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Abstract

Both academic research and historical incidents have shown

the impact of unstable BGP speakers on network performance

and reliability. A large amount of time and energy has been

invested improving router stability. In this paper, we show

how an adversary in control of a BGP speaker in a transit AS

can cause a victim router in an arbitrary location on the Inter-

net to become unstable. Through experimentation with both

hardware and software routers, we examine the behavior of

routers under abnormal conditions and come to four conclu-

sions. First, routers placed in certain states behave in anything

but a stable manner. Second, unexpected but perfectly legal

BGP messages can place routers into those states with discon-

certing ease. Third, an adversary can use these messages to

disrupt a victim router to which he is not directly connected.

Fourth, modern best practices do little to prevent these attacks.

These conclusions lead us to recommend more rigorous test-

ing of BGP implementations, focusing as much on protocol

correctness as software correctness.

1 Introduction

Routers are a critical piece of the Internet infrastructure. They

provide path discovery and selection services needed for hosts

on the Internet to communicate with each other. We can define

a router as stable when it exhibits three qualities: the router it-

self has high uptime, routing sessions with peers demonstrate

longevity, and its view of the network is consistent with that

of its peers. It is easy to see that a router meeting these cri-

teria will be able to provide IP layer forwarding services. A

router demonstrating instability, on the other hand, will fail to

demonstrate one or more of these previously mentioned quali-

ties. It is well known that routers suffering from instability will

be unable to perform their duties. Historical incidents, such

as the Code Red and Slammer worm events [7, 18, 32], ca-

ble cuts [25], and improper configurations [24, 35], only serve

to emphasize this fact. For the most part, however, these ac-

cidents have been rare and the overwhelming majority of the

time routers on the Internet are stable.

While routers function well under normal conditions, there

is one obvious question: What happens if one router forces

another to operate under abnormal conditions? In this paper,

we will demonstrate that an adversary in control of a router

can cause an arbitrary honest router on the Internet to fail,

even if the adversary is not directly connected to the victim.

We present the results of a collection of experiments on hard-

ware and software routers running the Border Gateway Pro-

tocol (BGP) to illustrate three key points. First, that routers

placed in certain states fail to provide their necessary function-

ality. Second, that unexpected but perfectly legal BGP mes-

sages can place routers into those states with troubling ease.

And third, that an adversary can implement attacks using these

messages to disrupt the function of victim routers in arbitrary

locations in the network.

In this paper, we will explore three different unstable states

that a router can find itself in. In the first, a router encounters

a message that it views as invalid or corrupt. In the second,

a router exhausts its available memory. In the last, a router

finds itself starved for CPU cycles. Through experimenta-

tion on hardware and software routers, we observed what hap-

pens when routers find themselves in one of these states. In

all cases, we found that routers fail to handle these scenar-

ios gracefully. We witnessed a variety of failure modes, rang-

ing from severe performance degradation to the unrecoverable

failure of all active routing sessions. We also observed that

these unstable states are strongly interrelated. We found that a

router placed into one of these states would more than likely

cause its peers to enter one or more of these states as well.

Given the negative impact of these unstable states, one

might be tempted to believe that placing a router in such a

state is difficult. Sadly, it turns out that the opposite is true.

We found it relatively easy to send BGP messages to a router

that would directly place it into one of these unstable states.

We focused on exploring corner cases that are unlikely to be

found “in the wild” but are still perfectly valid in the eyes of

BGP. We will examine examples of these messages later in the

paper.

While it is unlikely a router would see any of these mes-

sages normally, they are easily generated by an adversary. By

utilizing these BGP messages, an adversary who controls a

BGP speaker is capable of launching powerful attacks against

other routers. We have developed a few example attacks in or-

der to illustrate this point. These attacks allow an adversary

to send advertisements from their compromised BGP speaker

that would disrupt the operation of a target router. We will

show how our adversary can manipulate honest routers into

propagating these malicious BGP messages across the net-

work, allowing our adversary to attack routers not directly con-

nected to himself.

It might be comforting to assume that deployed routers
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might be hardened to these attacks via proper configuration.

We demonstrate that the commonly accepted best practices

would do little to slow these attacks. We examine four options

in detail: prefix filtering, prefix aggregation, prefix limits, and

AS path length limits. In each case, we use observations based

on the contents of real world routing tables to reason about

both the extent to which these best practices are used and the

degree to which these practices could prevent our attacks.

The contributions of this paper are fourfold. First, we pro-

vide experimental evaluations of both hardware and software

routers in abnormal operating conditions. We validate and ex-

pand upon previous work looking at memory issues in routers,

investigate the impacts of CPU exhaustion, and provide evi-

dence of unstable states in one router causing unstable states

in neighboring routers. Second, we examine the response of

multiple BGP implementations to highly unexpected inputs.

We present clear scenarios, along with experimental evidence,

that illustrate the implementation failings of two commonly

used BGP daemons. Third, we present clear scenarios to un-

derscore how an adversary might take advantage of these unex-

pected inputs. Fourth, we demonstrate why current best prac-

tices provide an insufficient defense against these attacks.

The rest of this paper is organized as follows. First, in Sec-

tion 2, we will discuss background material relevant to un-

derstanding this work. Then, in Section 3, we will examine

abnormal states that routers can find themselves in and the

consequences of these states. In Section 4 we will construct

a variety of atypical BGP messages, demonstrating through

experimentation how they place routers into hazardous states.

We will expand upon these BGP messages in Section 5, de-

veloping a collection of example attacks that could be used

by an adversary to disrupt BGP speakers on the Internet. We

compare this paper to related works in Section 6. Lastly, in

Section 7, we discuss how operator best practices fail to blunt

our adversary’s attacks.

2 Background

2.1 Routers

Routers are network hosts tasked with building paths to end

destinations in layer three networks, most notably the Inter-

net. In order to accomplish their task, routers exchange reach-

ability information with other routers using a routing protocol.

We will discuss BGP, the routing protocol we focus on in this

work, in Section 2.2. Routers are often, but not always, re-

sponsible for forwarding data plane traffic using the paths they

have built. Routers can be broadly partitioned into two cate-

gories: hardware routers and software routers.

Hardware routers are constructed using high-performance,

highly specialized components in order to cope with the task

of forwarding millions to billions of packets a second. The

downside of hardware routers can be summed up in a single

word: cost. Hardware routers are costly pieces of equipment

and represent a large capital investment by operators. Because

of this, hardware routers typically have little in the way of

spare resources. A clear example of this is the route proces-

sor’s memory. Modern routers generally have between 256

and 2048 MB of memory, with the largest routers tending to

have 4096 MB [6, 17]. The current logic is that this amount

of memory is sufficient for normal conditions, and providing

larger amounts of memory undermines cost savings.

In contrast to highly specialized hardware routers, software

routers are built using commodity hardware, and have access

to the same level of resources any desktop computer does.

