
Decentralized Authentication Mechanisms for
Object-based Storage Devices

�

Vishal Kher
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455
vkher@cs.umn.edu

Yongdae Kim
Computer Science and Engineering

University of Minnesota
Minneapolis, MN 55455
kyd@cs.umn.edu

Abstract

Network-attached object-based storage sepa-
rates data-path from control-path and enables di-
rect interaction between clients and the storage de-
vices. Clients interact with the file manager only to
acquire the meta-data information and some crypto-
graphic primitives, for example, access keys. Most of
the current schemes rely on a centralized file man-
ager to support these activities.

This paper presents security mechanisms for decen-
tralized authentication for object-based storage. The
schemes are novel in several ways. First of all, they re-
duce the load on the file manager and free the system
from central point of failure and denial of service at-
tacks. We exploit Role-based Access Control (RBAC) to
provide scalability and design authentication schemes
that efficiently utilize RBAC. In most of the cases, the
client needs to acquire only one access key from the
file manager, which can be used by the client to fur-
ther derive role-keys for the roles that he/she is permit-
ted to play within an organization. Further, the number
of cryptographic keys required for the purpose of au-
thentication in these schemes is less as compared to the
existing schemes. Finally, we also present two simple
schemes that enable the clients to access objects stored
on any device on the network using a single identity key.

1. Introduction

Recent advances in network-attached storage have
enabled direct interaction between clients and devices.
The devices are attached to the client-network, which

� This research is supported in part by Intelligent Storage Consor-
tium at Digital Technology Center (DISC), University of Min-
nesota.

enables the client to directly access data from these de-
vices, even from remote locations. Clients interact with
the file manager only to acquire the meta-data informa-
tion and some cryptographic primitives, for example, ac-
cess keys. The client can now directly send a request (for
example, read/write) to the device along with the crypto-
graphic primitives acquired from the file manager, which
will be used by the device for the purpose of authentica-
tion and access control. The file manager is completely
bypassed during the data transfer phase, which improves
the performance and scalability of the system.

Attaching storage devices to the IP network renders
the entire storage system vulnerable to passive attacks
such as eavesdropping, traffic analysis and various active
attacks such as masquerading, data modification, replay-
ing, and denial of service attacks. The storage devices
will have to be active and intelligent enough to authenti-
cate users, restrict access to the objects and their meth-
ods, and secure themselves and the objects from poten-
tial attacks.

In the existing schemes, a client either acquires a ca-
pablitiy key [10, 1, 18] for each object or an identity
key [18] from the file manager. Use of identity keys
makes revocation difficult whereas, in the prior case,
client needs to acquire a large number of keys. The client
has to frequently contact the file manager to acquire a
key for each object that he wants to access. This im-
poses a lot of overhead on the file manager, which also
presents a single point of failure and an attractive attack
target. If the file manager is down or is subject to denial
of service (DoS) attack, the entire system can come to a
halt. Typically, the file manager is replicated to prevent
the failure of one file manager from affecting the en-
tire system. However, replicating the file manager that
also acts as an authentication server, simply increases
the number of attack points. Further, it also necessitates
complex tasks of keeping the security information and
policies consistent. For example, the access control lists

or keys stored on the replicated file managers should be
consistent. Therefore, replicating the file manager is dif-
ficult and requires complex management task.

This paper presents security mechanisms for decen-
tralized authentication for object-based storage. Most of
the current security mechanisms are credential based.
That is, in order to access an object, a client should ac-
quire a credential from the file manager. This can over-
load the file manager. The main motivation behind the
credential-based schemes is that the access control list
(ACL) can be maintained by the centralized file man-
ager, which makes modification to the ACLs easier and
reduces the complexity on the device. In our schemes,
we use Role-based Access Control (RBAC) [7]. In
RBAC, access decision are based on the “roles” a user1

plays within an organization. Access permissions are as-
signed to roles and any user that is a member of a partic-
ular role is permitted to perform operations assigned to
that role. Changes to role permissions (i.e., to the role-
based access control list) are infrequent as compared to
changes to role memberships. We exploit role-based ac-
cess control in our schemes and present authentication
mechanisms that can be employed in conjunction with
RBAC. We attempt to minimize the load on the file man-
ager and reduce the impact of failure of the file manager
on the system. If the file manager fails, existing clients
can still access objects from OSDs or atleast authenti-
cate themselves to the device. Our authentication mech-
anisms are based on identity keys. In most of the cases,
the client needs to acquire only one identity key from the
file manager, which can be used by the client to further
derive role-keys for the roles that it is permitted to play
within an organization. Further, the number of crypto-
graphic keys required for the purpose of authentication
in the presented schemes is less as compared to the cur-
rent schemes. Finally, in order to enable a client to di-
rectly interact with any device in the network by using a
single identity key, we present two simple schemes. The
first scheme is based on symmetric keys whereas, the
second scheme is based on Diffie-Hellman protocol [4].

