
Building Trust in Storage Outsourcing: Secure Accounting of Utility Storage

Vishal Kher and Yongdae Kim
Computer Science & Engineering, University of Minnesota

{vkher,kyd}@cs.umn.edu

Abstract

We are witnessing a revival of Storage Service Providers
in the form of new vendors as well as traditional players.
While storage outsourcing is cost-effective, many compa-
nies are hesitating to outsource their storage due to security
concerns. The success of storage outsourcing is highly de-
pendent on how well the providers can establish trust with
their consumers. While significant work has been done to
ensure confidentiality, integrity, and availability of data, a
practical solution for accounting of outsourced storage is
still at large missing. This paper presents Saksha, a se-
cure accounting system that enables automated and verifi-
able metering of the resources utilized by the consumers. A
provider that includes Saksha as a part of its storage service
can prove to its customers the amount of resources utilized
by them. As a result, Saksha will help to enhance trust by
preventing any inflation or deflation of the service usage.
Saksha is not restricted to any particular pricing model; it
can be applied to the popular pay-per-use pricing model for
utility storage as well as many of its variants. In addition, it
can be used by the consumers to periodically evaluate their
usage and reassess their outsourcing requirements. Saksha
is developed such that it can be layered on the top of net-
worked file systems. Our performance results demonstrate
that Saksha is efficient and can be used in practice.

Keywords: Trust, Verifiable accounting, Metering, Storage
outsourcing, Storage security

1. Introduction

Storage Service Providers (SSP) sell storage, bandwidth,
and management services to companies that do not have
enough money, space, or technical expertise to build and
manage their own data centers. We have witnessed a revival
of SSPs in the form of new vendors as well as traditional
players [11, 8]. A Storage Service Consumer (SSC) sub-
scribes to a SSP and users belonging to the SSC (SSC em-
ployees or customers in case the SSC is itself a provider)
use the file systems hosted by the SSP to store and retrieve

the data. The storage outsourcing pricing models are still
nascent. One of the models that is gaining popularity is
pay-per-use pricing where consumers are charged based on
their usage and disk consumption [3, 7, 1]. For example,
Amazon and HP charge their customers for every gigabyte
transferred and stored [1, 3] on a monthly basis. Alterna-
tively, in the future, one can use variations of pay-per-use
pricing models, such as history-based pricing where a SSP
can charge a SSC based on the previous month’s usage, or
charge more for bandwidth than for storage [22].

While outsourcing storage is cost-effective, many com-
panies are hesitating to outsource their storage mainly due
to trust and security concerns. Eliminating these concerns
and establishing trust with the Storage Service Consumer
(SSC) is pivotal for the success of storage outsourcing. An
important question to be addressed in this setting is - how
can consumers trust providers? More precisely, in the con-
text of this paper, how can a SSC trust a SSP to report the
correct usage values and charge it the right amount? A
greedy SSP can attempt to cheat the SSC by inflating the
usage values; whereas on the other hand, a greedy SSC can
try to cheat by deflating or denying its usage. Such incidents
have been evident in the past [4, 29], which not only went
undetected for several years, but also allegedly resulted in
a loss of hundreds of millions of dollars and tedious litiga-
tions.

A SSP will be able to gain its consumers trust by includ-
ing automated and secure accounting as a part of its service.
Automated accounting will enable consumers (or providers)
to monitor, view, and predict their usage (or contribution) in
a timely manner, whereas secure accounting - a mechanism
by which a SSP can prove the amount of utilized service
to the SSC - can prevent deception and resolve disputes. In
current practice, the accounting seems to be primarily based
on some estimates such as using logs (which can be manip-
ulated) and trust rather than provable evidences. In addition
to secure accounting, the SSP should provide services, such
as confidentiality, integrity, and availability. While most of
the recent research related to secure outsourcing is centered
around ensuring confidentiality [15, 16, 21], integrity, and
availability [26] of outsourced data, a practical solution for
secure and automated accounting is still at large missing.

26th IEEE International Symposium on Reliable Distributed Systems

1060-9857/07 $25.00 © 2007 IEEE
DOI 10.1109/SRDS.2007.30

55

26th IEEE International Symposium on Reliable Distributed Systems

1060-9857/07 $25.00 © 2007 IEEE
DOI 10.1109/SRDS.2007.30

55

In this paper, we present Saksha - a system that enables
automated and secure accounting of the services utilized by
the consumers. By including Saksha as a part of the storage
service, the SSP will be able to measure and give a non-
repudiable, publicly verifiable proof of the amount of stor-
age and bandwidth utilized by its consumers. The SSP can
include these proofs as a part of its periodic billing cycle.
The SSC can verify these proofs and rest assured that it is
indeed paying for the services utilized by them. Saksha en-
sures that a consumer cannot deny its usage and a provider
cannot inflate its consumer’s usage. Each party can detect
any misuse and resolve disputes in a timely manner with-
out requiring any third party intervention, which is often
time consuming and expensive. To the best of our knowl-
edge, Saksha is the first secure accounting system for utility
storage that can be layered on top of networked file sys-
tems. In this paper, we also present a generic protocol for
secure accounting, an instance of which is included in Sak-
sha. Our experimental evaluation demonstrates that Saksha
is efficient and incurs a small overhead during data path.

2. Design Criteria

2.1 System Model

Figure 1. System model overview.

Figure 1 gives a high-level overview of our system. It
consists of four entities namely, the SSC client machines,
the SSC accounting server A, SSP file servers, and the SSP
accounting server B. The SSC client and the SSP file server
is denoted as C and S, respectively. The SSC clients mount
remote file systems to store and retrieve data from S.

A client C attests the fact that it has consumed some re-
source from S by giving a verifiable receipt to S. S verifies
this receipt and deposits it at B. Receipts from all the file
servers are collected by B and sent periodically to A, who
then verifies these receipts and uses them to calculate the
amount of resources consumed by C (and all other clients).
These receipts stand as proof-of-work and B can use them
to prove to A or any third party (in case of disputes) the

amount of resources consumed by its clients. In case C
fails to give receipts to S (i.e., C attempts to cheat), S can
stop providing any service to C until C gives the receipts.
We would like to stress that in figure 1, the SSC accounting
server A is shown as a separate server machine for simplic-
ity. In reality, it is just a simple, light-weight process that
can be run on an average machine and does not incur any
significant maintenance overhead.

