required to participate in transactions. In particular,

it should be possible to spend coins and prevent double-

spending even if the broker and bank are off-line.

No Tamper-proof devices. As tamper-proof devices in

general hamper proliferation of e-cash schemes, the system

should not require them.

Untraceability. The bare system design, unlike related

work, should allow for full untraceability of purchased

coins. In particular, double-spending should not leak any

information about the coin owner.

Client Security Deposits. As the bare system should pro-

vide untraceability, there is no need for client security de-

posits at the bank and/or broker. Thus, unlike other off-

line schemes, the client should not bear any responsibility

with respect to purchased coins (except insofar as they have

value to the client). In particular, a client may choose to buy

coins using an on-line gift card without revealing identity.

Generic Security. The system should be secure against

coin forgery/re-use/linkability and other generic e-cash at-

tacks as discussed in Section 6. These security notions are

generic to e-cash as defined by Chaum [12, 35].

Usability and Extendibility. The system should allow

for incorporation of escrow mechanisms that allow trac-

ing the coin owner. The system should be flexible enough

to accommodate known off-line double-spending detection

mechanisms.

If a client is untraceable, then there is a danger of double-

spending. Thus these requirements dictate that the system

should also provide real-time double-spending detection, or

in other words double-spending prevention.

Since we will be leveraging the distributed nature of the

merchant network, the following basic observations are in

order. First, merchants are long-term members of the net-

work, are legitimate, and can therefore set up accounts with

the broker, leaving security deposits if necessary. Second,

merchants are on-line most of the time and are generally

well-maintained. The implication is that even if the mer-

chant network is attacked, it will go back on-line within a

few days. These assumptions are safe because on-line mer-

chants can only make money if they remain on-line, and

thus it is in their best interest to do so. Third, the merchants

themselves can form a network to combat double-spending.

We use these observations to construct the desired e-cash

system, starting first with the high-level description below.

4. High-Level Description

Figure 1 provides an overview of the functionalities in-

volved in the proposed e-cash system. To use the proposed

system, merchants need to set up an account with the broker

B, by supplying their certified public key, credentials and

bank accounts where e-cash should be deposited. Moreover,

each merchant M leaves a security deposit in the form of

cash or a credit card. This registration allows M to redeem

coins obtained from clients, and it allows B to charge M
for its misbehavior.

To obtain e-cash, clients have to contact B and buy coins

using a credit card or bank account. To make the purchased

coins untraceable, we employ cryptographic techniques to

blind the private information of the coin before it is signed

by B while the public information (such as expiration dates)

stays unblinded. As a result, B will have no information

about the coin itself, except the public information.

When a client goes to a merchant M and presents a

coin, M needs to determine in real-time if the coin is be-

ing double-spent before providing the service: otherwise,

either 1) M may erroneously provide service in exchange
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Figure 1. High-level view of the proposed E-cash system.

for an invalid coin (or uncashable during a later deposit),

and with no entity that covers losses from fraud, M will

not be paid by B, or 2) M will have to delay service deliv-

ery, degrading the quality (or speed) of service. We achieve

this as follows: during its creation, each coin is assigned in a

random fashion to one of the merchants, which will serve as

a witness for the validity of that coin. Thus, each merchant

can perform some witness service: witnesses for coins are

chosen from the merchants. Say, coin C is assigned to mer-

chant MC who serves as a witness for the coin: whenever

another merchant M obtains the coin C from the client, M
has to contact MC and obtain a signature on the payment

transcript, which testifies that the coin has not been used be-

fore. Without a signature from MC , M will not be able to

cash the coin. Thus the responsibility for double-spending

each coin is shifted to its witness, who has left a security de-

posit at B: the main observation here is that merchants are

in general always on-line due to the nature of their activity

allowing for real-time double-spending check.

M cashes the coins at B. When presented with pay-

ment transcripts, B verifies that each coin has been signed

by the required witness and has not been deposited before.

B then makes a deposit into M’s account, and saves the

payment transcripts until the coins become uncashable, in

order to detect misbehaving merchants. If a certain payment

transcript is signed twice by some witness, B can punish

this witness using the security deposit that was left by M.

In particular, the security deposit should cover the double-

spent coins out of which the cheated merchants can be paid.

It may happen that a coin is unusable due to the unavail-

ability of its assigned witness. To decrease probability of

such event, one can use, say, three witnesses per coin and

require any two of them to sign. However, in the event that

this still does not help and the coins are unspendable, we as-

sign to each coin C two expiration dates, a “soft” expiration

date after which it becomes unspendable, but can still be

exchanged for a new coin, and a hard expiration date, after

which it becomes completely void. This exchange can be

done when buying new coins, by submitting coins past their

first expiration date as well. This approach allows clients to

renew unused coins and to recover from faulty witnesses.