1.1. Object-based Storage Devices (OSD)

Object-based storage devices present an object level
abstraction to the clients. These objects can be viewed
as virtual containers that have an internal mapping to
their corresponding file blocks. The definition of an ob-
ject depends on the system or application that uses that
object. For example, an object can be viewed as a sim-
ple file, a database, a database record or a multimedia

1 “User” and “Client” refer to the end user of the system and can be
used interchangeably.

object. One object may also contain more than one com-
ponent objects.

File Manager

Control path

Storage Device

OSD Intelligence

I/O Application

Client

D
ata path

M
an

ag
em

en
tClient-network

Figure 1. OSD Architecture.

Figure 1 represents the object-based storage architec-
ture. Clients can directly interact with the devices with-
out any intervention of the file manager (indicated by the
data path). The OSD intelligence layer is the layer that
provides an object level abstraction to the client, per-
forms object specific activities (such as migration, repli-
cation), and more importantly performs security related
operations such as authentication and access control. In
order to grant a client’s request for a particular object,
a device needs to know whether the client is legitimate
and whether he has the required access rights.

1.2. Role-based Access Control (RBAC)

In most of the organizations (such as, commercial or-
ganizations, health care etc.), end users do not “own” the
information for which they are allowed access. The op-
erations that a user performs are based on the user’s role
in the organization. In RBAC [7], access decisions are
based on the roles that individual users play as part of an
organization. Users take on assigned roles (such as doc-
tor, nurse, teller, manager). Access rights are grouped by
role name and the use of resources is restricted to indi-
viduals authorized to assume the associated role. A role
is a set of transactions that a user (or users) can perform
within the context of an organization; for example, a
University system administrator performs global system
management, where as a local system administrator per-
forms departmental management. Associated with each
role is a set of transactions performed by that role. Thus,
role can be considered as a collection of users and col-
lection of permissions. An object in OSD can be viewed
as complex objects such as, database records, database
etc. These objects can have complex operations or meth-
ods. RBAC supports access control at the granularity of

such complex methods and is good for object-oriented
technology.

RBAC follows the principal of least privilege, where
a user is allowed to gain information depending on his
job function. The NIST study [8] indicates that permis-
sion of roles do not change as frequently as the member-
ship of the role. Under RBAC, roles can have overlap-
ping responsibilities and privileges, which can be repre-
sented by forming a hierarchy of roles. RBAC is easy
to manage and a natural way of access control in an en-
terprise and hospital environment. Role definitions, per-
mission assigned to roles can vary from one organiza-
tion to another. A thorough analysis of job functions and
policy decisions are required in order to setup a RBAC
framework. Once the basic RBAC framework is setup,
the main administrative task is granting and revoking a
user’s role. Recently, a standard for RBAC was proposed
by NIST [6].

1.3. Types of Access Keys

In order to access an object, the client first sends a re-
quest to acquire an access key to the file manager. The
file manger authenticates the client and returns an ac-
cess key to the client. The access key is derived from a
shared secret between the file manager and the device.

� Capability Keys: A capability key indi-
cates the capabilities (access rights) of the
client over a particular object. For exam-
ple, a capability key can be generated as�������	��
 � ������������������������ �"!$#%�'&)(�&���*+�"�,��
"-
where � is the shared secret between the file man-
ager and the device that stores object (and
MAC is a secure message authentication code
such as HMAC [2]. ��*+�"�.��
 indicates the du-
ration for which this key is considered to be
valid. The client can then present this capabil-
ity key to the device to authenticate himself. In
order to authenticate the client, the device gen-
erates the �����/�0��
 (since it knows �) and veri-
fies whether client’s �������	��
 is authentic. If so, it
grants the requested operation if the particular op-
eration is listed in the ��������������� �"!$#%� argument. An
advantage of this scheme is that the device is un-
aware of the client’s identity and his access rights.
Usually the �������	��
 is valid for a short inter-
val of time. A downside of this scheme is that
the client has to acquire a key for each ob-
ject he wants to access, which incurs a lot of
overhead on the file manager.

� Identity Keys: An identity key allows the device to
verify the identity of a particular client. For exam-
ple, an identity key can be generated as �.12�	��
3�

4���5�6� �.17��89#:�,#:
/&���*+�"�.��
$- , where � is the shared
secret between the file manager and the device. In
this case, the device has to store an access control
list (ACL) along with each object. The device first
verifies the identity of the client by verifying the�.12�0��
 and then verifies whether the client has the
requested rights listed in the ACL of the object. If
these tests succeed, the device grants the request.