One way of generating receipts is to use RSA digital
signatures. For example, every time C consumes y bytes
of storage space from S, C can give a signature on tuple
〈C,S, y〉 to S. S can verify the signature and deposit all
such receipts at B, who in turn will forward the receipts to
A for accounting. The first problem of this approach is that
it will impose significant computation overhead on A, since
A has to verify all the receipts from all of its clients. In ad-
dition, B will also have to verify these signatures to resolve
any disputes. This verification cost can be overwhelming,
especially on B, since a SSP can have associations with
many consumers. The second problem of this approach is
that it requires public key operations (on C and S) during
file access, which can introduce additional latencies in the
data path. Therefore, to avoid these problems, Saksha must
use receipts that will satisfy the following requirements: 1)
generation and verification of receipts must be efficient, 2)
they must be publicly verifiable and non-repudiable, 3) each
receipt must have a unique sender and receiver identifier,
otherwise two different recipients (e.g., servers) will be able
to claim credits for the same receipt, and 4) no one should
be able to replay the receipts.

2.2 System Requirements

Resistance to abuse: The SSP must be able to provide a
proof of its clients consumption. The SSP should not be
able to inflate its customer’s usage; neither should the cus-
tomer be able to deny its consumption.
Timely detection of misuse: Saksha must be able to de-
tect any misuse of the system (inflation/deflation) as soon as
possible. Timely detection of greedy behavior from either
of the party will enable the other party to take appropriate
actions and minimize resulting losses.
No third party intervention: Since involving a third party
is often too expensive and increases the system complexity,
the accounting system must not require any intermediary.
Generic mechanism: The accounting mechanisms must be
independent of the underlying file systems so that they can
be easily integrated with different file systems.
Minimized computation and communication overhead:
The computation, communication, and storage overhead on
all of the entities should be as small as possible. Adding
computation and communication overhead during data path
will increase the latency of reads and writes and reduce the

5656

performance of the system. As a result, it will hamper the
deployment of the accounting mechanism.

2.3 Assumptions

For the purpose of entity authentication, we assume pres-
ence of a certificate authority (CA) and that every client ma-
chine (C) and file server (S) has a public-key certificate.

We assume that the SSCs do not trust usage values re-
ported by the SSPs. In other words, the SSPs can attempt
to inflate the usage values. For instance, by simply report-
ing wrong usage values at the end of the billing cycle, or
by self-creating random files and storing them in the con-
sumers storage space. On the other hand, SSCs can attempt
to deny their usage. It is assumed that the SSC trusts all
its employees and there exists a mutual trust between SSC
clients and the accounting server A. Similarly, there exists
mutual trust between B and S. Also, we assume that SSC
employees do not collaborate with the SSP. Such collabora-
tion attacks can never be prevented, since a SSC employee
can simply keep consuming the resources.

We assume that the underlying file system will provide
the necessary security features, such as authorization, con-
fidentiality, etc. For simplicity, we assume that the con-
sumers use mechanisms to ensure integrity and freshness of
their data. Without such mechanisms in place a server will
be able to inflate the usage values by manipulating the con-
tents of the files. For example, by ignoring end of file (EOF)
during read operations and instead providing some garbage
data, or a server can perform rollback attacks [19] by replac-
ing the current version of file by an older version of smaller
size so that the server will get more receipts during the fol-
lowing writes. In another attack, the server simply drops
the client’s file; thus, claiming credits for storage without
actually contributing for it. Such data corruption attacks,
can be prevented using any of the existing techniques, such
as [19, 30, 26, 21]. In this paper, we focus only on verifiable
accounting and assume that the clients are using appropriate
data integrity mechanisms.

Finally, we assume that the client gives receipts to the
server for the utilized service and vice versa. This is a rea-
sonable assumption since both the SSC and the SSP are in-
terested in a long-term relationship. Failure to give receipts
is a clear indication of an attempt to cheat.

3. Design

In a secure accounting system, we need to 1) define the
type of receipts, 2) measure the amount of resources con-
sumed by the clients, 3) define the unit of accounting, and
4) design a secure accounting protocol.

3.1. Verifiable Receipts

Saksha is primarily focused on measuring two types of
resources - bandwidth and storage space. Unlike band-
width which is a one-time resource, storage space can be
reduced due to deletes. Therefore, accounting of storage
service includes keeping track of three activities: band-
width consumption, increase in storage space, and decrease
in storage space. In order to support verifiability of these
three operations Saksha defines three types of receipts (one
for each): bandwidth receipt, storage receipt, and
delete storage receipt. The former two are given by
C to S whenever C consumes more storage space or trans-
fers data from S. Since these receipts are non-repudiable,
S uses these receipts to claim credits. To avoid the situ-
ation where S attempts to inflate storage consumption, a
reverse operation must happen for delete - S should give a
delete storage receipt to C.

3.2. Measuring Resource Consumption

Bandwidth measurement In the context of this paper,
bandwidth is defined as the amount of data transferred be-
tween a client C and a server S within the accounting in-
terval. For example, the bandwidth consumed due to a
read request is the size of read request plus the size of
server response. The accounting interval is expected to be
at least an hour and in most of the cases a day, since SSP
charge their customers based on consumptions per day or
per month [3, 7, 1]. In Saksha both C and S keep track
of the bandwidth used by C by measuring the amount of
bytes transferred between C and S (due to operations such
as read, readdir, write, etc.).