Witness Motivation and Assignment. Why would a mer-

chant agree to serve as a witness, signing payment tran-

scripts? To see how we can motivate merchants to serve as

witnesses, we first notice that preventing double-spending

helps the community as a whole, since merchants are not

left with unpaid transactions due to credit fraud and need

not expend extra effort to secure a credit card database:

thus we assume that merchants are for the most part co-

operative and would in general be willing to do a little extra

work to contribute to the health of the community. Sec-

ond, when some merchants still do not see value in doing

witness service, the broker can provide incentives to mer-

chants for signing coins, e.g. give discounts on cashing the

coins, where the credit given depends on the amount of wit-

ness service (e.g. coins signed) the merchant has performed.

The merchants that do not sign will pay more fees for cash-

ing coins, while the hardworking witnesses will get suffi-

cient credit to motivate them to continue serving in witness

capacity. The exact policy enforced by the broker, though,

is beyond the scope of this paper.

Note that in the proposed scheme each coin has a stat-

ically assigned witness. The reason why we do not allow

witnesses for a coin to change is because, otherwise, a se-

cure witness hand-off would be required when witnesses

change. Efficient, secure witness hand-off would have to

involve a trusted third party which we wanted to avoid in

the design. However, now that the witness assignment is

static, we need to figure out how it can be done so that:

1) to maintain untraceability, B issuing the coin does not

know which merchant was assigned to be the witness for

this coin, but still 2) B ensures that the hardworking wit-

ness merchants are assigned more coins than others. That

is, the client should not be able to skew witness assignment

towards (or away from) specific merchants, while B should

not be able to link the coin to specific witness merchants.

Given a secure e-cash protocol with public information,

the following scheme provably achieves these aims. Let

h : {0, 1}∗ → {0, 1}k be a cryptographic hash function

modelled as a random oracle. Let W be the current mer-

chants in the network that are participating as witnesses.

Based on merchant performance, each merchant M ∈ W
is assigned a “witness range”, RM = [rM,1, rM,2) ⊂
[0, 2k), such that RM1

⋂
RM2

= ∅, ∀M1 6= M2 ∈ W ,

and
⋃

M∈W RM = [0, 2k). The merchants that should

be assigned more coins will be assigned larger witness

ranges. Let us call the unblinded coin together with bro-
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ker’s signature as bare coin. Given an authentic list of mer-

chants and their witness ranges, the witness for a bare coin

could be simply the merchant whose witness range con-

tains h(bare coin). The full-fledged coin C then will be

the tuple consisting of the bare coin and the signed wit-

ness range assignment of the witness merchant W . Since

the bare coin was blinded during the signing, B will not

know the h(bare coin). And since the client cannot forge

B’s signature in bare coin, the client will not be able to pre-

dict the hash value either.3 This results in a coin C which

contains a (non-malleable) witness assignment, where the

witness merchant is randomly selected using the probabil-

ity distribution imposed by the list of the witness ranges.

Assigned witness ranges may change over time, since

merchants may join or leave the network or experience

changing ability to sign coins. For that purpose, from time

to time, B may publish a new version of the witness range

assignments. We will discuss the specifics of how one at-

taches a witness to a coin in the later sections.

5. The Protocols

Operations with e-cash involve three protocols: with-

drawal, in which the client buys coins from B; payment,

in which the client pays the merchant using these coins; and

deposit, in which the merchants cash the coins. The in-

teraction between the bank and broker (which can be the

same entity) can follow standard financial protocols and is

orthogonal to our construction.

Let p and q be two large primes such that q|p − 1 and

g ∈ Z
∗
p be a random generator of order q. In practice (and

the implementation) p will usually be a 1024-bit and q will

be a 160-bit prime. Denote by 〈g〉 the subgroup generated

by g and let g1 and g2 be two random generators of 〈g〉.
We assume that it is hard to compute logarithms in 〈g〉,

i.e. given a random generator ĝ of 〈g〉 and f ∈ 〈g〉, it is hard

to find a ∈ Zq such that ĝa = f . We also choose and fix

some public cryptographic hash functions F : {0, 1}∗ →
〈g〉 and H : {0, 1}∗ → Zq , which can be easily constructed

using standard cryptographic hash functions.

B chooses a secret key x ∈ Zq and publishes the authen-

ticated key y = gx. The pair (y, x) will be used as a pub-

lic/private key pair in the partially blind signature scheme

of Abe and Okamoto [3]: B signs using x and signatures are

verified using the public value y.