� Role Keys: Existing schemes are either based
on capability key or identity key. We intro-
duce a third type of key, role key, which is used
in our system for authentication purpose. A role
key allows the device to verify the role of the be-
holder. For example, a role key can be gen-
erated as �<;�=����0��
 � 4���5�6� �<;�=��'&���*+�"�,��
"-
where � is the shared secret between file man-
ager and the device. Role key can also be derived
by using the identity key of the client. For exam-
ple, the identity key of the client can be gener-
ated as: �:1+�0��
>�44���5��� �.1"&%?@� �<;�=�����-)&)��*+�/�,��
$- ,
where ?@� �<;�= ����- indicates a hash of concatena-
tion of all the roles a particular client can play. The
client can then generate a role key using this iden-
tity key. The client then presents this role key to the
device. To verify the role key of the client, the de-
vice first generates the identity key of that client.
Using this identity key the device can then gen-
erate a role key to verify whether the client is
allowed to play that role. In this case, role key cor-
roborates the identity as well as the role of the
client.

1.4. Organization

The remainder of this paper is organized as follows.
Section 2 describes related work. Section 3 describes the
assumptions and goals of our system. Section 4 gives an
overview of our protocol. The details of these protocols
are presented in section 5. Section 6 explains possible re-
vocation mechanisms. Section 7 presents two optimiza-
tions that further help to reduce the total number of keys
in our system. Section 8 presents a preliminary compar-
ison with other capability based and identity based sys-
tems. Finally, section 9 draws conclusions and outlines
future work.

2. Related Work

The main goal of distributed file systems is to al-
low users to access their data from remote locations in
the same way they would access local files, by making
the network transparent. The focus of initial research
of these systems was on availability, performance, and

other distributed systems issues rather than security.
However, due to the popularity of the Internet and due
to the enormous amount of electronic data transferred
on the network and stored on these file servers, secur-
ing this data and the entire system from abuse has be-
come an important requirement.

AFS [11, 20] was one of the first file systems to take
security into consideration. It enables co-operating hosts
(clients and severs) to efficiently share file system re-
sources across both local and wide-area networks. Au-
thentication in AFS is done using Kerberos [16]. NFS
has enhanced its security recently in NFS V4 [17], which
provides authentication, integrity and privacy of the data
on the network. CFS [3] was one of the first file system
that pushed the file encryption services into the file sys-
tem. This user level virtual file system performs the file
encryption and key management functions. TCFS [14]
and cryptFS [5] further extended CFS by making file
encryption transparent to the user. Smart-Card-based se-
cure file system [13, 12] supports end-end data encryp-
tion as well as decentralized access control.

NASD [9, 10] was one of the first systems that en-
abled clients to directly access the objects stored on the
storage devices by separating the data path from the con-
trol path; thus, improving the performance of the sys-
tem. The clients interact with the file manager to ob-
tain meta-data information and cryptographic capabili-
ties that apart from other things include the access rights
of the client for that object, access control version, and
capability key for the client. After acquiring this in-
formation, the clients can directly store/retrieve the ob-
jects from the storage devices. Devices can authenticate
the clients on the basis of the capabilities passed to the
clients by the file manager. These capabilities are based
on a common key shared between the file manager and
the storage device that stores the requested object. The
client obtains a capability for each object; therefore, the
file manager has to be online and presents an attrac-
tive attack target and a central point of failure. If the file
manager is down the entire system comes to a halt. Fur-
ther, the capability is bound to the device and the ob-
ject; therefore, if the object is replicated (or migrated)
to a different device or is a compound object with com-
ponent objects stored on different devices, clients will
have to acquire one or more fresh capability keys. The
access control version of each object is stored along with
the object. By changing the access control version in
the capability of the client, the file manager can instan-
taneously revoke the client. However, this revokes the
capability key of all the clients accessing that object.
NASD devices are unaware of the file system structure
and simply store the objects and enforce the policy deci-
sions made by the file manager. The capability keys need

to be transmitted through secure channel (possibly us-
ing SSL or IPSec). Opening new connection using these
techniques enables another type of denial-of-service at-
tack, since the file manager has to be involved with pub-
lic key operations. SNAD [15] extends NASD to provide
end-end data encryption.

SCARED [19] extends NASD to provide mu-
tual authentication between clients and storage de-
vices. It supports authentication based on capability
key (as in NASD) as well as identity keys. In the lat-
ter case the storage device also stores the access con-
trol list (ACL) along with the object. These keys can
be long lived as compared to NASD, which makes re-
vocation difficult. In the case of identity keys, each
client needs to acquire keys equal to the number of de-
vices; therefore, the total number of keys in the system
is equal to the number of clients times the number of de-
vices as compared to the number of objects times the
number of clients in the case of NASD.