Storage Measurement In order to give a storage

receipt to the server, the client has to predict how much
new disk space will be consumed as a result of the current
write operation. In reality, only the file server can accu-
rately measure the disk usage. A write by a client may not
always result in increase in the disk space. For example, a
client overwrites some of its old data, which results in data
transfer but does not result in increase in disk space. On the
other hand a write may result in fragmentation at the server
file system; thus consuming more space. Further, the server
file system may accumulate the tails (last blocks) of each
file and store them collectively in special purpose blocks. In
this case, a write may not consume more disk space since
the data might get squeezed into some previously allocated
blocks. Thus, a client sitting outside the file server cannot
predict accurately the result of its write operation. Saksha
resolves this problem by measuring the amount of ”addi-
tional data” uploaded/added by the client during the write
operation instead of measuring the actual disk usage. For
example, suppose the current file size is 6KB and the client

5757

writes additional 3KB starting from offset 4096, then the
client consumes 1KB of additional storage space. Based on
the current file size, the offset, and the size of current write,
the client can calculate the amount of additional upload (y)
by using the following simple equation.

y = (offset + write size) − current file size

From the client’s perspective it is uploading y new bytes (if
y is positive; if y is negative it means that the client has
overwritten a portion of the file) to the file server, and that
is the amount of additional storage consumption. How the
file server stores these y bytes is extremely difficult to pre-
dict and can change if the server deploys a different file
system. Besides, from the SSP’s perspective, accurately
measuring storage space consumption at the granularity of
disk block may not be necessary as long as it can accurately
measure the amount of additional content uploaded by the
client. The difference between the size of the uploaded con-
tent and the actual disk usage can be considered as insignif-
icant overhead. Thus, for the remainder of this paper, when
we say client consumes y amount of additional/new stor-
age space, it means that the client has uploaded y bytes of
additional content.

Saksha measures the amount of content deleted by the
client by monitoring file system operations that eventu-
ally result in reduction in storage space, such as unlink,
rmdir, or truncate. To account for the delete space,
delete storage receipts are given by S to C. In a file
system, in addition to write and delete operations, space is
also consumed due to metadata operations by creating a file
(e.g., mknod) or by setting attributes (e.g., setxattr). The
amount of storage space consumed by the mknod operations
is difficult to predict, since it also depends on the actual file
system block size. Saksha approximates this increment by
assigning a flat cost for the file creation operations. Storage
space consumed by attributes is handled similar to the write
operation discussed above.

3.3. Unit of Accounting

During accounting for storage and bandwidth, presenting
verifiable accounting information for every byte increase in
storage space or every byte transferred will be expensive
and is unwarranted. In Saksha, accounting is performed for
a bigger collection of data called a chunk. For example, in
the case of bandwidth, we measure the number of chunks
transferred between C and S during the accounting inter-
val. Similarly, in the case of storage, we measure the num-
ber of additional chunks uploaded by the client during the
accounting interval. The size of a chunk is part of a policy
decision and should be agreed upon by both the parties (it
can simply be a part of the service level agreement). Thus,
in Saksha, a receipt is exchanged only when the client con-

sumes a chunk of storage/bandwidth or deletes a chunk.

3.4. Accounting Protocol

In this section, we begin by presenting a generic frame-
work for storage utility accounting. This framework can be
instantiated into different protocols that primarily vary in
the ways of generating, exchanging, and verifying receipts.
We then present the details of the Saksha accounting
protocol, which is an instantiation of this generic structure.

3.4.1. A generic protocol structure. The storage service
accounting schemes follow the structure shown below:

Initialization The SSC accounting server A and the SSP
accounting server B generate their own public-private key
pairs denoted by (PkA, SkA) and (PkB , SkB), respec-
tively, and get their public-key certificates from a trusted
CA. Let CertA and CertB denote the certificates for A and
B respectively. Each client1 C generates its own public-
private key pair and acquires a public-key certificate CertC
from A, which is signed using SkA. CertC binds PkC to
C and symbolizes the fact that according to A, C belongs
to A’s organization. In addition, A can optionally include
any policy information in CertC . Similarly, each server S
acquires a public-key certificate CertS from B.

Beginning of the accounting period During this phase the
clients and servers can pre-generate receipts based on the
expected daily usage. While this pre-generation of receipts
is optional, it will greatly reduce the computation effort dur-
ing data access. The accounting period t is expected to
be at least an hour and in most cases a day, since SSPs
charge their customers based on consumptions per day or
per month [3, 7, 1].

Increase storage request This step is performed when C
consumes new storage space from server S due to suc-
cessful file system operations, such as write,mkdir,

setxattr, etc. In this step, C sends k storage

receipts to S if it consumes k chunks of storage space
from S. C maintains a storage usage counter X that counts
the amount of storage space consumed by C since the last
transfer of a storage receipt to S. C sends k receipts
(or one receipt of value k) to S, where k = �X/b� and b
indicates chunk size. After transferring receipts, C then
decrements X by k ∗ b. After receiving the receipts, S veri-
fies them and stores them locally (or sends them to B for ac-
counting). Note that since a write operation also consumes
bandwidth, this step will also invoke the bandwidth request
phase. Exceptions to this are file system operations that
result in increase in storage space, but do not necessarily
transfer data (pre-allocation operations such as truncate).

Bandwidth request This step is performed every-time C
transfers some information or receives some information

1Client here indicates client machine.

5858

from the server. C maintains a bandwidth consumption
counter Y that counts the number of bytes transferred be-
tween C and S (due to any file system operation). Similar
to the above step, C sends k receipts (where k = �Y/b�) to
S and decrements Y by k∗b. S verifies the received receipts
and stores them locally or sends them to B for accounting.

Decrease storage request This step is performed when C
deletes some storage space from S (e.g., due to truncate,
unlink). S maintains a delete usage counter Z that counts
the amount of storage deleted by C. If k = �Z/b� > 0, S
gives k delete storage receipts to C and decrements
Z by b ∗ k. C verifies these receipts and store them locally.

Usage measurement At the end of the accounting period,
servers send their receipts to B. B counts the usage, keeps
a record of accounting interval, and stores all of the receipts
as evidence. The receipts should be kept at least until A
and B agree with the usage values. Note that B does not
have to verify the receipts until a dispute since S has already
verified them. B then forwards these receipts to A. Since B
has no incentive to forward the delete receipts to A, C must
forward the delete receipts received from S to A. Finally,
A verifies these receipts (if necessary) and calculates the
storage (Us) and bandwidth (Ub) usage in terms of chunks
during interval t as follows:

Us = #storage receipts − #delete storage receipts (1)

Ub = #bandwidth receipts (2)

3.4.2 Preliminaries. Before we explain our protocol in
detail, we give an introduction to hash chains, which is a
primitive of our protocol. Hash chain is a popular cryp-
tographic technique that has been used before for one-
time passwords [18], one-time signatures [17], micropay-
ments [5, 25, 24], or to measure web clicks [6]. Let h denote
a cryptographically strong hash function such as SHA1. A
hash chain is generated by recursive application of h, where
the input to the hash function is the output of the previous
iteration. A hash chain is created in reverse order as follows:

rm = x, rj = h(rj+1), hm(rm) = r0,

where x is a random seed, j = m − 1, . . . , 1, 0, and r0 is
called the root of the hash chain.