Software routers are generally a routing daemon running on

top of a general purpose operating system. Software routers

have the distinct advantage of being cost efficient, costing sev-

eral orders of magnitude less than hardware routers. How-

ever, they lack the high performance line cards and switch-

ing fabric of hardware routers, preventing them from handling

packet volumes typically found on today’s data plane. Because

of these qualities, software routers are typically deployed in

specialized roles. One of the most common examples of this

would be a route reflector—a specialized router that offers an

alternative to the logical full-mesh requirement of internal Bor-

der Gateway Protocol.

2.2 BGP

Throughout the course of this paper we will focus on routers

running the Border Gateway Protocol, or BGP [20]. BGP is

the current de facto standard routing protocol spoken between

a pair of routers in different Autonomous Systems, or ASes;

this key role makes it vitally important. BGP is a path vector

routing algorithm with policies. These policies are used to

augment the route selection process, allowing decisions to be

made based on business relationships rather than path length.

Neighboring routers connect to each other and establish a

BGP session. A router can advertise a path to any other router

it currently has a BGP session with. To do this, it sends a

BGP UPDATE message containing the block of IP addresses

reached by the path and a collection of path attributes. The

receiving router then stores this information in a Routing In-

formation Base, or RIB, and recalculates the best path to the

listed block of IP addresses from available paths. Update

messages are required to have certain attributes: the path (by

Autonomous System number) to the destination, whether the

route was learned from a peer inside or outside of this AS, and

the next hop in the path. Updates can also contain optional

attributes, such as Community Attributes [19].

2.3 Instability and Failed BGP Sessions

In order to understand why instability in BGP speakers is so

problematic, we must introduce the concept of convergence.

BGP is a distributed routing protocol, meaning that routers

do not have global knowledge; information about the network

therefore, must come from other nodes. When routers have

settled on a consistent view of the network we call this conver-

gence. When BGP speakers have converged, network traffic

will flow correctly. It is a well-studied fact that this guaran-

tee does not hold when the network has not converged. Why

2



this lack of convergence causes the data plane to fail has been

studied extensively in the work of Feamster et al [12], Wang

et al [30], Pei et al [23], and others. At a high level, when

BGP speakers are out of convergence, they do not have guar-

antees that they are routing based on fresh and valid informa-

tion. As a result, packets fail to reach their destination for

reasons as complex as the formation of transient forwarding

loops or as simple as being routed toward a path that no longer

exists. These problems only disappear when the network re-

converges. This of course raises the question: what events

force BGP speakers out of convergence?

To answer that question, consider what happens after a BGP

session dies. When a BGP session fails, routers are forced to

withdraw all routes learned via that session, remove the routes

from their forwarding tables, recalculate best routes to af-

fected prefixes, and send out updated advertisements. Over the

course of our experiments, we saw our routers go through this

sequence of behavior frequently. This series of withdrawals

and re-advertisements forces other routers who used impacted

routes to repeat this process, triggering multiple waves of path

re-calculations and advertisements. In most cases routers will

automatically rebuild the failed BGP session, resulting in a

new round of update messages to announce the return of the

previously available routes.

2.4 BGP Notifications

The BGP specification defines what does and does not consti-

tute a valid message. It also covers how routers are supposed

to respond to invalid messages. When one router sends a mal-

formed or invalid message to another router, no matter how

minor, the response is a BGP NOTIFICATION message. This

is, in essence, simply an error message. When a BGP NO-

TIFICATION is sent, both sides of the session, regardless of

the reason for the BGP NOTIFICATION, will always tear down

the session and disconnect from each other. In other words,

routers voluntarily step out of convergence in response to any

error message. Routers are explicitly not allowed to use mech-

anisms that mitigate the effects of session failure, like BGP

Graceful Restart [21], after a BGP NOTIFICATION.

This stance of “fail early, fail loudly” is powerful: it rapidly

draws attention toward issues in the network. However, with

great power comes great responsibility. BGP speakers need

to ensure that they are not sending error messages often, as

the consequence of each error message is a large amount of

instability. We found two major issues with how BGP speak-

ers perform error checking and use BGP NOTIFICATION mes-

sages. First, routers fail to contain the scope of errors. As

a BGP speaker, it would be a simple enough matter for the

router to check if it would consider the message it is about to

send as valid before it sends it. This would be advantageous,

as the router could handle the error message locally without

causing the failure of its BGP sessions. We found that this is

not currently done: routers send BGP messages to other peers

that they know are malformed. Second, as we will show in

Section 4, routers respond to some perfectly valid but oddly

formed or unexpected BGP messages with a BGP NOTIFICA-

TION. While it is normally acceptable to send error messages

to odd or unexpected messages, this logic does not hold when

the consequences of an error message are as potentially severe

as it is in BGP.

3 Unstable States

As stated previously, routers function well under normal oper-

ating conditions. We were interested in how routers fair under

abnormal conditions. A 2002 study by Chang, Govindan, and

Heidemann [4] looked at what happens when a router runs out

of free memory. In this work, the authors advertised routes

to three different routers: a CISCO 7000 running IOS 11.1, a

CISCO 12008 GSR running IOS 12.0, and a Juniper M20 run-

ning JUNOS 4.3 and 4.4, until they ran out of memory. They

reported that, in situations where the space required to store the

advertised routes in a RIB exceed the available memory, one of

two things happened. One behavior that the routers exhibited

was that they disconnected from all BGP sessions, regardless

of the number of routes learned via each session. The second

behavior seen was that the router became unresponsive, requir-

ing a hard reboot in order to resume function. Either behavior

is highly undesirable: the data plane will cease to function

when a router is restarting, and the failed session will have all

of the consequences mentioned previously in Section 2.3.

In this section, we revisit Chang et al’s work on memory ex-

haustion using more modern routers, and present additional re-

sults on the effects of CPU exhaustion and how unstable states

in one router can often force other routers near it into these

states as well. To investigate this, we performed a collection of

experiments with two routers: a CISCO 7603 series router, af-

fectionately named “Patsy”, and a Quagga software router. For

a full explanation of our experimental setup see Appendix A.

3.1 Memory Exhaustion

Repeating Chang et al’s experiment using more modern

routers, we found that their results still hold today: routers

fail when their memory is exhausted. In the case of both

the hardware and software router, when the BGP process re-

quested more memory than the host system could provide, the

BGP process was killed. The death of the BGP process it-

self resulted in the failure of all BGP sessions currently ac-

tive. Since the BGP process died, BGP Graceful Restart could

not mitigate the effects of the session failure. In the case of

Quagga, the BGP process died silently. No error messages

were logged, nor was an explanation of session failure sent to

any peer. The BGP process required outside intervention in

order to restart. On the other hand, Patsy successfully logged

the death of its BGP process via rsyslog and sent BGP NO-

TIFICATION messages to its peers. Its BGP process restarted

automatically in all cases without the need for outside inter-

vention.

While the BGP process being killed was the most graceful

way routers handled this situation in our tests, we also saw a

number of experiments where a different process, such as an
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internal routing protocol, was the first to request more memory

after the router ran out. This resulted in that process dying in

addition to the BGP process dying. In the case of Patsy, the

CISCO Express Forwarding Engine [29] occasionally asked

for memory that could not be given. In that case all network-

based services temporarily failed.