Withdrawal Protocol. The withdrawal protocol should

have the following essential properties:

1. The (bare) coin, including B’s own signature, should be

blinded from B, i.e., B should not be able to obtain any in-

formation about the actual coin other than possibly some

agreed-upon public information that is attached to the coin

3It is straightforward to prove these properties hold using standard ran-

dom oracle proof techniques [5]

(this includes coin unlinkability as discussed in later sec-

tions). Without this property, B (perhaps in collusion with

merchants) might be able to link a coin to a specific user,

especially if coins were not purchased anonymously.

2. B should ensure that the coin is assigned correct expi-

ration dates and witnesses. The only information that B
should know about witness assignment is that the witness is

assigned according to the current list of witness ranges. B
should know the exact dates assigned to the coin.

3. Anyone should be able to correctly determine if a given

merchant is indeed a witness of a given coin from the coin

itself. More precisely, merchants do not need to store the

entire history of witness range assignments.

4. Other standard security properties such as strong un-

forgeability, unexpandibility, unreusability of coins and so

on are also required (see Section 6).

Denote by info the explicit information to be added

to the coin, and by IM the unique identifier of mer-

chant M. As mentioned in Section 4, B publishes when

needed a new version of signed witness range assignments

SigB(version/date, {IM, rM,1, rM,2}) for each merchant

M ∈ W , where [rM,1, rM,2) is the range assigned to M.

The info will include the version/date of the merchant list

and two expiration dates (possibly with the denomination

of the coin). During coin generation, B will produce a par-

tially blind signature [2] of Abe and Okamoto [3] where

info is attached to the coin in non-blinded form. Once the

client has unblinded the partially blind signature, thus ob-

taining the bare coin with the above info and signed by bro-

ker B, he/she computes h = h(bare coin) and copies the

appropriate SigB(version/date, {IM, rM,1, rM,2}), where

h ∈ [rM,1, rM,2) and version/date is the same as in the

bare coin, resulting in the full-fledged coin. The full proto-

col is described in Algorithm 1 and is an adaptation of Abe-

Okamoto, where 1) instead of signing an arbitrary msg,

B signs a tuple (A = gx1

1 gx2

2 , B = gy1

1 gy2

2 ) that will be

used during the payment protocol, and 2) we specify the

value of info that will be attached to the coin. The values A
and B are constructed by the client, who knows the corre-

sponding representation coefficients x1, x2, y1, y2 with re-

spect to g1 and g2. The construction of A and B along with

the non-interactive zero-knowledge (NIZK) proofs of rep-

resentation of A and B are borrowed from Brands [7] and

Okamoto [26]. Note that the client can not tamper with bare

coin and, at the same time, B will learn nothing about the

bare coin other than the attached info.

As the result of the withdrawal protocol, the client

obtains a valid coin C = (ρ, ω, σ, δ, info, A, B,
SigB(version/date, {IMC

, rMC ,1, rMC ,2})), which con-

tains the signature of B. Anyone can verify validity of the

coin by checking validity dates, verifying that the correct

witness was assigned to the bare coin and most importantly

by verifying B’s signature on the coin by checking that
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Algorithm 1 Withdrawal Protocol
0. The client C and B agree on the denomination of the coin, the version of the
merchant list that will be attached, and on the two expiration dates as explained
before. The client pays for the coin using credit card, bank account or through
other accepted alternatives. Client can buy several coins at a time (saving on com-
munication cost), but the computation below have to be performed independently
for each coin to ensure they are unlinkable.

1. B → C : a = gu , b = gszd

B picks random u, s, d ∈ Zq and sends the constructed a, b to the client, where
z = F(info) ∈ Z

∗

p . The info contains the value of the coin, the version of
merchant list, and two expiration dates.
2. C → B : e
The client picks four random values ti ∈ Zq, i = 1, ..., 4 and x1, x2, y1, y2 ∈

Zq , and computes α = agt1yt2 , β = bgt3zt4 , ǫ = H(α||β||z||A||B) and

e = ǫ − t2 − t4 mod q, where A = g
x1

1
g

x2

2
, B = g

y1

1
g

y2

2
. The value of

e is sent to B.
3. B → C : (r, c, s)
B computes c = e−d mod q, r = u−cx mod q and sends triple (r, c, s)
to the client.
4. The client computes ρ = r + t1 mod q, ω = c + t2
mod q, σ = s + t3 mod q, δ = e − c + t4 mod q, and
checks equality ω + δ = H(gρyω ||gσzδ||z||A||B) mod q.
Denote the bare coin = (ρ, ω, σ, δ, info, A, B). The client at-
taches the Sig

B
(version/date, {IMC

, rMC,1, rMC,2}), where
h(bare coin) ∈ [rMC,1, rMC,2), resulting in the unblinded coin C =
(ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rMC ,1, rMC,2})).