A hash chain can be used for accounting as described
below. Suppose C wants to read k chunks from server S.
C will generate a hash chain described above and create
a commitment certificate CertSC = {C,S, r0}Skc

, where
{M}Skc

denotes a message M signed using Skc. CertSC
is C’s commitment to root r0. For k chunks, along with
CertSC , C gives kth value of the chain as a receipt to S. S
verifies CertSC and applies h to rk recursively k times to
get r′0 = hk(rk). S then verifies if r′0 is equal to r0 present
in CertSC . If yes, S has received k receipts for which it can
claim credits by presenting CertSC and 〈k, rk〉 to verifier.

3.4.3 Saksha protocol details. We now describe our proto-
col in detail.

Initialization As described in section 3.4.1 , all entities ac-
quire their respective public-key certificates.

Beginning of the accounting period A background pro-
cess running on C and S called rcpt srv keeps gener-
ating hash chains and makes them available for account-
ing. Since hash chain generation is inexpensive, this pro-
cess over-provisions the chains to ensure that hash chains
are available beforehand. Note, in case a hash chain is not
available, it can be easily generated on the fly, which will
incur a very small one-time delay.

When C connects to S, C acquires two hash chains
from the rcpt srv, one of which will be used to give
bandwidth receipts and the other to give storage

receipts. Let the hash chain used for bandwidth

receipts be denoted as bi
k, bi

k−1, . . . , b
i
0 and the chain

used for storage receipts be denoted as si
l, s

i
l−1, .., s

i
0

where i is server identifier and k and l denotes the length of
the respective chain. Each hash value in the chain (except
root) will be used as a receipt. For each chain, C creates a
commitment certificate as shown below:

BWS
C = {C,S, bS

0 ,′′ bandwidth′′, start, end}Skc

STS
C = {C,S, sS

0 ,′′ storage′′, start, end}Skc

Where, C and S are unique identities of the client and the
server respectively, root indicates the root value of the hash
chain, and the type of receipt chain (i.e., hash chain) is in-
dicated as: “storage” for storage receipts and “band-
width” for bandwidth receipts. The period of valid-
ity of the chain is indicated by the start and end fields.
Similarly, S acquires one hash chain from its rcpt srv

which will be used to give delete storage receipts
to C. Let us denote this chain as dj

q, d
j
q−1, .., d

j
0, where j is

the client identifier and q denotes the length of the chain.
The server then generates a commitment certificate for C:
DC

S = {S,C, dC
0 ,′′ delete′′, start, end}Sks

.
C and S exchange the commitment certificates. Each

party verifies the certificates received from the other party
and cache the root of each received chain. More precisely,
S will cache 〈C, 0, sS

0 , expiry〉 and 〈C, 0, bS
0 , expiry〉

whereas, C will cache 〈S, 0, dC
0 , expiry〉. The commitment

certificates are stored in secondary storage.

Increase storage request If C has consumed k additional
chunks at S, then C will send 〈k, sS

k 〉 to S. After receiving
this tuple, S will first check the cached expiry and drop this
receipt if it has expired. If this check is successful, S will
hash sS

k k times to get z = hk(sS
k), and verify that z is equal

to sS
0 . If yes, S caches 〈C, k, sS

k , expiry〉. After, every
successful verification of the receipts, S caches the receipt
with highest index. Next time, when C consumes i more
chunks, C will send 〈i, sS

i 〉 to S (i > k). S will hash sS
i i−k

times and verify if the resulting hash value matches with

5959

sS
k . Thus, S has to perform one hash operation per chunk

created by C whereas computation on C is zero (assuming
that the receipts are pre-computed).

Bandwidth request This part is similar to the “increase
storage request“ part, except that in this case C will
give bandwidth receipts (bS

i) instead of storage

receipts.

Decrease storage request This part is also similar to the
“increase storage request“ part, except that in this case, S
will give delete storage receipts to C.

Usage Measurement In our protocol, this step is performed
at the end of each day, to avoid large computations at the end
of the accounting period (if the metering period is large e.g.,
one month). At the end of the day all servers send the last
receipts received from the clients as well as the last delete
receipt to B. Thus, for each client C a server S will send
the following information to B:

〈CertC , STS
C , p, sS

p 〉 (3)

〈CertC , BWS
C , q, bS

q 〉 (4)

〈CertS ,DC
S , r, dC

r 〉 (5)

Here, p and q indicate the index of the last storage

receipt and bandwidth receipts received from C.
The index of the last delete storage receipt received
by C is denoted by r. B stores all of the receipts and es-
timates the storage increase (Us) and bandwidth usage in
terms of chunks for interval t using equations (1) and (2) as
follows:

Us = p − r (6)

Ub = q (7)

Similarly, every client sends the following information to A:
〈CertS ,DC

S , r, dC
r 〉. B forwards to A information received

in (3) and (4). For each client-server pair, A verifies STS
C

and BWS
C , recursively hashes sS

p p times and bS
q q times,

and verifies if the corresponding final hash values are the
same as sS

0 and bS
0 . Similarly, A verifies each of DC

S and
verifies if dC

r is correct. Finally, A computes the usage using
equations (6) and (7).

We stress that A does not have to verify the hash chains
every time if each C can send to A the index and the value of
the last receipt given to each S. A can simply compare the
values received from C and B. If they match, both A and B
can exchange signatures agreeing on the usage. However, in
case the values don’t match, A will have to verify the hash
chains that resulted in the dispute. Thus, A has to verify
all the hash chains only in the worst case. In cases that
do not result in a dispute, A will have to perform only two
signature generation and verification to agree on the usage
metrics with B.