Another extension to the NASD scheme is presented
in [1]. This protocol separates mechanisms used for
transport security from those used for access control.
It requires that the underlying transport layer is using
IPSec. The protocol is then built over this secure com-
munication layer. As in NASD, in order to access an ob-
ject, the client has to acquire capability key from the
file manager. The protocol is session based; client es-
tablishes a connection with the storage device, and the
device delivers a channel ID to the client. This channel
ID along with access credentials is used to setup an au-
thenticated channel between the client and the device.
This prevents information from one channel to be re-
played onto another channel. Caching the verified cre-
dential for each session and using the cached copies for
future authentication can increase the speed of the ver-
ification process. This scheme faces the same problems
as in NASD mentioned above.

3. System Assumptions and Goals

In this section we describe our system assumptions,
goals, and what kind of security threats will be faced by
our system. The schemes presented in this paper are de-
veloped with these assumptions in mind.

3.1. Assumptions

File Manager
File manager is a trusted entity. It is responsible to
securely setup the system, necessary security pa-
rameters, and store the keys or other security pa-
rameters securely. It knows the legitimate users of
the system and has a secure way to authenticate

these users. It also has a secure way to communi-
cate with the clients. Should a file manager be com-
promised, we term this as a total break, meaning the
entire system is compromised.

Clients
Clients or end users are not trusted. Clients are ca-
pable of performing all kinds of active and passive
attacks. Even a legitimate (rogue) client or an in-
sider can try to break security schemes. For exam-
ple, he can attempt to impersonate other legitimate
clients, attempt to collaborate with other clients to
break the security schemes, or attempt to perform
illegitimate access.

Communication Links
The communication links are completely insecure.
We do not assume any kind of underlying secure
protocols such as IPSec. Since the communication
links are insecure, an adversary or even a rogue in-
sider can perform active/ passive attacks such as
eavesdropping, masquerading, inserting and mod-
ifying data, etc.

Devices
Devices are trusted to grant access to legitimate
users of the system and play their role appropri-
ately and securely.

3.2. Goals

1. Remove central point of failure and distribute secu-
rity functions appropriately between the file man-
ager and the devices.

2. Reduce total number of access keys required in the
system.

3. Minimize the number of interactions between the
client and the file manager. The client need not con-
tact the file manager to access each object at least
for security purposes. This will reduce the overhead
of the file manager. The file manager can remain of-
fline for most of the time.

4. Provide client to device mutual authentication.

5. The protocols should be secure in the face of vari-
ous network attacks.

6. Minimize the performance overhead imposed by
the cryptographic operations.

7. Improve scalability of the storage system to sup-
port frequent replication and migration of objects.

4. System Overview

We follow the basic OSD model and build our system
on this model. We use RBAC in our system. We assume

that a RBAC framework already exists. The policies on
which this framework is built is outside the scope of this
paper. We also assume that decisions regarding various
roles and role permissions are already made. These de-
cisions can vary from one organization to another.

In our approach, the file manager performs user to
role association. It maintains a database of all possi-
ble roles within an organization and their correspond-
ing members. By maintaining this database at the cen-
tralized entity, frequent changes to the database can be
easily handled. A device stores role-based access con-
trol list along with each object. The reader should recall
that changes to role-based access control list are infre-
quent as compared to changes to UNIX style ACLs.

The file manager shares a secret key � with each de-
vice. In order, to access an object, a client first sends
a message to the file manager requesting an identity
key. The file manager authenticates the client, and ac-
quires all the roles that particular client can play within
the organization. This information is fetched from the
database maintained at the file manager. The file man-
ager then generates an identity key for the client as fol-
lows:

�.12�0��
�� � 4������������& ? � �<;�=���� � ��#%-%-

�<;�=���� � ��# is concatenation of all the roles the client
can play within the organization and ��� is the iden-
tity of the client. This identity key is then transferred
securely to the client along with the �<;�=���� � ��# . This en-
sures that no malicious entity can acquire the client’s
identity key. Further, the identity key is derived from
the secret shared between the file manager and the de-
vice; therefore, only that device and the file manager
can regenerate and verify the client’s identity key. Af-
ter receiving this identity key the client can directly
access objects stored on the device. The client first gen-
erates a role key depending on the current role
played by the client. By allowing the client to gener-
ate his own role key, the client does not have to con-
tact the file manager in order to acquire a key for
each role. The role key is derived from �.12�0��
�� as fol-
lows:

�<;�=����0��
�� = 4���	��
�������,���/���<��89#�� ;�=���-

In order to access an object stored on the device,
the client sends a message to the device, which among
other things includes ��� , �<;�=���� � ��# , ���/���<��89#�� ;�=�� . Along
with the message, the client also sends a 4����������� ������
on this message using the role key corresponding to���/���<��89#�� ;�=�� . The device can then generate �:1+�0��
�� in a
similar way as the file manager. Using the ���/���<��89#�� ;�=��

parameter the device can generate role key and verify
the authenticity of the message sent by the client. The
device can also verify whether the client is eligible to
play that role by checking the �<;�= � � � ��# . Finally, the de-
vice verifies whether the role-based access control list of
the requested object permits the requested operation for���/���<��89#�� ;�= � . If all tests succeed, the device grants the
client’s request and sends an appropriate response to the
client. Including ?@� �<;�=���� � ��#%- while deriving �:1+�0��
��
ensures that the client cannot play any role other than
those specified in �<;�=���� � ��# . Attaching MAC with ev-
ery request ensures authenticity of the origin as well as
integrity of the message. To prevent replay attacks, we
also include freshness information along with each re-
quest and response. Note that, if the client is granted new
roles different from those mentioned in the �<;�= � � � ��# , the
client will have to acquire a new identity key. However,
the frequency of acquiring new identity keys will be less
than that of capability keys.

5. Protocol Details

Notations used for the protocol description are as fol-
lows: �

Client�
Device���
File manager���
Unique identity string of

�
	�
����� � �

’s identity key assigned by the file manager����� ������� � �
’s role key corresponding to its current role�

Secret key shared between FM and D��� �����
Keyed-MAC function using key ���
Collision resistant hash function

Identity Key Generation
A client can acquire his identity key from the file man-
ager on the first access to an object or an identity key
can be transferred to the client when his account is cre-
ated. The protocol messages are shown below.

�"!$# : identity key request (1)# %! � :�.12�0��
 � = 4���5�6�, &%?@� �<;�=���� � ��#%-%-)&) & �<;�= � � � ��# (2)
Where � � ��&)��*+�"�,��

On receipt of message (1), file manager authenti-
cates the client and verifies that the client is a legit-
imate user of the system. The authentication mecha-
nism can be one of the standard mechanisms and is
out of scope of this paper. Using key � , the file man-
ager creates an identity key for the client as shown
in (2) above, which is transferred securely to client� . The field ��*+�/�,��
 indicates the expiry of the iden-
tity key. �<;�= � � � ��# indicates all the roles that the client is
eligible to play, for example, programmer, manager, de-
signer, etc. During creation of the identity key, the file

manager includes a hash of all the roles that the client
can play. If a client has multiple roles, the file man-
ager can compute hash on concatenation of all the roles.

Role Key Generation
Before sending a request, the client generates a role
key as �<;�=����0��
�� = ���� ��
���������,���/���<��89#�� ;�=���- .���/���<��89#�� ;�=�� indicates the current role that the client
is using to access an object. For example, a client can
have two roles A, and B. The �<;�=���� � ��# in step (2)
above is �'&(&) . However, a client can only play cer-
tain roles at time (such decision are part of policy de-
cisions of the client’s company). If a client is allowed
to play only one role at a time, then ���/���<��89#�� ;�=�� is ei-
ther � or) .

Freshness Guarantee
Since the communication links are insecure, an at-
tacker or rogue insider can replay previous messages
sent to and from legitimate clients and attempt to im-
personate legitimate clients. In order to prevent re-
play attacks its important to guarantee the freshness of
each message sent to and from the client. The fresh-
ness guarantee in our protocol is similar to that used in
SCARED [18].
Protocol messages are shown below:

�*!,+ :.- �/10 ;�8 ��� � �2�� ����#)&%��&�43+&)���� ��� � � ��������,5-�- (3)
Where � � ��&%�<;�=���� � ��#)&)���/���<��89#�� ;�=��'&)��*+�"�,��

+6! � :.- � /10 ;�8 ����� �%�/=
/&%��&��73<&�4���	����� � ��������,5-�- (4)

On receipt of request (3), the device verifies whether���/���<��89#�� ;�=�� is listed in �<;�=���� � ��# . Next, the stor-
age device can generate �.12�0��
�� by using M and
performing 4���5� (M). The device then gener-
ates �<;�=����0��
�� in a similar way used by the client.
Using this �<;�=����0��
�� the device can verify the authen-
ticity of the message. If the test succeeds, the device
can conclude that the client is authentic and the re-
quest was generated by the client. The device then sends
back a response as shown in step (4). Similarly, on re-
ceipt of message (4), the client can verify whether the
message was generated by the the device by verify-
ing the ���� . The value � in the response is used
by the client to match the response with the orig-
inal request. Communication can be session based
or timer based. Fields � and � indicate these fresh-
ness parameters and are used to guarantee freshness
of future communications. If the communication be-

tween the client and the device is session oriented,
then the client and device can exchange the initial ses-
sion counter using the above two messages. Once the
initial counter is established, the counter can be in-
cremented for successive messages for that session.
If the communication is timestamp based, it is as-
sumed that the clocks of the device and the client
are synchronized; therefore, no communication is re-
quired. If their clocks are not synchronized they can
exchange messages (3) and (4) as shown above and syn-
chronize their clocks periodically. Clients can save one
round of communication by merging freshness proto-
col along with the request protocol.