ω + δ = H(gρ · yω||gσ · F(info)δ||F(info)||A||B) mod q.
However, only the coin owner knows the representations of

A and B with respect to the tuple (g1, g2), which will be

used in the payment protocol below. Note that B does not

know which witness was assigned to the coin and the client

cannot influence the choice of witness.

Payment Protocol. In the payment protocol, client C wants

to pay for a service provided by merchant M using coin C.

Prior to providing the service, M will have to determine if

the coin has already been spent by contacting the witness of

the coin MC . The protocol must ensure that:

1. If the coin has already been spent, the witness MC can

provide an unforgeable proof. For more privacy, it is desir-

able that the proof does not reveal the identity of M where

the coin was previously spent.

2. If M refuses to provide the service claiming that a coin is

being double-spent, M will be able to convince a third party

that the coin was already spent prior to the transaction.

3. Conflict resolution mechanisms such as optimistic fair

exchange can be incorporated naturally. The payment tran-

script should be publicly verifiable and should not reveal se-

crets of the parties involved. In particular, anyone that sees

the transcript should not be able to forge another payment

transcript, or cash the coin.

Our payment protocol is similar to the original proto-

col of Brands. In particular, to pay with the coin, the client

will need to provide a non-interactive zero-knowledge proof

(NIZK) that it knows the representation of A and B with

respect to the tuple (g1, g2) inside the coin. The proof will

bind the payment transcript to the given merchant and time

so that only that merchant will be able to cash the coin.

Moreover, given two such payment transcripts, one can ex-

tract the secret values x1, x2 (and y1, y2) of the coin which

become the proof that the coin has been double-spent (see

the security analysis section for more details). The full pro-

tocol is specified in Algorithm 2. Note that since the value

d in Step 3 depends not only on the merchant and time but

also on the unblinded coin, the client can not spend a coin

without knowing the representation of A and B.

Algorithm 2 Payment Protocol
1. C → MC : coin hash = h(ρ, ω, σ, δ, info, A, B)
The client contacts the witness of the coin, trying to obtain the commitment that
the witness will sign the payment transcript after the transaction.
2. MC →C : Sig

MC
(coin hash, h(v), te, commit)

The coin witness provides a signed commitment that it will sign the payment tran-
script provided that a) the payment transcript (submitted later) will be valid, b)
MC is actually the witness for the coin, c) the coin was not already spent before
the commitment and d) transaction finishes before te . The value v is either some
random value (if the coin has not been spent so far), a “salted” payment transcript
of this coin or tuple (x1, x2) or (y1, y2) (if the coin has already been spent).
3. C → M : payment transcript = (C, r1, r2, IM, date/time),
Sig

MC
(coin hash, h(v), te, commit)

The client sends to M the coin, and r1 = x1 + d · y1, r2 = x2 + d · y2,
where d = H0(C, IM, date/time). In addition, the commitment from MC

is sent. M verifies the broker’s signature on the coin (as specified in the discussion
of withdrawal protocol), the correctness of witness assignment and the witness

commitment. In addition, the equality A · Bd = g
r1

1
g

r2

2
is checked.

4. M→ MC : payment transcript = (C, r1, r2, IM, date/time)
The payment transcript is sent to the witness (the commitment is sent only during
conflict resolutions). If the coin is double-spent, the witness computes (x1, x2)
and/or (y1, y2) and keeps only this value along with hash of the coin, dropping
all transcripts.
5. MC →M : Sig

MC
(payment transcript), or (x1, x2) and/or (y1, y2).

If the coin is double-spent, the witness sends (x1, x2) and/or (y1, y2), refusing
to sign. Otherwise, it provides the signature on the transcript.
6. M→ C : service, or (x1, x2) and/or (y1, y2).
The client either obtains the service or is refused with the proof of double-spending.

Note that we shift part of the communication onto the

client, which has to obtain a commitment from the witness.

Thus, prior to a transaction, the client can be assured that

the witness will sign the transcript. When a coin is double-

spent, the witness does not release information on where

the coin was spent before, while it still provides a publicly

verifiable proof that the coin has been double-spent. In case

of dispute, all transcripts can be given to a third party to

decide on further action. In particular, fair exchange pro-

tocols may be incorporated into the transactions. Note that

if race conditions exist such that the same coin has been

spent at another merchant right after the witness has made

the commitment, and therefore the witness was able to gen-

erate (x1, x2) and/or (y1, y2), M may ask the witness to re-

veal the committed value v. If the value v does not contain

(x1, x2) or (y1, y2) or a previous payment transcript, this

is a proof that the witness violated the protocol. Finally, in

case of problems, all communication transcripts can be sub-

mitted to a third party for resolution, which can decide who

has violated the protocols.