The most troubling part is the ease with which a normal

router can become memory exhausted. As covered in Sec-

tion 2.1, hardware routers do not possess an abundance of

memory. More importantly, routers posses an even smaller

amount of free memory. In Section 4 we will show a variety of

atypical path properties that can quickly exhaust free memory

and in Section 5 we will develop an attack which utilizes those

properties to disrupt a target router.

3.2 CPU Exhaustion

In general, both hardware and software routers will use all

available CPU cycles to handle BGP control traffic. This be-

havior is desired, as it minimizes the convergence time. But

how exactly do heavy CPU loads affect the operation of a

router? Chang et al [4] examined advertising full tables and

session flapping over time when exploring the effects of mem-

ory exhaustion. We instead looked at the effect that heavy load

from a separate injecting peer has on common tasks for hard-

ware and software routers.

Table 1 shows the effect that heavy load on a router has on

the time required to process 20,000 routes from a full BGP ta-

ble from RouteViews. When individual updates take longer

then normal to process, or other processes or tasks on the

router require the majority of CPU cycles, the convergence

time increases dramatically. When a router’s RIB is not con-

verged, we no longer have guarantees of proper IP traffic for-

warding (see Section 2.3). Heavy load also increases the time

needed to establish BGP sessions. Session failure is a com-

mon occurrence during periods of instability, and this only in-

creases the time it takes for the network to recover. Addition-

ally, it is common to perform diagnostic commands and check

router state during periods of instability. Table 1 highlights the

delay in establishing new terminal sessions and examining the

current BGP sessions when under heavy load.

Table 1 highlights the effect that heavy load on a router has

on its ability to perform common tasks. Particularly for Patsy,

we see a significant increase in the time to process a set of

20,000 updates under heavy load. We also measured the effect

of debugging under heavy load, as it is common for network

operators to triage router instability by turning on BGP debug-

ging, and saw that it had a much more significant impact on

Patsy than the Quagga router.

A router whose CPU cycles are exhausted by other tasks can

thus take much longer to re-establish convergence after session

failures. Backlogged updates to a CPU exhausted router can

also cause memory exhaustion in its peers, as shown in the

following section. Later, in Section 5, we develop attacks that

cause excessive CPU usage in a targeted router.

-10.0

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

 0  500  1000  1500  2000  2500

M
em

or
y 

(M
B

)

Time (s)

CISCO

Quagga

Figure 1: Increase in memory load for a Quagga router and Patsy when

advertising to a CPU starved peer compared to a normal peer.

3.3 Update Back Pressure

One of the most interesting behaviors we observed in response

to a CPU starved router was the exhaustion of its peer’s mem-

ory. To understand why this occurs, we must take a look at

what happens when the rate of incoming updates to a router

exceeds its computational capacity. In this case the receiv-

ing router will have to buffer the unprocessed updates. We

found that both our Quagga router and Patsy will only buffer a

fixed number of BGP messages. When those limits have been

reached, the BGP process will stop fetching packets from the

operating system’s buffers. Network buffers are of fixed size

as well—when the receiving router’s network buffer is full,

it will send TCP ZERO WINDOW messages to the advertis-

ing router, preventing new packets from being placed on the

wire. New packets are then buffered in the sender’s network

buffers. When those fill, the updates are buffered inside the ad-

vertising router’s BGP process. These buffers are unbounded

in size. We term this behavior back pressure. Figure 1 shows

the increase in memory usage over time for a router that are

attempting to exchange routing tables with a CPU starved peer

versus a peer with sufficient processing power. Patsy experi-

enced an increase in memory consumption of more then 40

MB, with spikes over 60 MB. Quagga saw an increase of 30

MB by the end of our experiment. Depending on the amount

of free memory in these routers, something we will touch on

in Section 5.3.1, this excess memory consumption may exceed

the available memory, triggering session failures.

This increase in memory usage was not the strangest be-

havior that resulted from update back pressure. On Patsy, we

noticed that if the amount of back pressure was large enough,

the processes controlling BGP I/O started to fail. Specifically,

Patsy ceased interacting correctly with the peers responsible

for the back pressure. Patsy ceased attempting to send BGP

related packets to these peers. We assumed tearing down the

BGP session, which would result in a new TCP session, would

solve this I/O issue. It did not. While the back pressure caus-

ing peers could complete a TCP handshake, no response to

their BGP OPEN message came from Patsy. This I/O issue

was limited to BGP, however, as we could initiate a telnet con-

sole with Patsy from the Linux box hosting the troubled peer.

This problem was only fixed when Patsy was restarted.
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No Load Heavy Load With Debugging

Activity CISCO (s) Quagga (s) CISCO (s) Quagga (s) CISCO (s) Quagga (s)

Establish terminal session 0.198 0.976 0.603 2.053 26.730 1.941

“show ip bgp summary” 0.202 1.795 1.648 2.272 40.233 2.301

Establish new BGP session 0.003 0.047 0.808 0.063 4.046 0.069

Process 20k routes 4.448 14.662 65.402 124.570 725.400 144.052

Table 1: We compared the effects of different loads on completing common tasks for both CISCO and Quagga routers. ”Heavy load” consisted of an injector

constantly pushing large updates to the target router. Debugging was added on top of the heavy load, and included all BGP debug statements. We saw little or

no significant difference between the heavy load and the debugged heavy load for Quagga.

3.4 Interdependence of Unstable States

Back pressure is just one example of an unstable state in one

router leading to an unstable state in neighboring routers. An-

other example of this behavior is memory exhaustion leading

to CPU starvation in neighboring routers. Our example starts

with a router becoming memory exhausted. As we covered in

Section 3.1, this results in the failure of all of the router’s BGP

sessions. The router’s peers are then inundated with BGP up-

dates as the network attempts to re-converge. The dedication

of processing power to dealing with this rush of updates in turn

forces those routers into a CPU starved state. Of course as we

have seen, CPU starvation leads to back pressure, which can

lead to memory exhaustion.

Operators can also play a role in causing a new unstable

state in response to an existing one. For example, consider

the likely course of action an operator would take if his router

were receiving a large number of BGP NOTIFICATION mes-

sages or exhausting its free memory. The operator would more

than likely turn on BGP debugging in an effort to ascertain

what was causing the issue. As we saw in Section 3.2, for

CISCO routers this would result in an increase of several or-

ders of magnitude in processing demands placed on the router.

In other words, the operator would place a router into a CPU

starved state in response to a different unstable state.

4 Unexpected Inputs, Unexpected Be-

haviors

As stated previously, we found it surprisingly easy to force a

router into one of the states mentioned in Section 3. We will

present several ways we were able to place our test routers into

a terminal state. The majority of these methods are the result of

taking commonly held assumptions about path attributes and

invalidating those assumptions. In the scenarios we present,

routers fail to handle these “corner cases” in a reasonable fash-

ion. It is important to realize that the following examples are

not an exhaustive list. We did not perform exhaustive checking

of BGP implementations—we simply wished to demonstrate

the fragility of modern routers.