4. Protocol Discussion and Analysis

4.1. Discussion

For simplicity, we have assumed that the chunk size is
the same for storage receipts, bandwidth receipts,
and delete storage receipts. In reality, the chunk
sizes can be different for each. Since typically bandwidth
is consumed significantly more than the storage space, the
chunk size for bandwidth receipts can be bigger than
the storage receipts. Similarly, since a delete opera-
tion removes a bigger collection of data than write opera-
tions, the chunk size of delete storage receipts can
also be bigger than that of the storage receipts. The
chunk size for storage receipts can be chosen based
on the type of data accessed, for example, bigger for multi-
media. In sections 4.3 and 6 we show that even with small
chunk size of 4 KB or 16KB for each type of receipt, the
overhead of Saksha is small.

The computation overhead on A also depends on the ac-
counting interval t. In general, for large intervals more time
will be spent to perform the hash verifications. If the usage
during this accounting interval is also high, the computation
overhead on A can be significant. In which case, the usage
measurement phase of the accounting protocol can be per-
formed more frequently, for example after every few days.
Since B has to send only the last hash of all the chains to A,
the communication overhead due to this periodic communi-
cation between A and B is very low (see section 4.3).

In Saksha, in case C does not give receipts, S will allow
C to access files until C utilizes the resources above some
threshold without giving any receipts. After the threshold
is reached, all requests from C are rejected until C fills the
deficit. If S does not give receipts, C logs the event and re-
ports to A after a threshold number of occurrence. In cases
where the providers use load balancing, the client may not
know the destination servers, so the client will not be able
to generate receipts. One way to solve this problem is to
ask the server to fetch the receipts periodically rather than
asking the client to push them to the server.

4.2. Security Analysis

In this section, we briefly analyze the security of the pro-
tocols described in section 3.4.3 and explain why A collud-
ing with all clients of SSC cannot deny their consumption,
and why B colluding with all of its servers cannot inflate
SSC’s usage. During the accounting phase, since B has to
present to A all of the receipts given by A’s clients, the only
way B (or its servers) can inflate usage (generate more re-
ceipts) is by forging some of the receipts. In order to forge
receipts, B has to either compute the pre-image of the last
receipt, or forge a client’s signature. Since clients are us-
ing a cryptographically strong hash function and a secure

6060

signature scheme (for signing the root), forging receipts is
computationally infeasible.

Each receipt chain is signed by the client and is unique
per client-server pair. Therefore, assuming a strong signa-
ture scheme (e.g., RSA), the only way the server would have
received a receipt is from the client. Therefore, C and A
cannot deny their usage. If C fails to give receipts, then S
can easily detect that and take appropriate actions according
the local policies. Similarly, since each chain is committed
by a client to one specific server, servers cannot claim mul-
tiple credits for the same receipt by forwarding the receipt
to other servers. Following the same arguments for deletes,
it is straightforward to see that clients cannot forge delete
receipts and nor can the servers deny their receipts.

4.3. Performance Analysis

Let n and m indicate the number of clients and the
number of servers in the system. Let each client create
k bytes of additional storage, consume l bytes of band-
width, and delete d bytes of data per server in accounting
period t. Let chunk sizes be equal to b. Therefore, for
each server a client has to give k

b storage receipts and
l
b bandwidth receipts. For the rest of this section, let us
also assume that A has to verify all of the receipts everyday,
that is, we calculate the worst case computation cost on A,
to resolve a dispute.

Without Deletes Let us first ignore delete storage

receipts and compute the overhead for accounting of
storage and bandwidth usage. At the beginning of each ac-
counting period, each client has to compute two hash chains
per server of lengths k/b and l/b respectively. The total cost
of hash computation on the client per period t is k+l

b ∗ m
and the cost to sign each root is 2 ∗m signature generation.
Assuming that the hash chains are pre-computed at the be-
ginning of every accounting period, during the data path the
client does not have to perform any computation. Whereas,
during data path, each server performs one hash computa-
tion (to verify receipt) per data transfer of size b. Thus, over
the accounting period t, each server has to perform k+l

b ∗ n
hash operations and verify 2∗n signatures (for commitment
certificates). To resolve a dispute, A has to verify all of the
receipts and signatures generated by its clients. Thus, in the
worst case, A performs k+l

b ∗ m ∗ n hash operations and
2 ∗ m ∗ n signature verifications.

Now let us compute the storage and cache cost at each
entity. At the beginning of the accounting period, C has to
cache a pair of hash chains for each server, which is k+l

b
hash values. It is important to note that this is the worst
case cost; once a hash value is used C can delete the receipt
from its cache; thus, the cache space decreases over time.
In addition, there are several ways of reducing the cache
space [14, 27]. Since generating hash chains is inexpensive,

C can tradeoff space with computation by caching only
some intermediate values and compute the values in be-
tween whenever necessary by utilizing the idle CPU while
performing I/O. Each server has to cache only the last ver-
ified receipt from every client. Hence, the total number of
receipts cached by each server is 2∗n receipts. Since A and
B have to store only the last receipts received from each
client, the storage cost on them is 2 ∗ n ∗ m receipts and
2∗m∗n signatures. Additional bandwidth requirement be-
tween every client and server is equal to the number of re-
ceipts sent by the client to the server, which is k+l

b receipts.
Bandwidth overhead between each S and B is 2∗n receipts
+ 2 ∗ n signatures. Total bandwidth overhead between A
and B is 2 ∗ n ∗ m receipts + 2 ∗ n ∗ m signatures.

With Deletes Each server has to generate d
b ∗ n receipts

and perform n signature operations to sign the commitment
certificates of each chain. Each client has to perform one
hash operation per deleted chunk. The computation over-
head on A due to deletes is d

b ∗ n ∗ m hash operations and
n ∗ m signature verifications. Each client has to cache the
latest receipt from each server, thus, a total cache space of
m receipts. The worst case cache space on each server is
of d

b ∗ n receipts. Bandwidth overhead between each S and
B is n receipts, since every server has to give only the last
used receipt. Since B forwards all receipts received form its
servers, the bandwidth overhead between A and B is n ∗m
receipts. Finally, bandwidth overhead between each C and
A is m receipts.