Deposit Protocol. In the deposit protocol, M submits the

payment transcript signed by the witness to B, who verifies

the transcript and the witness’ signature. Before crediting

M’s account, B also checks if this coin has already been

deposited: this is possible only if the same witness signed

two transcripts for the same coin. In case the coin has al-
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ready been deposited, the witness will be charged for the

transaction and M will be credited from the witness’ de-

posit. The witness can be contacted with the proof (two sig-

natures) that it incorrectly performed its duty, and additional

administrative actions (beyond the scope of this paper) can

be taken. The protocol is shown in Algorithm 3.

Algorithm 3 Deposit Protocol

1. M→B : payment transcript, Sig
Mi

(payment transcript)

M sends to B the payment transcript signed by the witness, where
payment transcript = (C, r1, r2, IM, date/time) and the coin C =
(ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rM,1, rM,2})). B ver-
ifies its own signature on the coin, that the coin is still valid and cashable, and that
the right witness signed the transcript. Next, B verifies the signature of the witness

on the payment, computes d and checks the equality A · Bd = g
r1

1
g

r2

2
. If at

least one test fails, the B notifies M of the failure and the protocol ends here.
2. B searches its database to determine if the bare coin =
(ρ, ω, σ, δ, info, A, B) has previously been deposited. Two cases are
possible:

2-a. The coin has not been deposited before. In this case, the broker stores the
payment transcript along with witness’ signature until the coin’s second expiration
date. M is credited for the amount of the coin.

2-b. B finds another deposit of the same coin. In this case, the merchant M is
still credit for the coin amount, but now it is done from the security deposit of the
coin’s witness MC . The MC is notified appropriately with the proof consisting
of two MC ’s signatures on the same coin.

Coin Renewal. Each coin has two expiration dates to al-

low clients to renew unused or unusable coins. After the

first date, the coin will no longer be cashable and after the

second one it becomes completely void. The coin renewal

protocol is described in Algorithm 4. In this protocol, the

client submits a coin, which is past the first expiration date

but not the second, along with a proof that it knows the rep-

resentation of A and B inside the coin with respect to g1 and

g2. Then B searches its database to find out if the coin has

already been cashed or renewed and, if it was, extracts and

provides the value of (x1, x2) and/or (y1, y2) and refuses to

renew. Otherwise, the client obtains a new coin similarly to

the withdrawal protocol. The protocol is the same as with-

drawal with piggy-backed coin verification and can be done

when a client buys new coins.

6. Security

A good review of security requirements for anonymous

off-line e-cash systems is given in [35]. However, our re-

quirements slightly differ since our double-spending detec-

tion is real-time and coin owners are fully untraceable.

The security of our e-cash system depends on the secu-

rity of two core components: 1) security of the partially

blind signature and 2) security of the representation proof

in groups of prime order. We first remark that the partially

blind signature of Abe-Okamoto [3] is strongly unforgeable

which means that the bare coin obtained during withdrawal

protocol cannot be altered by the client without invalidating

the signature. From the partial blindness of the signature,

it follows that the only property about the bare coin that B
learns is the info attached to it: in particular, given two un-

blinded coins with the same info, B cannot decide which

coin belongs to which instance of withdrawal.

Algorithm 4 Coin Renewal Protocol
0. The client C and B agree on the version of the merchant list that will be attached,
the value of the new coin, and on the two expiration dates that will be attached to
the new coin.
1. B → C : a = gu, b = gszd

B picks random u, s, d ∈ Zq and sends the constructed a, b to the client, where
z = F(info). The info contains the value of the coin, the version of merchant list,
and two expiration dates.
2. C → B : e, C∗ , r∗

1
, r∗

2
.

The client picks four random values ti ∈ Zq , i = 1, ..., 4 and x1, x2, y1, y2 ∈

Zq , and computes α = agt1yt2 , β = bgt3zt4 , ǫ = H(α||β||z||A||B)
and e = ǫ − t2 − t4 mod q. The client sends e, the old bare coin C∗ =
(ρ∗, ω∗, σ∗, δ∗, info∗, A∗, B∗) (to be renewed) and the proof of knowledge
of representation of A∗ and B∗ for C∗ , consisting of r∗

1
and r∗

2
(where d∗ is

constructed as in the payment protocol).
3. B → C : (r, c, s) or (x∗

1
, x∗

2
) and/or (y∗

1
, y∗

2
).