4.1 BGP Update Properties

In this section, we will start with a simple example of how

presenting atypical input to a router can place it in one of the

states from Section 3. We will focus on the AS path of a BGP

update message. In general, paths are short, with a path length
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Figure 2: Per update memory usage as a function of path length for Quagga

and CISCO routers for both unique and identical sets of paths. Note how

Quagga’s memory allocation is always a function of the path length, while

Patsy allocates fix size blocks for all paths between 24 and 108 ASes in length.

Also note how memory requirements are independent of path length when the

AS paths are identical. This is because both routers store the repeated path

only once.

in the range of 3 to 4 being quite common, and path lengths

longer than 15 being rare. It is also quite common for multiple

routes to share identical AS paths. By presenting a router with

a set of updates that do not fit this mold, we will place strain

on both a router’s memory and its CPU.

Presenting abnormal AS paths is one way to increase mem-

ory load. Measured memory usage as a function of path length

is shown in Figure 2. These values were established by ad-

vertising synthetically generated routes to our test routers and

measuring their BGP process’s memory consumption. The

fact that routers store each unique AS path only once is quickly

apparent by examining the results for trials where we adver-

tised routes with identical AS paths. In those situations, mem-

ory consumption is independent of path length. For updates

with unique AS paths, the figure shows that increasing the path

length from the typical length of 3 to 4 ASes to a length of

255 causes can increase of the per prefix memory cost by a

factor of 2 in the case of the hardware router and by a factor

of 8 for the software router. While these increases are small

on an individual scale, the problem is when they are applied

in aggregate. For example, the mere 0.5 KB increase in size

seen on Patsy, when applied to a full routing table, currently

roughly 350,000 routes, translates into an increase of 175 MB

in the BGP process, nearly half of the total memory of our test

router.

We also found that updates with long, distinct AS paths re-

quire more time for a router to process than typical updates. To
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Figure 3: Time to inject 5,000 prefixes as a function of path length for

Quagga (Figure 3(a)) and CISCO (Figure 3(b)) routers. Shown here are pre-

fixes with and without unique AS paths. For each, we show the effects of

padding the packet with community attributes to match the packet size of a

prefix with an AS path of length 255.

measure this, we repeated the previous memory consumption

experiments, but timed how long the injector took to advertise

all updates. We used community attributes to pad the update

messages to a controlled length. This allows us to control for

the size of each BGP update message. Figure 3 shows the

time-to-inject 5,000 routes for various AS path lengths. We

can see that by increasing the size of the AS path from a typi-

cal size to a length of 250 and using unique AS paths, we can

increase the time-to-inject by a factor of 4.6 in the case of the

hardware router and by a factor of 8 for the software router.

Padding prefixes that all share the same AS path with com-

munity attributes appears to not significantly affect the time to

inject compared to not padding. On the other hand, padding

updates which have unique AS paths had a marked difference

for both routers.

4.2 Algorithmic DoS

In our experimention we came across two different ways to

algorithmically DoS a router, one for Quagga and one for

CISCO. In each case we utilize valid routes that are designed

to take advantage of slow or buggy code. These routes take
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Figure 4: Comparison of the time required to process a set of paths designed

to collide into one hash bucket versus a set of random paths.

orders of magnitude more time to process than normal routes.

We will present the path constructions here, and develop an

attack with them in Section 5.3.2.

4.2.1 Hash Attack

Quagga stores AS paths inside a hash map, allowing for rapid

access. In the Quagga hash map implementation, the map is

of fixed size, in this case 215, and the hashing function is pre-

dictable. This is acceptable so long as the assumption that AS

paths will be spread evenly over all of the buckets holds. How-

ever, an adversary can violate this assumption. By computing

a large number of AS paths that hash to the same value and ad-

vertising them to a router, we can increase the amount of time

route processing takes. This class of attack, first proposed by

Crosby and Wallach [8], exploits the fact that while inserting

n elements into a hash map would normally take O(n) time, if

each element hashes to the same value it will take O(n2) time.

Plots of the time to process updates with colliding AS paths

compared to random AS paths can be seen in Figure 4.

4.2.2 Path Sequences and Sets

AS paths are made up of one or more segments. These seg-

ments come in two different flavors: sequences and sets. An

AS sequence denotes an ordered list of the exact ASes the path

utilizes. On the other hand, an AS set contains a collections of

ASes and asserts that the path will utilize one or more of them,

without giving further details. The overwhelming majority of

paths on the Internet are formed by a single AS path sequence.

In nearly all cases, AS paths end with a sequence, but there

is nothing that prevents a path from ending with a set. While

our Quagga router handled this scenario normally, Patsy expe-

rienced issues.

Patsy took several orders of magnitude more time to process

routes that ended in an AS set compared to routes that ended

normally. In a series of experiments, we injected paths with

variable lengths of trailing sets while holding the overall AS

path length constant. The results of these runs can be seen in

Figure 5. In these runs we injected 8,000 routes with unique
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paths of length 225. The paths with no trailing set took 6 sec-

onds to be processed, while the paths that added an AS set of

length 2 took 1,060 seconds. Note that the length of time to

process is not dependent on the size of the AS set, but rather

on the size of the AS segment that precedes it. It is also inter-

esting that this behavior only exists if the path ends in a set:

if the set of paths that took 1,060 seconds is modified to have

an AS segment of size 1 after the set, then Patsy again takes 6

seconds.

4.3 BGP Notifications

We also found a large number of BGP messages that are valid

according to the RFC, but cause the recipient to send a BGP

NOTIFICATION. Given the disruption caused by a BGP NOTI-

FICATION, as discussed in Section 2.4, this presents a problem.

This problem is compounded by the fact that since all of these

messages are valid, they can be generated by honest routers.

One set of these valid but problematic messages revolves

around AS path length. As we know from Section 4.2.2, BGP

breaks paths up into segments. As defined by the RFC, these

segments can be at most 255 ASes long. If a router is passed

a segment that is longer than 255 ASes that path will result

in a BGP NOTIFICATION. In order to send a path longer then

255 ASes, the path needs to be split into two sequences. For

example, to send a path of 256 ASes the first segment could

have a length of 1 and the second a length of 255. This path is

perfectly legal, but both Patsy and Quagga respond as though

it is invalid. In the case of Quagga, we can look at the source

code to discover that when Quagga encounters a pair of adja-

cent sequences in an AS path, it merges then without checking

their sizes first.

Patsy handles even more path length cases incorrectly com-

pared to Quagga. Unlike Quagga, Patsy responds to any path

of length 255 or larger with a BGP NOTIFICATION. We no-

ticed that Patsy would often claim routes were longer then 255

ASes when they were actually shorter. We noticed this behav-

ior when experimenting with AS paths that contained several

AS segments. We established through test cases that if the sum

of the actual AS path length plus half the number of segments

in the path was greater then 255, then Patsy would send a BGP

NOTIFICATION to the peer that advertised the route, claim-

ing that the route was invalid because its length was greater

then 255. For example, a valid route comprised of 25 AS seg-

ments of length 10 each would be considered to have a total

length longer then 255 AS segments, even though its actual

total length is 250. More than likely, Patsy computes AS path

length by taking the total byte size of the AS path portion of

the update message and simply dividing by two, the expected

wire size of an ASN, instead of reading from the packet the

actual segment sizes.