Example Let us take an example to understand the protocol
overhead. Here, we mainly focus on the cost due to hash
computations as it is the most dominant cost. Let us assume
that the number of clients n = 210 and number of servers
m = 23. Let the time interval t be one day and chunk size
b = 4KB. Let the consumer organization read 3TB/day and
let the increase in storage space be 1TB/day. Thus, the to-
tal bandwidth consumed is 4TB/day. Note, these are quite
generous numbers. Storage in big medical companies such
as Mayo clinic grow at a rate of 1TB per nine days [28]. A
SSC will be typically of smaller scale2.

The amount of bandwidth (l) and storage space (k) con-
sumed by each client per server is 4 ∗ 227 and 227 bytes
respectively. Therefore, total computation cost to generate
bandwidth receipts and storage receipts on each
client = 220 hash operations. Using OpenSSL [23] 0.9.8, an
average 3 GHz Pentium 4 can perform approximately 220

hashes in a second. This will take only 1 second of CPU
time. On a typical client machine, to pre-generate receipts,
stealing one second of idle CPU time from an entire day is
not difficult. Every server has to perform one hash oper-
ations per chunk, which will incur 1µs delay during data-
path. The worst case computation cost per day on A will be

230 ((4∗227+227)
212 ∗ 210 ∗ 23) hash computations, which will

2Unfortunately, we could not find any work on SSC usage trends.

6161

take 1000 seconds or less than 17 minutes. Considering the
scale of usage, this is a small cost on an accounting server
for 5 TB of usage consumption. Thus, the accounting server
does not have to be powerful machine. It is clear from this
example that the computation overhead imposed by Saksha
during data path as well as on A will be small. Assuming
SHA-256 the worst case cost on each client to cache the
two pair of chains is 220 ∗ 25 = 32 MB, which is less than
0.8% of the amount of bandwidth and storage consumed by
each client. Total bandwidth overhead between A and B is
approximately 2MB for 2 ∗ n ∗ m 1024-bit RSA signatures
and 0.6MB for 2 ∗ n ∗ m hash values.

Let us assume that each client deletes d = 1MB from
each server. That is, total data deleted is 8GB per day
(1GB per server). Then, each server has to generate 210

hash chains of length 28. Thus, total computation cost per
day on each server is a little less than one second. Total
worst case cache cost (using SHA-256) on each server is
8MB. Additional computation cost on A due to deletes is
only 4 seconds.

5. Implementation Details

Figure 2 shows the three user-space components that
comprise Saksha: the Saksha accounting client layer
(sakshaC), the Saksha accounting server layer (sakshaS),
and the receipt server (rcpt srv). The Saksha accounting
client is layered on the top of CoreFS [2], a simple user-
space networked file system that is designed to be mounted
through an interface provided by FUSE [9]. The Saksha ac-
counting server sakshaS is layered on top of the CoreFS
file server, which is a user-space daemon that accepts
clients’ file system requests on a TCP socket. We chose
FUSE because it allowed us to implement our concepts in
user space without having to manipulate complex kernel
code. We used CoreFS because it is already a networked file
systems and simple enough to be used for rapid prototyping.
When users access files, the FUSE kernel library directs the
file system requests to the CoreFS client, which forwards
these requests to sakshaC . sakshaC creates an account-
ing message, inserts the file system request in this message
without any modification, piggybacks receipts (if any), and
sends the accounting message to sakshaS . sakshaS veri-
fies the receipts given by the client and passes the file sys-
tem request to the CoreFS server. The sequence of opera-
tions is reversed for the response message. The rcpt srv

program is portable to any Unix-like operating system. The
purpose of the rcpt srv is to pre-generate receipts (hash
chains) and provide them to the accounting layer when ever
they demand. It could easily monitor the number of chains
consumed by the accounting layer and generate more re-
ceipts if required. The rcpt srv program can also be
used for other systems that require generating receipts as

Figure 2. The Saksha system components.

well, for example, micropayments,or measuring web clicks.
All cryptographic operations are performed using OpenSSL
0.9.8 [23].

Receipt generation and exchange Every client and server
machine runs one rcpt srv in the background to get stor-
age/bandwidth receipts and delete receipts, respectively.
The rcpt srv communicates with the accounting layer
over Unix domain sockets. When the CoreFS client estab-
lishes a connection with a file server S, it informs sakshaC

about the newly established connection, which in turn re-
quests the receipt server to create and return commitment
certificates (signed roots) for storage and bandwidth chains
for S as well as the receipts (hash values) of each chain.
The rcpt srv picks two of the pre-generated hash chains
(or creates new chains if necessary), creates the commit-
ment certificates (as described in section 3.4.3), and returns
the commitment certificates and receipts to sakshaC . After
which, sakshaC sends the two commitment certificates to
S. In response, sakshaS acquires the commitment certifi-
cates and receipts for the delete chain, and sends the com-
mitment certificate to sakshaC . If the chains expire (due
to change in the accounting interval) or get used up during
an ongoing connection, the commitment certificates are re-
acquired and re-exchanged.

During normal file system operations, the accounting
layers measure the amount of storage increased, storage de-
creased, and bandwidth consumed due to the various file
system requests. sakshaC and sakshaS layers piggyback
the necessary receipts to file system requests and responses,
respectively. Piggybacking the receipts avoids unnecessary
addition of explicit network rounds and the resulting latency
overhead. The accounting layers store the commitment cer-
tificates and the 〈index, value〉 pair of the last receipt in a
local file. These receipts can be transferred for accounting
to the accounting servers through mechanisms external to
Saksha. The Saksha accounting program (not shown in the
figure) can read these receipts and perform accounting as
explained in the usage measurement phase in section 3.4.3.