B verifies the correctness of C∗ , computes d∗ and checks that A∗ · B∗d∗

=

g
r∗
1

1
g

r∗
2

2
holds. B searches if the coin has been deposited by a merchant or has

already been renewed: in this case, B can compute (x∗

1
, x∗

2
) and (y∗

1
, y∗

2
) corre-

sponding to C∗ and return them to the client with the refusal to renew. Otherwise,
B computes c = e − d mod q and r = u − cs mod q, and returns them
to the client along with s. The renewal transcript is stored until the C∗’s full
expiration.
4. The client computes ρ = r + t1 mod q, ω = c + t2
mod q, σ = s + t3 mod q, δ = e − c + t4 mod q, and
checks equality ω + δ = H(gρyω||gσzδ||z||A||B) mod q.
Denote bare coin = (ρ, ω, σ, δ, info, A, B). The client at-
taches the Sig

B
(version/date, {IMC

, rM,1, rM,2}), where
h(bare coin) ∈ [rMC ,1, rMC,2), resulting in the unblinded coin C =
(ρ, ω, σ, δ, info, A, B, Sig

B
(version/date, {IMC

, rMC,1, rMC ,2})).

Security of the NIZK proof used in the payment proto-

col is important as it proves ownership of the coin. Dur-

ing withdrawal, the client chooses random x1, x2, y1, y2 and

constructs A = gx1

1 gx2

2 , B = gy1

1 gy2

2 : the values of A and

B become part of the bare coin and thus can not be altered.

The tuples (x1, x2) and (y1, y2) are called representations

of A and B with respect to generators g1, g2. Finding a sec-

ond representation of A given one representation, or find-

ing any representation given a random A are both provably

equivalent to computing discrete logarithms in 〈g〉 [7] and

thus assumed to be hard problems. Thus if the client knows

a representation of A (B) then we can conclude that 1) the

client (perhaps by proxy) actually constructed the coin, and

2) the client knows no other representation of A (B).

The NIZK proof has the following security proper-

ties [6, 26]: 1) a client can successfully provide the NIZK

proof if and only if he/she knows representations of A and

B; 2) if the client submits two successful NIZK proofs with

respect to the same coin, then we can extract the represen-

tations of A and B from the proofs themselves.4 Conse-

quently, we can make the following conclusions: 1) only

the coin owner can successfully make a payment; 2) seeing

a payment transcript does not allow one to generate another

payment transcript; 3) if the coin owner double-spends, the

representation of A and/or B can be extracted which serves

as a definitive proof of double-spending.

4If we have r1, r2, r′1, r′2, d 6= d′ such that A · Bd = gr1

1 gr2

2 and A ·

Bd′

= g
r′
1

1 g
r′
2

2 , then we obtain B = g
(r′

1
−r1)/(d′

−d)
1 g

(r′
2
−r2)/(d′

−d)
2

and thus the tuple ((r′1 − r1)/(d′ − d), (r′2 − r2)/(d′ − d)) is a rep-

resentation of B. Then a representation of A can be easily obtained from

A · Bd = gr1

1 gr2

2 and knowledge of d, r1, r2.
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On the security of the present scheme, let us first make

several basic conclusions based on the previous observa-

tions. We note that the bare coin obtained during the with-

drawal is non-malleable and contains the version of the list

of witness range assignments, so (provided the broker is

correct) only one witness can be attached to the coin. Con-

sequently, the full-fledged coin is non-malleable as well.

Secondly, the bare coin is strongly unforgeable which im-

plies the unexpandibility of the coins, i.e., given N coins

generated in a valid manner, the attacker should not be able

to create N + 1 coins.5 Thirdly, the e-cash scheme satis-

fies the unreusability property, i.e., a coin with an honest

witness can be used no more than once at the merchants in

the network. Indeed, the coin is non-malleable (including

the witness assignment) and can be spent only if the same

witness signs different transcripts for this coin. Unless the

witness merchant is faulty, the second transcript will allow

extraction of a representation of A which can be done only

if the coin has been double-spent. In the end, the non-faulty

merchant will refuse to sign the second transcript with a

definitive proof of double-spending and the coin will be re-

fused. If the witness is faulty and signs two payment tran-

scripts for the same coin, the merchants will still be paid by

B at the expense of the witness. Fourthly, the NIZK ensures

that only the coin owner can successfully make a payment to

a merchant, resulting in non-malleable payment transcripts.