This assumption about wire size was also be an issue when

Patsy interacted with a Quagga router. Our Quagga routers at-

tempted to write ASNs to the wire as 4 bytes rather than the

2 bytes seen from Patsy. This presented several issues. First,

Patsy interpreted AS paths from Quagga routers as longer than

they actually were, with all of the consequences we have out-

lined previously. Second, if updates were very large in size,

this expansion from 2 to 4 bytes resulted in update messages

going over their maximum size of 4,096 bytes. The real prob-

lem here is the asymmetric behavior of Quagga and CISCO

routers. A collection of CISCO routers could pass between

each other update messages near the 4,096 byte limit without

error. When those messages reach a Quagga router, the AS

path size will increase as the Quagga router expands the AS

size. If that expansion pushes the update messages over the

4,096 byte limit, they will be responded to with a BGP NOTI-

FICATION.

One last bug we noticed was Patsy’s aversion to any update

that had an attribute larger then 1,024 bytes. A good exam-

ple of this was the community attribute field. The community

attribute’s field is in theory only bounded by the maximum

packet size. If Patsy saw a community attribute field larger

then 1,024 bytes, a BGP NOTIFICATION would result. Quagga

did not do exhibit this behavior.

5 Case Studies: Targeted Attacks

The examples of BGP inputs in Section 4 provide a peek into

how a router can end up in one or more of the states we dis-

cussed in Section 3. However, one might feel skeptical about

these examples. For instance, given that a modern desktop

computer has gigabytes of memory, is an increase in memory

usage of kilobytes per route going to have a noticeable impact?

Also, would these examples not be exceedingly unlikely, only

happening in the rare case when one of my direct peers mis-

configures his or her router? The problem with these state-

ments is that they fail to take into account an adversary. In this

section, we will provide examples of how an adversary in con-

trol of a router could force other routers at arbitrary locations

in the topology into an unstable state. In our first example at-

tack, an adversary will exhaust the memory of a target router.

We will show that the seemingly small impact of an extra kilo-

byte here or there quickly adds up. Our adversary, depending

7



on the specifics of the router in question, can consume his tar-

get’s free memory with on the order of 10,000 updates, a small

number relative to what routers normally advertise. Addition-

ally, we will lay out how our adversary can launch this attack

while minimizing his impact on the memory of other routers

in the system. In addition to our first attack, we will discuss

how other flaws from Section 4 can also be turned into attacks,

degrading the processing power of victim routers and causing

BGP sessions between two victims to fail.

5.1 Threat Model

Our threat model focuses on legitimate BGP speakers in tran-

sit ASes 1 that have become malicious. These adversaries are

the result of either an autonomous system electing to act in an

adversarial manner or an outside entity compromising one or

more BGP routers. We focus on transit ASes since stub ASes

have very limited abilities within the BGP network. Our cho-

sen threat model gives our adversary two key capabilities.

First, the adversary can send BGP messages to other routers.

The malicious router cannot simply send arbitrary messages to

any router, however; it can only directly send BGP messages

to its legitimate peers. This is an issue for our attacker, as his

previously stated goal is to disrupt arbitrary routers or BGP

sessions, not simply those he is directly connected to. In or-

der to have malicious update messages reach arbitrary routers,

our adversary will need to convince honest peers to propagate

those updates in such a manner that the intended victims re-

ceive them. We will cover how our adversary does that in Sec-

tion 5.2.

The second ability our adversary has is the capacity to act in

a non-standard, or even protocol non-compliant manner. Our

adversary can, for example, locally ignore paths with loops,

use non-standard path selection, not apply best practices, and

advertise paths in a manner that does not conform to Valley

Free Routing. However, our adversary again runs into the issue

that only he can act in this way; honest nodes will act normally

and can use best practices. We will cover how these attacks

work in relation to best practices in Section 7.

5.2 Propagating Malicious Updates

As stated in our threat model, the adversary only has the ca-

pacity to send update messages directly to his legitimate peers.

In order to get malicious updates to targeted routers, the adver-

sary will need to convince routers that lie on the path between

him and his victim to forward the updates. Honest routers only

re-advertise the routes they consider “best”. This is an issue

for our adversary because, as we shall see in Section 5.3, some

of the malicious updates will have exceedingly long AS path

length. Because AS path length is one of the key path selection

metrics, this will make it less likely that the malicious updates

will be considered best if there is an alternative.

If our attacker could advertise IP blocks that have no com-

peting paths, the malicious routes would be the best by default.

To do this, our attacker will take advantage of the fact that BGP

1By transit AS, we mean any AS that has other ASes as customers.

considers more specific IP prefixes to be distinct. For example,

BGP considers the IP block 123.101.0.0/16 to be dis-

tinct from 123.101.128.0/17 and 128.101.0.0/17.

Since these blocks are considered distinct, path selection

for 123.101.128.0/17 will be done separately from

123.101.128.0/16. Our adversary simply couples his

malicious advertisements to highly specific IP blocks (e.g.

123.101.128.0/24) for which there are not pre-existing

routes. By doing this forced de-aggregation, his malicious up-

dates will have no competition and will be the best. We discuss

how this tactic interacts with best practices such as aggregation

and prefix length filtering in Section 7.

The adversary cannot simply send these “best paths” blindly

out to all of his peers in the hope that they eventually reach his

target. Our adversary is going to take advantage of the fact that

honest routers operate in a predictable manner in order to setup

“flows” of updates from himself to the victim. When determin-

ing whether to propagate a best path to its neighbors, a router

takes into account both the customer/provider relationships it

has with its neighboring routers and with the route’s next hop.

A well known set of policies called Valley Free Routing [13]

are applied based on these relationships. While the AS rela-

tionships are technically private information, a large amount

of work has been done to infer them. By building a topology

based on a data set of these relationships between ASes [27]

and applying Valley Free Routing policies to this topology,

a model for how the malicious routes will travel through the

network can be built. With this model, the adversary can see

which peers it should send advertisements to in order to have

them propagate to his victim. We shall refer to these paths

from the malicious router, through honest routers that forward

updates, to the victim, as attack flows.

Once attack flows are found, it might be in the attacker’s

interest to containing updates to only their assigned flow. The

adversary must prevent routers that are next to the attack flows

from accepting the malicious routes. To do this, our attacker

can use loop detection to his advantage. In BGP, loop detec-

tion is achieved by scanning the AS path for the router’s ASN.

If the router detects itself in the path, it considers the route in-

feasible, neither storing it in memory nor propagating it. It is

important to note that when loop detection is triggered it does

not result in a BGP NOTIFICATION. The first step for our ad-

versary is to define the “borders” of each attack flow. He then

ensures that the ASNs of all neighbors of the attack flow are

included inside the fabricated AS path of any update utilizing

that flow. Since the neighbors of the flow will not propagate

the malicious updates, the routers behind those neighbors will

never see the updates. A toy example of attack flows can be

seen in Figure 6.