Modularity One of the main goals while implementing
sakshaC and sakshaS was to implement them in a way
that will require minimal changes to the underlying file sys-
tem layer. Our goal was to keep the accounting logic sepa-

6262

write read unlink

Figure 3. Wall clock execution time of different phases of the experiment.

rate from the file system and to make the accounting layers
modular so that they can be easily integrated with CoreFS
and potentially other file systems. To achieve this, Saksha
defines simple APIs that the file system layer has to call
from appropriate locations. We illustrate this with an exam-
ple of accounting for a increase in storage space, which pri-
marily involves calling three Saksha functions, account
init, account open, and account write. When the
user mounts the CoreFS file system, the CoreFS layer calls
the account init function and passes the pointer to its
getattr function that gets file size and other status infor-
mation. The account init function records this function
pointer. When the CoreFS client receives an open request
(to open a file), the client invokes the account open func-
tion, which in turn invokes the getattr function of the un-
derlying file system, acquires size information of the client
and caches it. Finally, when the CoreFS client successfully
completes a write request, it calls account write func-
tion, which based on the file size, offset, and current write
size determines whether the client has acquired additional
storage space (as discussed in section 3.2) and takes ap-
propriate actions. Similarly, for bandwidth measurement,
the CoreFS layers have to invoke the appropriate higher-
level functions. Thus, accounting for a write operation took
adding only five lines of code to the CoreFS layer.

One way to implement piggybacking was to modify the
file system layers in the following manner. For each outgo-
ing file system message the file system layer should query
the accounting layer for receipts, and piggyback the receipts
to the outgoing message. The receiver will perform the re-
verse, remove the piggybacked receipt from the file system
message and send it to the accounting layer for verifica-
tion. However, because this approach requires changing
the file system message structures (and networking func-
tions), it will require significant changes in the file system
layers. Further, these complex modifications will have to
be performed for every file system using Saksha. To reduce
the complexity of these modifications, Saksha has defined
APIs, which when invoked by the file system layer, allows
Saksha to trap the outgoing file system requests. As a part of
the account init, the file system layer passes a context

structure, which among other fields, contains pointers to
send and receive functions. In account init, the Sak-
sha layer assigns the address of its own send and receive
functions to the respective pointer. When the file system
layer is about to send a message over the network, in-
stead of invoking its send function, it invokes the Saksha’s
send function by dereferencing the context’s send func-
tion. The Saksha send function considers the file system
message as an opaque object, piggybacks the receipts, and
sends the encapsulated accounting message to the receiver.
At the receiver’s end, the reverse operation is performed;
the file system layer invokes the Saksha’s receive function,
which after receiving the accounting message, verifies the
receipts and extracts the opaque file system message and
returns it to the file system layer. While this approach also
requires some modifications at the file system layer, it keeps
these modifications minimal. Integrating support for pig-
gybacking into CoreFS required changing approximately
forty lines of code, of which most of the changes had to
be performed to modify the function prototypes to pass the
context structure to the necessary functions.

6. Performance Evaluation

In section 4.3 we discussed the absolute CPU, storage,
and bandwidth overhead on each of the system entities. In
this section we measure the overhead in terms of latency
during the file system read, write, and unlink operations.
The goal of this experiment is to measure for different file
sizes the amount of extra latency that will be visible by Sak-
sha clients because of its accounting mechanisms. We mea-
sured the file system performance for each of these opera-
tions between two 3GHz Pentium IV machines with 1GB of
RAM, 100 Mbit/sec Ethernet link, and running SUSE 10.1
with Linux 2.6.13. The file server was run on top of Reiserfs
3.6.19, the default SUSE 10.1 file system.

By default FUSE sets the maximum size of each write
operation to 4KB, which will result in many network rounds
while writing a large file to the server and hide the overhead
of hash verifications. Therefore, FUSE was run in direct
IO mode, which allows us to set the size of a write opera-

6363

tion to be greater than 4KB. Neither the CoreFS client nor
the CoreFS server performed any caching. The experiment
was performed in three stages: the first stage creates a new
file on the file server and then sequentially writes to the file
with maximum size of each write operation set to 64KB, the
second stage sequentially reads the file from the file server,
and the third stage deletes the file using unlink operation.
We measured the time required for completion of each of
the phases with and without Saksha layered on the top of
CoreFS. The above experiment was performed for differ-
ent file sizes with a constant chunk size of 16KB. Figure 3
shows the execution time of each phase in milliseconds on a
log-scale and the actual values (mean of fifteen runs) in the
tabular format.

For each phase, the overhead is higher for small file sizes
and reduces with the increase in the file size. This is be-
cause as the file sizes increase the network and disk latency
dominates the computational latency. Clearly, for the read
and write phases, the performance of Saksha is compara-
ble to that of CoreFS. For small file size of 16KB the over-
head for read and write was 3% (only 110µs) and 4% (only
170µs), respectively. The overhead for both the phases
quickly drops below 1% after 64KB file size. Because un-
link is a simple operation that modifies only the meta-data
of the file system and is not as IO intensive as read and write
operations, the overhead of accounting mechanisms is more
visible for the unlink operation (although the absolute value
of the overhead is low). For 16KB file size, the overhead
is around 340µs (58%) and the overhead drops below 20%
after 4MB file size and reaches 13% for 256MB file size.
We would like to stress that since unlink operations are in-
frequent (compared to read/write), incurring slightly more
overhead during the unlink operations will not significantly
affect the performance of the system.

7. Related Work

The closest work to our research is by Gentry et. al [10]
and by Ioannidis et al. [13]. The goal of Gentry et. al was
to account for clients’ phone usage, especially for roam-
ing calls so that the foreign service provider can charge the
user’s home service provider for the phone service used by
the user. They proposed to use QuasiModo trees for ac-
counting. QuasiModo trees require more cache space on
the verifier, which can be high in the case of storage servers,
e.g., 2GB per server using example in section 6. While us-
ing QuasiModo trees will reduce the computation cost on
A, this advantage is not that significant in practice since A
can be dedicated machine (or a machine idle for few min-
utes per day). In addition, various techniques [14, 27, 12]
can be used to further reduce the computation cost (of our
scheme) due to hash chains. Besides, in our protocol, hash
verifications have to be performed only to resolve disputes.