Request/Response Protocol
The request/response protocol is shown below:

�"!$+ : &�4���	����� � ��������, - (5)
where �/ (������'�+#:� ;�8 &)(�.1"&�� ��&)��*+�/�,��
/& ��&��'&)���/���<��89#�� ;�=��'&
�<;�=���� � ��#�3

+6! � : �/ � ��� ��;�8 ���'& ��&��73+&)���� ��� � � ���� � �, - (6)

In order to authenticate the client, the device
checks whether ���/���<��89#�� ;�=�� is included in �<;�=���� � ��# .
It then calculates ?@� �<;�= � � � ��#%- (�<;�=���� � ��# can be
obtained from message M). It can then gener-
ate �71+�0��
�� � 4���5�6��� ��&)��*+�"�,��
/& ? � �<;�=���� � ��#%-%- ,
and �<;�=����0��
�� � ���� ��
��� � � �,���/���<��89#�� ;�=���- . The de-
vice can now verify whether ���� generated by
the device matches with the 4��� sent in the mes-
sage. By using � and � in the message the device
can verify the freshness of the message. If the veri-
fication is successful, the device checks whether the
role that the client wants to play has the required ac-
cess rights by checking the role-based access control
list of the requested object. If all the tests succeed, ac-
cess is granted to the client. The client can verify the
response from the device in a similar fashion by verify-
ing the ���� of the response.

6. Revocation

Revocation can be achieved in following ways:

1. Each identity key has an associated key expiry in-
formation. The device needs to check whether an
identity key is expired on every request. The expi-
ration time might be specified as a timer or in terms
of number of accesses a client can perform.

2. The system can maintain a revocation list, which
can be stored on fast LDAP servers. Each device

can periodically download (or check) the revoca-
tion list (for example, once a day) or the file man-
ager can push the revocation list to OSDs. The
old entries in the list can then be discarded, which
will keep the revocation list small. The revocation
list can maintain information regarding revoked
clients, client’s individual roles, and a particular
role from the organization.

3. Although changes to the role-based access control
list are infrequent, the changes can still occur. In or-
der to speed the look-up process, each device can
maintain a list per role that contains pointers to all
the objects accessed by that role. In order to find the
location of an object accessed by a particular role,
the list can be indexed by the identity of the ob-
ject. However, there are two disadvantages of this
scheme. First, the size of the list maintained for
each role can be large. Second, this list should be
updated every time an object is added or deleted by
a role.

4. In order to revoke a client’s individual role, the file
manager can assign an expiry for each role that was
included in the �<;�=���� � ��# used while deriving iden-
tity key for a client. The expiry field can be a part
of the �<;�= � � � ��# . The device can verify whether the
role-key has expired by checking the expiry field
corresponding to that role. Note that in this case,
the client can still use his identity key to generate
role key for other roles.

7. Optimizations

Identity keys are derived from a secret key shared be-
tween the file manager and the device. Therefore, the
identity key of a client is bound to each device. In or-
der to access objects from multiple devices, client has to
acquire multiple identity keys. Therefore, the client still
has to contact the file manager to acquire all the identity
keys. To reduce the number of client to file manager in-
teractions, these identity keys can be batched and trans-
ferred to the client at once. We can further reduce the
number of identity keys that a client needs to acquire by
using two simple approaches, namely, by grouping the
clients or devices, and using Diffie-Hellman protocol.

7.1. Grouping

Devices can be grouped together and the file manager
can assign one key to each group. All devices within one
group share the group key amongst themselves and with
the file manager. The identity key of clients is derived
from this group key. Since, the devices share a com-
mon secret, client’s can directly interact with any device

within this group by just using one identity key. Thus,
the number of identity keys per client depends on the
number of groups. If there are

0
groups of devices, then

a client will have to acquire at the most
0

identity keys
to interact with each device in these groups.

Another approach is to group clients. File manager
creates

0
groups and assigns each legitimate client to

one of the groups. The client to group assignment can
be random or can be based on other factors such as, the
client’s role. A group can be a subdivision within an or-
ganization, for example, storage division. The identity
keys for all members of one group are derived by the
file manager using the group key of that group. That
is, instead of using the secret key shared with the de-
vice, file manager will use the group key of a client’s
group to generate an identity key for the client. If file
manger wants to give access to the members of a par-
ticular group to a particular device, the file manager can
simply give the group key of that group to the device.
Since, this group key is used to generate the identity key
of the clients belonging to that group, the device can ver-
ify the identity keys as well of roles keys of all the mem-
bers of that group. By storing or deleting a particular
group’s key on the device, file manager can enable or
disable group’s access to the device. Thus, the file man-
ager can impose another level of access control. Mem-
bers of a group can interact with a device if that device
has the group key of that group.