Now let us see why a coin cannot be traced back to

its owner. First, as was mentioned above, when the client

spends the coin at M and B sees the payment transcript, B
will not be able to tell which client bought this coin among

all clients who bought coins with the same info. However,

this property is not enough for anonymity if the client buys

several coins at a time. More precisely, it is conceivable that

the broker could in some way skew the protocol so that two

coins withdrawn at the same time may be linkable; in this

scenario a broker who cooperates with one merchant may

be able to trace a coin spent at another merchant.

To show that such attacks are virtually impossible, or

equivalently prove the unlinkability property of our e-cash

scheme, consider two honest clients C1 and C2 who engage

with B in withdrawal protocols with the same info such that

the first client generates two unblinded coins C1, C2, and

the second client obtains the unblinded coin C3. Now, sup-

pose that the clients give the coins (and all the secret in-

formation) to the challenger who plays the following game

with the adversarial broker:

– The challenger gives C1, along with all associated secret

information, to B. B knows this coin was generated by C1.

5Indeed, consider the game in which a client attempts to generate, for

info of his choice, more valid signatures than it requested from the signing

oracle for this value of info. According to Abe-Okamoto, the client has only

a negligible advantage in this game, provided that the number of requested

signatures for any fixed info is polynomial in the logarithm of the security

parameter. This readily implies the unexpandibility property of e-cash.

– The challenger at random i ∈ {2, 3} and then gives Ci

to B along with secret information about the coin.

– B guesses i and wins if its answer is correct.

If B can somehow link C1 and C2 together, then it will

be able to win with probability non-negligibly better than

simple guessing. More precisely, let us say that the e-cash

provides coin unlinkability if in the above game the adver-

sary cannot guess correctly with probability 1/2 + δ for

non-negligible δ > 0. Coin unlinkability in this sense is

essentially a direct consequence of the blindness property.

Indeed, according to the blindness property of the coins,

given C2 and C3 in a random order (together with the secret

information about the coins), B will not be able to decide

which coin is C2 and which one is C3 other than with neg-

ligible advantage. This readily implies coin unlinkability.

Besides the above security properties, in case of a con-

flict, all transcripts and commitments can be given to a

trusted third party for arbitration. It is a routine exercise

to verify that the third party will be able to effectively deter-

mine the violator of the protocols, and is left to the reader.

7. Efficiency and Implementability

Implementation. Our implementation consists of four

components, totalling approximately 1200 lines of code

(LOC): a broker server (158 LOC), merchant server (158

LOC), witness server (294 LOC), and client (258 LOC).

The witness and merchant servers are designed to be run

at the same time on the same physical hardware, but not in

the same memory space (for increased security).

We chose the Python scripting language to implement all

four components due to Python’s ease in handling web ser-

vices and distributed applications, as well as the availability

of unbounded-width integers and easy-to-use cryptographic

libraries. The broker, merchant, and witness components

are implemented as stand-alone web service providers, but

can easily be changed into drop-in modules for existing web

servers (such as Java application servers or Apache).

We use a (mostly) stateless transaction design for our

web servers, based largely on REST principles [16]. We

keep minimal session state at broker, merchant, and wit-

ness, and rely on the client to transmit all state informa-

tion when requesting transactions. For state information

that was originally generated by someone other than the

client, the transaction request contains a signature on the

externally-generated information to prevent modification by

the client/intermediary. All state is encoded as universal

resource identifiers (URIs) and transferred along with the

transaction request. This design trades implementation sim-

plicity for increased communication overhead, as state must

be transferred repeatedly throughout a single logical trans-

action (a logical transaction may include multiple commu-

nication sessions between several servers). If state needs to

be kept secret, an encrypted, timestamped, and signed blob
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can be transmitted as a state identifier. Alternatively, the

system could keep state and use transaction identifiers.

Table 1. Number of cryptographic operations

Random Mod. exp. Hash Sig. Sig. ver.

Withdraw
Client 12 3 1 1 0
Broker 0 3 0 0 0

Commit
Client 0 0 1 0 0
Witness 0 0 2 1 0

Payment
Merchant 0 10 7 0 2
Witness 0 7 7 0 2

Complexity analysis. Since we are using URL-encoded

data transfer, all state information is encoded as text when

transferred over the network. This imposes higher commu-

nication overhead than binary file transfer, but compression

and/or base64 data encoding can be used if greater com-

munication efficiency is required. Furthermore, there is a

trade-off between how much state is kept by the servers and

how much information has to be transferred for each re-

quest. For ease of implementation we chose to keep as lit-

tle state is possible at broker and merchant/witness servers,

but we can decrease communication overhead at the cost of

more complicated server logic by offloading more state off

the client onto the servers.