Nevertheless, one can certainly use QuasiModo tree instead
of hash chains or a combination of hash chains and Quasi-
Modo tree (as also described in [10]). Filetellar [13] is a
credential based network storage system where a user stores
files on the server and pays using KeyNote microchecks. A
user can delegate rights to another user and can get paid
if the delegatee access his files. The focus of this paper is
somewhat different from ours. Filetellar is more suitable for
small-scale web-based file sharing, such as sharing of pho-
tos, where the number of users accessing the files is small,
the number of transactions with the storage servers is small,
and the data transferred during each transaction is large. It is
not clear how their system handles overwrites and updates
of data and meta-data as well as the bandwidth consump-
tion resulting from file system operations. Each transaction
(microcheck) requires a signature, which is expensive for
file systems where there can be a large number of storage
transactions and each transaction can be of a small size. Mi-
cropayments (some of which could be used instead of hash
chains) can be found in [20].

8. Conclusions

Establishing trust between consumers and providers is
key to the success of storage outsourcing. We believe that
by including security as a part of its service, a storage ser-
vice provider will be able to gain trust from its consumers.
In this paper, we have presented Saksha, a system that pro-
vides a light-weight solution to one of the security chal-
lenges - automated and secure accounting. By including
Saksha, providers will be able to give verifiable proof of us-
age to its consumers. Saksha prevents providers from inflat-
ing its consumers usage values, and consumers from deny-
ing the usage. To the best of our knowledge, Saksha is the
first accounting system that can be layered on the top of net-
worked file systems. Because of its modular architecture,
Saksha decouples secure accounting from the underlying
file system and keeps modifications to the file system layer
minimal. Our preliminary performance evaluation demon-
strates that Saksha incurs small overhead during file access
and can be deployed in practice.

Acknowledgments This research was supported in part by
the National Science Foundation (NSF) under grants CNS-
0448423 and CCF-0621462, and by the DTC Intelligent
Storage Consortium (DISC), University of Minnesota. We
thank Anjali Joshi, Peng Wang, and the anonymous review-
ers for their valuable comments and suggestions.

References

[1] Amazon S3-simple storage service. http://aws.
amazon.com/s3.

6464

[2] CoreFS: A basic networked file system. http://www.
cs.umn.edu/research/sclab/coreFS.html.

[3] HP Managed Storage Solution. http://h71028.www7.
hp.com/ERC/downloads/5982-3551EN.pdf.

[4] WorldCom faces criminal charges. CBS News.
http://www.cbsnews.com/stories/2003/
08/03/national/main566401.shtml.

[5] R. Anderson, H. Manifavas, and C. Sutherland. A practical
electronic cash system. Manuscript, 1995.

[6] C. Blundo and S. Cimato. A software infrastructure for au-
thenticated web metering. Computer, 37(4), 2004.

[7] W. Chai. EMC unveils pay-per-use storage.
http://news.zdnet.co.uk/business/0,
39020645,2137616,00.htm.

[8] A. Freedman. Storage Service Please: SSPs Start to Make
Progress, Again. IDC, February 2005. http://www.
gdv.ca/files/IDC Feb2005.pdf.

[9] FUSE: Filesystem in Userspace. http://fuse.
sourceforge.net/.

[10] C. Gentry and Z. Ramzan. Microcredits for verifiable for-
eign service provider metering. In Proceedings of Financial
Cryptography and Data Security, pages 9–23, 2004.

[11] R. Hasan, W. Yurcik, and S. Myagmar. The evolution of
storage service providers: techniques and challenges to out-
sourcing storage. In ACM StorageSS, pages 1–8, 2005.

[12] Y.-C. Hu, M. Jakobsson, and A. Perrig. Efficient construc-
tions for one-way hash chains. In Proceedings of Applied
Cryptography and Network Security, pages 423–441, 2005.

[13] J. Ioannidis, S. Ioannidis, A. Keromytis, and V. Prevelakis.
Fileteller: Paying and getting paid for file storage. In Pro-
ceedings of Financial Cryptography, pages 282–299, 2002.

[14] M. Jakobsson. Fractal hash sequence representation and
traversal. In Proceedings of IEEE International Symposium
on Information Theory (ISIT), 2002.

[15] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus-scalable secure file sharing on untrusted stor-
age. In USENIX File and Storage Technologies, 2003.

[16] V. Kher and Y. Kim. Securing distributed storage: chal-
lenges, techniques, and systems. In ACM StorageSS, 2005.

[17] L. Lamport. Constructing digital signatures from a one way
function. Technical Report CSL-98, SRI, 1979.

[18] L. Lamport. Password authentication with insecure commu-
nication. Commun. ACM, Nov 1981.

[19] J. Li, M. Krohn, D. Mazires, and D. Shasha. Secure un-
trusted data repository (SUNDR). In USENIX OSDI, pages
121–136, December 2004.

[20] R. J. Lipton and R. Ostrovsky. Micropayments via efficient
coin-flipping. In Proc. of Financial Cryptography, 1998.

[21] E. Miller, D. Long, W. Freeman, and B. Reed. Strong secu-
rity for distributed file systems. In Proceedings of USENIX
File and Storage Technologies (FAST), January 2002.

[22] A. Odlyzko. Internet pricing and the history of communica-
tions. Computer Networks, 2001.

[23] OpenSSL 0.9.8. http://www.openssl.org/.
[24] T. P. Pedersen. Electronic payments of small amounts. In

Security Protocols Workshop, pages 59–68, 1996.
[25] R. L. Rivest and A. Shamir. Payword and micromint: Two

simple micropayment schemes. In Security Protocols Work-
shop, pages 69–87, 1996.

[26] T. Schwarz and E. L. Miller. Store, forget, and check: Using
algebraic signatures to check remotely administered storage.
In Proceedings of the IEEE International Conference on dis-
tributed Computing Systems (ICDCS), 2006.

[27] Y. Sella. The computation-storage trade-offs of hash chain
traversal. In Financial Cryptography, pages 270–285, 2003.

[28] N. Spillers. Storage challenges in the medical environment.
www.dtc.umn.edu/disc/isw/presentations/
isw4 11.pdf.

[29] S. Woolley. Baby Bell accounting fraud uncovered. Forbes
News. http://www.forbes.com/forbes/2003/
0512/082.html.

[30] A. R. Yumerefendi and J. S. Chase. Strong accountability
for network storage. In 5th USENIX Conference on File and
Storage Technologies (FAST), 2007.

6565