7.2. Diffie-Hellman Based Authentication
(DHA)

DHA uses Diffie-Hellman protocol [4] to share a key
between a client and a device. Diffie-Hellman protocol is
used to generate the initial long term common secret be-
tween these two entities. After the initial setup the long
term secret will be used as a symmetric key along with
keyed-MAC. The advantage of this scheme is that clients
can share a secret directly with a device without any in-
tervention of the file manager. This reduces the load on
the file manager and also provides mutual authentication
between the device and the client. This protocol does not
require any private channel between the client and the
file manager.

7.2.1. DHA: DHA is Diffie-Hellman protocol with au-
thentic public keys. These public keys are signed by a
certification authority or the file manager. In order to
verify the authenticity of a sender’s public key, a veri-
fier will have to verify the certificate issued by a certifi-
cation authority, which could be a separate entity or file
manager. If both the sender and the receiver possess an
authentic certificate, then a secret key is established with
the Diffie-Hellman protocol.

� One time setup: File manager (or any other cer-
tification authority) selects an appropriate cyclic
group � with generator � . Both � and � are sys-
tem wide public parameters. It then issues each le-
gitimate entity (client and device) a certificate that
binds the entities public key ��� to its identity. Us-
ing � ’s certificate) can verify whether ��� is � ’s
authentic public key. Let � ����#�� denote certificate
issued by the file manager to entity � . For each
client, the certificate will also contain all the roles
of that client.

� KeySetup: The following depicts the interac-
tion between the client � and device + to estab-
lish a common secret key � � .

�"!$+ : � / �0��
�� ��#��+� & � � &)� ����# ��& ��� 3
+6! � : � / � ��#��+� � ��� � ;�8 ���<& �
 &�� ����#�
<&���
 3

� � and ��
 denote identity of client and the de-
vice respectively. � and + verify the authen-
ticity of each others public key and calculate� �
 - � , � � � -
 respectively to establish a shared se-
cret � �
 =� �
 .

� Request Protocol: The client can generate the role
key using � �
 as explained before. The request
protocol is similar to that explained in section 5.

7.2.2. Discussion: DHA allows a legitimate client to
directly establish a secret key with a device. The key
generation and certificate verification process is expen-
sive as compared to symmetric key based approaches.
However, if the public keys and the certificates can be
made available to each client (or even to each device)
apriori, then key setup phase is not required and each
entity can calculate the shared secret offline. Further, af-
ter successful verification, devices can cache the shared
secret keys � �
 along with the client roles and use the
cached keys to verify future requests. The device does
not have to perform signature verification on each phase,
which will speed up the request protocol. Thus, by mak-
ing the public keys available apriori and caching the se-
cret keys one can reduce the number of messages sent
to the device as well as the computational overhead in-
curred due to key generation and signature verification
operations. DHA provides mutual authentication as a
client directly shares a key with a device. The client
can establish a secret (if not established before) with the
any device and access the object without any interven-
tion from the file manager, which improves the scalabil-
ity of the system. DHA also minimizes the load on the
file manger as, the file manager can remain offline af-
ter initial system setup. In fact, the file manager does
not have to perform any key management activities. Key

management can be separated from the file manager by
using another entity or a certification authority that per-
forms key management functions.

As each entity requires to store only one secret key� corresponding to its public ��� the number of keys re-
quired is equal to the number of clients plus the number
of devices.

8. Comparison

A preliminary comparison of our schemes with other
capability based systems and identity based system is
presented. As compared to capability based systems, our
system requires less number of keys. Therefore, client
to file manager interaction is reduced and the compu-
tational overhead on the file manager is reduced. Our
schemes are based on RBAC, which is a natural way
of making access decision within an organization. Af-
ter setup of the RBAC framework, the changes to per-
missions assigned to roles are infrequent as compared to
UNIX style ACLs. Further, by using grouping or DHA
we can reduce the total number of keys required in the
system. By using DHA we can reduce the number of
keys to the number of clients plus the number of devices
as compared to other identity-based systems where the
number of keys required is equal to the number clients
times the number of devices. Finally, after the initial
setup the file manager can be offline for security pur-
poses. In fact, file manager does not have to perform any
key management operations.

9. Conclusions and Future Work

In our approach, we have attempted to reduce the
computation overhead on the file manager. Even if the
file manager is down the existing clients of the system
can still interact with the devices. RBAC is easy to man-
age and a natural way of access control for commercial
organizations. RBAC is highly flexible and can satisfy
various access control requirements. We presented au-
thentication mechanisms that utilize RBAC. In our sys-
tem, operations on the object can be fairly complex, for
example, insert record, deposit money etc. The authen-
tication protocol is robust against networks attacks and
provides client to device mutual authentication. The ba-
sic protocol coupled with grouping or DHA can further
reduce the total number of keys in the system. By us-
ing DHA the total number of keys is number of clients
plus number of devices. After the initial setup the file
manager can be completely offline. The computation
overhead imposed by DHA can be minimized by pre-
computing the shared keys and caching the DHA shared
keys on the client and the device.