5.3 Attack Payloads

Now that our adversary has the ability to propagate updates

from his malicious router to arbitrary routers in the topology,

we will examine what forms of attacks he can launch. We will

examine two different types of attacks. In the first, our adver-

sary will exhaust the memory of a target router by forcing it

8
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Figure 6: Illustration of how an adversary successfully propagates malicious updates to a target router. In part (a) we define routers in this scenario. In part

(b) our attacker sends malicious updates to the target via two flows, malicious updates are also propagated outside of the attack flows. In part (c) the aggregate

memory consumption resets the target, and loop detection causes updates to be dropped outside of the attack flows.

to store routes that consume a far larger than expected amount

of memory. In the second set of attacks, our adversary will

degrade the computational capacity of a target by launching a

denial of service attack or by causing BGP sessions to fail.

5.3.1 Attacking Memory

In this attack, our adversary will cause victim routers to run

out of memory, forcing the targeted BGP process to reset. The

idea of this attack is simple: essentially our adversary “leaks”

a relatively small number of updates which are designed to

consume inordinate amounts of memory. If a router accepts

these BGP updates it will cause the router’s memory usage to

far exceed expected usage. It is important to note that the ma-

licious routes do not need to be used or deemed best, they need

only be considered valid in order to cause the router to store

them. These updates will be sent via multiple attack paths

to the victim router. The reason for using multiple paths is

two-fold. First, if a single malicious route is sent on multiple

attack paths, the victim router will be forced to spend memory

to store the route once for each attack path. That is a result

of the routers along the attack path prepending themselves to

the path, making each instance of the malicious update unique.

The second reason malicious updates are spread over several

attack flows is to avoid disrupting the routers on the path to the

victim. Essentially, the adversary load balances the memory

requirements across multiple “forwarding” routers; the mem-

ory load is aggregated only at the victim.

In order to maximize the memory consumed our adversary

will focus on three items covered in Section 4.1: AS path

length, uniqueness, and community attributes. Our adversary

will start with the AS path. Longer paths consume more mem-

ory, so he will want the longest possible AS path he can supply.

Given that we have demonstrated routers responding with a

BGP NOTIFICATION for paths of more than 255 ASes, he will
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Figure 7: Memory consumption seen in Patsy under our attack. Various

memory thresholds are also shown as a reference. The thresholds are, in in-

creasing size, free memory in a fringe router, free memory in a mid-tier ISP

router, and total memory in Patsy.

cap path length there. Since each AS along the attack flow will

prepend itself to the AS path, the actual path advertised by the

attacker is smaller than 255, but will grow to full size in transit.

Each malicious AS path used will be unique, forcing the target

to store each AS path received. AS paths are built by adding

a unique permutation of the attack flow neighbor ASNs and

afterwords padding up to the desired size with random ASNs.

The remaining space in the update message will be filled with

community attributes. The free space in the update messages

is enough for 855 community attributes. These are unique as

well, which forces memory to be expended for each one. The

main question is, will the attack succeed at exhausting the tar-

get’s memory? The answer to this question is dependent on

both the amount of memory the updates can consume and the

amount of free memory in the target.

To discover how much memory the attack is capable of con-
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suming, we performed it on our test routers and measured their

memory consumption. Our Quagga router consumed more

memory per malicious update because it dealt with them in

a less efficient manner and was additionally vulnerable to sub-

divided AS paths. We found Quagga’s memory consumption

to be roughly 19 KB per update message and Patsy’s to be 3.2

KB per update.

Answering the second question—how much free memory a

router has—is far more difficult. In the case of CISCO routers

we can start by looking at the total amount of memory vari-

ous classes of CISCO routers have. Some representative ex-

amples include Patsy with 512 MB of memory and a CISCO

ASR 1004 with 2048 MB. These values give us an extreme

upper estimate of the number of updates our adversary would

need in order to succeed at his attack. To be more accurate,

we could reduce these values by the amount of memory con-

sumed by the BGP process. This would still be an upper es-

timate, as it does not take into account other processes on the

router. This number will vary widely based on the specific

router deployment, making it impossible to declare in gen-

eral how much free memory a router will have available. By

combining routing tables from RouteViews and common sit-

uations where each class of router is deployed, it is possible

to generate some example scenarios. We have provided two of

these to give some idea of total memory versus free memory in

routers. A router such as Patsy would commonly be deployed

in a fringe AS which average between one and three providers.

After taking a pair of full routing tables from RouteViews and

advertising them to Patsy we found that the router had 242

MB of free memory. It should be noted that this is the steady

state free memory; during the actual injection Patsy had as lit-

tle as 13 MB of free memory. Our second scenario looks at an

ASR 1004 deployed in a mid-size ISP. We found the routing ta-

bles from customers and providers of an ASN with degree 8 in

RouteViews. Due to the memory limitations of our test router,

we measured the memory consumption for fractions of these

tables and extrapolated to estimate the total consumption. We

found that the ASR 1004 router would have 416 MB of free

memory. Estimation of the free memory in software routers

running on commodity boxes is even more difficult due to the

varied nature of the hardware used.

At this point we can turn to Figure 7 and examine exactly

how many updates our adversary would need to have accepted

at the victim in order to achieve success. We have drawn in

various memory milestones to illustrate the attack’s effective-

ness. The first milestone to be reached is our estimate for the

free memory of Patsy deployed in a fringe AS. As can be seen,

it takes roughly 70,000 updates to exhaust the free memory.

The next milestone we cross is our estimate of free memory

in an ASR 1004 deployed in a mid-sized AS. Here, 125,000

updates are required. The last milestone we will point out is

the milestone at 512 MB, where our adversary has consumed

all of the memory in Patsy. He achieves this with 155,000

updates, less than half of the size of a modern routing table.

Current best practices suggest limiting the number of prefixes

accepted from a peer; we discuss the impact of this best prac-

tice interact in Section 7.

5.3.2 Attacking BGP Sessions

The memory attack is not the only option open to the attacker.

The algorithmic denial of service attacks from Section 4.2

present another attack surface for our adversary. There are

two slightly different attacks here: one for a Quagga router

and one for a CISCO router. Additionally, the attacker can

directly attack BGP sessions by inducing honest routers into

sending messages that will result in a BGP NOTIFICATION.

As was mentioned in Section 4.2.1, Quagga uses a pre-

dictable hashing function and a relatively small hash table size

to store AS path information. This allows our adversary to

increase route processing time in a target Quagga router by

flooding it with paths that hash to the same value. Our at-

tacker will use the flow based propagation method outlined for

the memory attack to deliver his updates. As noted in Sec-

tion 5.3.1, paths grow as they travel from our adversary to the

target, to our attacker’s advantage. Our adversary will com-

pute hash collisions based on what the paths will look like

when they reach the target, i.e. after all the ASes along the

attack flow prepend their ASN. This means that the malicious

updates will only collide at the target, and will not directly

impact other routers.