The number of cryptographic operations for each proto-

col is listed in table 1. To obtain a coin from the broker, the

client initiates the withdrawal protocol. However, before

the resulting coin is spendable, the client must get a com-

mitment from the witness(es) assigned to that coin. The

entire withdrawal protocol, including obtaining a witness

commitment from one witness, requires 6 rounds of mes-

sage exchange (4 for withdrawal and 2 for commitment).

The payment protocol is computationally very simple.

For the witness, the number of operations shown is the

worst-case scenario, in which the witness needs to perform

extraction of the coin secret. This happens only in the case

of double-spending; otherwise no witness computation is

required. Payment requires 6 rounds of message exchange.

The renewal protocol is almost identical to the with-

drawal protocol, except the client needs to do 5 additional

modular exponentiations (for a total of 8). As in withdrawal,

this requires 4 rounds of message exchange.

For the deposit protocol, the merchant does no computa-

tion, and the broker does two modular exponentiationsand

a verification of the coin, including witness assignment and

signatures. The deposit protocol is one-sided, only requir-

ing the merchant to send one message to the broker.

Experimental results. To determine the viability of our

protocol for real-world deployment, we measured the time

and bandwidth for our payment protocol, and compared the

results to the time required to download and render the ad-

vertisements on a popular Internet website.

To determine the overall performance of the payment

protocol, we simulated 100 runs of the protocol using three

Table 2. Wall-clock runtime and bandwidth for payment

protocol over 100 trials

Client total time Client bytes
transmitted

Average 1789ms 1.6KB

St. dev. 324ms 1.3B

randomly selected PlanetLab nodes in diverse geographic

locations across the United States.6 The results of these tri-

als can be found in table 2. The average time over 100 runs

to complete the payment protocol, including contacting the

witness, was 1.8s. We note that this is a worst-case figure,

as the client can obtain a witness commitment on the coin

at any time between when the coin is withdrawn from the

broker, and the time the coin is spent; several optimizations

could further reduce the computation time as well.7

For comparison purposes, an informal survey of a popu-

lar ad-supported web site8 shows that it serves up 37.13KB

in two ad images and associated links for the main page.

The total transfer overhead for the client in our protocol is

around 1.6KB, with merchant and witness overheads on the

order of 4KB. So, our protocol is more efficient than adver-

tisement image-based payment from a network utilization

standpoint. Using the same web site, we performed a num-

ber of load and render timing tests, and found that it takes on

average 0.9 seconds to fetch the website and render a text-

only version, ignoring images and scripts. Since we do not

load images nor process scripts (which may load additional

images or content), this represents the low end estimate, but

gives a good benchmark as to what end-users may expect in

terms of web page load times.

We can conclude that our protocol is viable in real-world

commercial environments with Internet-like communica-

tion latencies. Communication overhead itself (the amount

of data transferred) can be reduced using known compres-

sion techniques, by increasing statefulness of all parties, or

a combination of both.

8. Conclusion and Future Work

In this paper, we have proposed a framework for anony-

mous electronic cash that prevents double-spending with-

out an online trusted authority or special-purpose hardware.

Our scheme leverages the power of peer-to-peer systems

to provably and efficiently prevent double-spending while

retaining conceptual simplicity. Conceptually, the scheme

replaces trusted hardware observers as in Brands’ protocol

with a large group of mostly trustworthy hosts. We have

demonstrated the simplicity of our approach with a pro-

totype implementation, and reported on experiments that

confirm its efficiency. Our experimental results and sim-

6The client and broker were located in Wisconsin, the witness in Cali-

fornia, and the merchant in Massachusetts.
7The primary source of overhead is in Python’s native bignum and

crypto libraries, e.g. the average wall-clock time for an RSA signature

is 250ms, compared to 4.8ms using OpenSSL.
8CNN.com
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ple complexity analysis suggest that the scheme could eas-

ily handle web-based mini-payments for many merchants.

In addition, The accompanying cryptographic protocols can

easily be extended to provide additional functionalities such

as escrow service.

As far as incentives, our scheme shifts responsibility for

double-spending prevention from the users, who do not ben-

efit from it, to the merchants, who do. As a result, if the

coins belonging to some client are stolen, the damage to

the client will consist only of the value of the stolen coins.

We believe that this more closely aligns the interests and

security obligations of the parties involved than the current

credit card infrastructure.

The scheme proposed in this paper does not allow for ag-

gregation of transactions, which makes it less efficient than

desired. Thus it will be interesting to investigate how coin

withdrawals, payments and other protocols can be aggre-

gated together without loss of security. Moreover, an inter-

esting question for further work is how our protocols can

be modified to accommodate additional notions of e-cash,

such as divisible and unlinkable e-cash.
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