We plan to further explore role-based access con-
trol models to understand how role-based access control
lists can be efficiently designed and implemented. We
plan to analyze access patterns to understand how fre-
quently the role-based access control list is changed and
frequency of role revocation. A potential optimization to
schemes presented in this paper is to store role-based ac-
cess control list in a single object. This list will include
all roles and their associated permissions. This list can
be maintained by the file manager. By keeping the list
centralized, changes to the list can be done efficiently.
Along with each object, we can store the list of roles
that can access the object. We can then use a combina-
tion of identity key and capability key for authorization
purpose. We plan to explore authentication schemes fur-
ther in this setting and implement these schemes on top
of the Lustre file system.

References

[1] Alain Azagury, Ran Canetti, Michael Factor, Shai
Halevi, Ealan Henis, Dalit Naor, Noam Rinetzky, Ohad
Rodeh, and Julian Satran. A two layered approach for
securing an object store network. In Proceedings of the
First IEEE International Security In Storage Workshop,
December 2002.

[2] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash
function for message authentication. Lecture Notes in
Computer Science, 1996.

[3] Matt Blaze. A cryptographic file system for unix. In Pro-
ceedings of the 1st ACM Conference on Communications
and Computing Security, pages 9–16, Fairfax, VA, 1993.
ACM Press.

[4] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Trans. Inform. Theory, IT-22:644–654,
November 1976.

[5] I. Badulescu E. Zadok and A. Shender. Cryptfs: A stack-
able vnode level encryption file system. Technical Re-
port CUCS-021-98, Columbia Univ., New York City, NY,
1998.

[6] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. R. Kuhn, and
R. Chandramouli. Proposed NIST standard for role-
based access control. ACM Transactions on Information
and System, August 2001.

[7] David F. Ferraiolo and D. Richard Kuhn. Role-based ac-
cess controls. In 15th NIST-NSA National Computer Se-
curity Conference, Baltimore, Maryland, October 1992.

[8] D.F. Ferraiolo, D.M. Gilbert, and N. Lynch. An exam-
ination of federal and commercial access control policy
needs. In NIST-NCSC National Computer Security Con-
ference, 1993.

[9] Garth Gibson, David Nagle, Khalil Amiri, Fay Chang,
Eugene Feinberg, Howard Gobioff, Chen Lee, Berend
Ozceri, Erik Riedel, David Rochberg, and Jim Zelenk.
File server scaling with network-attached secure disk.
In Proceedings of the ACM International Conference on

Measurement and Modeling of Computer Systems (SIG-
METRICS ’97), June 1997.

[10] H. Gobioff. Security for high performance commodity
subsystem. PhD thesis, CMU, July 1999.

[11] J.H Howard. An overview of the andrew file system.
In Proceedings of the USENIX Winter Technical Confer-
ence, Dallas, TX, February 1998.

[12] J. Hughes and C. Feist. Architecture of the secure file
system. In Eighteenth IEEE Symposium on Mass Stor-
age Systems, pages 277–290, San Diego, CA, April 2001.

[13] J. Hughes, M. O’Keefe, C. Feist, S. Hawkinson, J. Per-
rault, and D. Corcoran. A universal access, smart-card-
based, secure filesystem. In Atlanta Linux Showcase, Oc-
tober 1999.

[14] Ermelindo Mauriello. TCFS: Transparent cryptographic
filesystem. Linux Journal, 40, August 1997.

[15] E. Miller, D. Long, W. Freeman, and B. Reed. Strong
security for distributed file systems. In Proceedings of
the Conference on File and Storage Technologies (FAST
2002), pages 1–13, January 2002.

[16] B. Clifford Neumann and Theodore Ts’o. Kerberos:
An authentication service for computer networks. IEEE
Communications, 32(9):33–38, September 1994.

[17] Brian Pawlowski, Spencer Shepler, Carl Beame, Brent
Callaghan, Michael Eisler, David Noveck, David Robin-
son, and Robert Thurlow. The NFS version 4 protocol.
March 2000.

[18] B. Reed, E. Chron, R. Burns, and D. D. E. Long. Au-
thenticating network attached storage. IEEE Micro,
20(1):49–57, January 2000.

[19] Benjamin C. Reed, Mark A. Smith, and Dejan Diklic.
Security considerations when designing a distributed file
system using object storage devices. In Proceedings of
the First IEEE International Security In Storage Work-
shop, December 2002.

[20] M. Satyanarayanan. Integrating security in a large dis-
tributed system. In ACM Transactions on Computer Sys-
tems, volume 7, pages 247–280, 1989.