Using the tailing set bug discussed in Section 4.2.2, a similar

attack can be launched against CISCO routers. In this attack,

our adversary floods updates whose paths end in an AS set.

In the same way updates from the memory attack consume

the resources of each router carrying them, updates from this

attack will slow the processing time of each router along an

attack flow. This is a problem for the adversary, as it will slow

the rate that these updates reach his target. This problem can

be solved by spreading the malicious updates along multiple

attack flows and merging those flows at the target. As in the

memory attack, this pits the aggregate resources of each hop

against the resources of the lone target router.

In the last attack, the attacker directly pushes the network

out of convergence by causing BGP sessions to fail. Our at-

tacker will cause session failures by triggering BGP NOTI-

FICATION messages. While our attacker could trivially send

BGP NOTIFICATION messages to his peers, he could launch

a more powerful attack by convincing honest routers to send

them to their peers. We discussed a number of messages in

Section 4.3 that result in a BGP NOTIFICATION; the trick is

getting the error to occur near the target rather than near the

adversary. One option is again to use growing path length.

For example, the adversary picks a router whose sessions he

wishes to kill, which sits at a distance D from his router. He

then propagates an update to that router which starts with AS

path length equal to 256−D. Each hop will add another ASN

to the path, resulting in a path length of 255 by the time the up-

date reaches the target. When the targeted router advertises the

path it will add itself to the front, resulting in a 256 AS long

path, which will result in a BGP NOTIFICATION from peers

that receive it. Another method takes advantage of the asym-

metric behavior between different makes of router. If our ad-

versary targets a session between a CISCO router and Quagga

router, he can take advantage of Quagga’s desire to send ASNs
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as 4 bytes and CISCO’s shortcut method of computing path

length. Our adversary propagates an update with a path length

of 128 or greater to the Quagga router. The Quagga router will

in turn pack the path as 4 byte values. The CISCO router, upon

receipt, will compute the path length based on the field size,

and incorrectly establish a length of 256 or more, resulting in

a BGP NOTIFICATION.

6 Related Work

As mentioned in Section 4, Chang, Govindan, and Heide-

mann [4] investigated router responses to memory exhaustion.

Their work in 2002 first highlighted the fact that routers re-

set under large memory loads. It did not, however, examine

how to cause large memory loads. Previous work by Bu, Gao,

and Towsley [3] has examined how BGP consumes memory

under normal conditions. They studied routing tables to de-

termine how multi-homing, load balancing, IP fragmentation,

and lack of aggregation affect routing table size. Unlike our

paper, which focuses on abnormal inputs, their paper focused

on route properties seen in normal operation.

Previous research by Wu et al [33] focused on benchmark-

ing CPU performance in various routers. Their work focused

on the performance differences of various types of CPUs, not

on various types of BGP inputs. Other papers, for example

Agarwal et al’s [1], focused on the CPU performance of de-

ployed routers using BGP logs. This paper, like Bu’s work in

memory usage, focuses on CPU activity under normal operat-

ing conditions rather than atypical conditions.

There is a large body of existing work on the impact of

router stability on the data plane. For examples, see [12, 30,

31]. These works do an excellent job of highlighting why the

data plane fails to function correctly as a result of router insta-

bility. Our paper is orthogonal to these, as we are concerned

with the causes of instability rather than its results.

Recent work by Yin, Caesar, and Zhou [34] focused on ex-

amining bugs in implementations of routing protocols. Their

research focused on categorizing bugs by their locations in the

code and root cause. Their paper is narrower than ours as it

focuses exclusively on software bugs while we are interested

in both bugs and “proper” handling of unexpected input. Ad-

ditionally, their paper provides limited insight into the conse-

quences of these bugs.

Other papers have focused on different ways instability in

collections of routers can be generated. Deng et al [11] present

a straightforward method in which a malicious set of routers

create instability by simply building and tearing down their

BGP sessions repeatedly. Bellovin and Gansner [2] present

a method of instability generation based around cutting links

between routers, forcing them to redo route discovery. In a

similar vein, Schuchard et al [28] generate instability by using

botnet traffic to generate session failures as a result of BGP

timers. Our work differs from all of these in that we generate

instability in target routers by exposing them to unexpected

BGP inputs.

7 Examining Best Practices

In this section, we examine how various “best practices” inter-

act with the proposed attacks of Section 5. We focus mainly on

four different practices: prefix filters, prefix aggregation, pre-

fix limits, and AS path limits. We will show that each of these

fails to disrupt the adversary’s actions to any sizeable extent.

A summary of these findings can be seen in Table 2 We will

also briefly touch on current proposals that seek to secure BGP

by use of cryptographic methods, namely BGPSEC.

7.1 Prefix Filters

One commonly applied best practice is to drop updates for

highly specific prefix blocks. Filtering in this manner is done

in an effort to control the size of routing tables. This policy is

an issue for our attacker because, as discussed in Section 5.2,

our adversary relies on advertising very specific prefix blocks

which do not have pre-existing paths. Two questions are raised

because of this practice.

First, how specific of a prefix can our adversary advertise

without it getting filtered? To answer this, we examined what

length of prefixes we can actively observe being forwarded by

various Autonomous Systems based on RouteViews dumps.

What we found was straightforward: 88.5% of transit ASes

forwarded prefixes that were /24 or shorter, while 6.8% for-

warded prefixes longer than this. Thus, in the majority of

cases, our adversary can advertise prefixes of length /24 or

shorter successfully.

This leads us to our next question: Given that we can adver-

tise no more specific a prefix then a /24, can our adversary find

enough un-advertised prefixes to complete his attacks? This

can be answered with a quick back of the envelope calcula-

tion. There are approximately 1.6x107 prefix blocks of length

/24, and of those 98% correspond to routable IPs (the other

2% are un-routable bogons [9]). The current size of the full

Internet routing table is roughly 4x105 prefixes [15], meaning

that if all IP blocks advertised were /24s (which they are not

obviously, the majority of prefixes seen are for larger blocks

of IP addresses), then there would still be over 1.5x107 /24s

un-advertised. Clearly this means that our adversary can find a

sufficient number of un-advertised /24 blocks to utilize for his

attack.

7.2 Prefix Aggregation

Tied closely with the subject of filtering long prefixes is the

concept of prefix aggregation. Upstream routers have the

ability to aggregate multiple advertisements from downstream

peers into a single, less specific, advertisement which they pass

on to their peers. This again presents an issue for our ad-

versary, as aggregation could cause his attack updates to be

merged into a small number of aggregated routes. However,

this issue is actually a non-factor for our adversary for several

reasons.

First, we have to take into account how, where, and why

aggregation is and is not done. Aggregation must be manu-
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Best Practice Why It Does Not Help Experimental Evidence

Prefix Filters Limits still give the attacker access to millions of prefixes /24s advertise by 88.5% of transit ASes

Prefix Aggregation Not done to routes from transit ASes Observation of hole punches and

non-aggregated IP blocks in RouteViews

Prefix Limits Malicious updates target receives based on Prefix limits applied on a per connection

sum of victim prefix limits basis combined with AS level topology

AS Path Limits Weakened by generous path limits Patsy allocates memory in

and how Routers allocate memory fixed size blocks (Fig 2)

Table 2: Summary of best practices we considered, why they fail to stop the attacks from Section 5, and what experimental evidence backs each conclusion.

ally configured, and while it is fairly straightforward to aggre-

gate updates from non-transit ASes, as these routes are essen-

tially static stubs, this is not the case for routes from transit

providers, where our attacker was assumed to be. In fact, a

commonly used traffic engineering trick called hole punching

assumes that transit providers do not forcibly aggregate each

other’s announcements. In hole punching, a router announces

a path to both a prefix and a different path to a more specific

prefix contained in the first. In this way the router can hint at

different policies for this specific destination or can encourage

load balancing. Using RouteViews data, we observed 569 core

transit ASes actively using hole punching. The fact that hole

punching is actively done is of great value to our adversary, as

the manner he builds prefixes makes them appear identical to

hole punches.

More over, one can examine RouteViews to see exactly how

many ASes aggregate routes at all. By scanning RouteViews

for ASes that advertise easily aggregatable blocks, for ex-

ample 123.101.1.0/24 and 123.101.0.0/24, we can

quickly get a sense for how much aggregation is actually done

in practice. We found that 100% of transit providers are ob-

served advertising trivially aggregatable prefixes.

7.3 Prefix Limits

A different best practice that directly impacts our adversary is

the limiting of the number of prefixes one router will accept

from another. While there have been historical incidents that

call into question if a majority of ASes actually do this [24],

let us assume the best case: that all ASes follow this prac-

tice. While some of the attacks covered in Section 5 center

around sending a single malicious path to a target, others re-

quire the adversary to send sets of paths. Therefore, prefix

limiting might present an issue for our attacker: if prefix limits

prevent him from sending enough paths, his attack could fail.

However, when examined more closely, this turns out to not be

an issue. There are two different sets of prefix limits that will

interact: those that the adversary’s neighbors have set for it,

and those that the victim has set with his neighbors. Somewhat

counter-intuitively, the actual number of prefixes the attacker

can push to a victim several hops away can be higher than the

number of prefixes he can push to his neighbors. This is be-

cause the attacker can setup multiple attack paths that utilize

the same first hop. In this case the maximum number of mali-

cious updates the attacker can send to the victim is the sum of

the victim’s prefix limits.

Another reason prefix limits do not have a large impact on

the attacker is how large these prefix limits might be. The

value of prefix limits depends on where the victim sits within

the Internet topology. In general the victim falls into one of

two places: either on the fringe of the network or not. If

the victim is on the fringe of the network, then he is expect-

ing to receive full BGP tables from a single digit number of

providers, in which case his prefix limits are set at full table

size (on the order of hundreds of thousands of updates). If

the victim is not on the fringe, he might be expecting smaller

amounts of updates from each individual peer, ranging from

tens of thousands of prefixes up to full tables. However, vic-

tims who are not on the fringe of the Internet also have an

increase in their number of peers of an order of magnitude or

more [27] compared to their counterparts in the fringes. This

means that, even if we assume the core victim has prefix limits

on the order of tens of thousands of routes, his aggregate route

acceptance will be equivalent to that of the fringe victim, since

the core victim has more peers. Lastly, it is advised practice to

keep a safety margins as large as 25% on prefix limits, so as

to not accidently exceed them [10]. This means our adversary

can allow normal operation to continue, while using that safety

margin to advertise his malicious routes.

7.4 Path Length Filtering

Recommended best practice is to limit the maximum accepted

AS path length. Again, recent historical incidents call into

question whether this is actually done [35]. Even if routers set

a small AS path length limit (the current recommendation is

100 or less), we see in Figure 2 that the length of the path is

not a dominating factor for memory consumption in CISCO

routers. With a path length of 22, each update accepted takes

up 0.811 KB of memory. With a full path of length 253, we

only see a marginal improvement to 1.108 KB of memory per

update accepted. In our memory consumption attack, we cause

a much greater memory consumption by adding community

attributes to the updates, as seen in Figure 7. Here we achieve

3.292 KB per update accepted. If our attacker instead was

restricted to using paths of length 22 and added community

attributes as before, he could still achieve a per update memory

cost of 2.995 KB, which would not significantly reduce the

effectiveness of the attack.
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7.5 BGPSEC

Various projects have worked on securing BGP advertise-

ments, most notably BGPSEC [22]. Sadly, BGPSEC fails to

address many of the issues presented in our paper. This is a

consequence of the fact that all of the messages we cite in Sec-

tion 4 are valid messages. While BGPSEC might complicate

the creation of these corner case messages, it does not pre-

vent them. Moreover, BGPSEC places additional memory and

processing demands on routers. BGPSEC does make many

of the techniques discussed in Section 5.2 more difficult to

implement. However, we note other research, notably Gold-

berg et al. [14] demonstrate how an adversary can manipulate

honest BGPSEC speakers into forwarding messages based on

customer/provider preferences.

8 Conclusion

In this paper we demonstrated how an adversary in control of a

BGP router can disrupt victim routers located across the Inter-

net. We have shown through experimentation with hardware

and software routers that there are a collection of states that

cause unstable behavior in BGP speakers. We have provided

simple examples to highlight how routers can end up in these

states. Lastly, we expanded these examples into full scale at-

tacks which function even when best practices are employed.

Many of the examples we covered center around flaws in

BGP implementations. We are in the process of submitting

bug reports to CISCO and a patch to Quagga in order to fix the

particular bugs discussed in this paper; however, these efforts

are an incomplete solution. The list of bugs in Section 4 was

not obtained through exhaustive search—there are likely to be

other bugs lurking in the shadows. These examples highlight

the fact that it is not difficult for a modern router to become

unstable. More critically, we have shown that these examples

are not limited to “Internet accidents.” Rather, they can be

exploited by an adversary to intentionally cause instability for

his own benefit. This last part is especially troubling given that

many protocols which claim to be secure also assume router

stability. Because of this assumption, we recommend that BGP

implementations are tested for protocol correctness in addition

to software correctness.
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Appendices

A Experimental Equipment

We used the following equipment for our experiments:

• A CISCO 7603 series hardware router [5] running IOS

12.2(18), affectionately named “Patsy”, running BGPv4.

• Two Linux machines directly connected to Patsy via Gi-

gabit Ethernet connections.

• Virtual machines running the Quagga software routing

suite [16], version 0.99.20, also running BGPv4. The vir-

tual machines ran under the QEMU hypervisor [26] run-

ning on our lab’s servers, each given a single 2.67GHz

CPU core, and networked using a shared multicast bus.

• A custom BGP injector, called “Morkai”, written to max-

imize update throughput while minimizing message loss.

Writing a custom injector also allowed us to perform ex-

periments with atypical BGP updates and sessions. We

have made Morkai publicly available.

• Real-world BGP routing tables from the RouteViews [27]

project.
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