
Batch Verifications with ID-based Signatures

HyoJin Yoon1?, Jung Hee Cheon1? and Yongdae Kim2??

1 Department of Mathematical Sciences,
Seoul National University, Korea
{jhcheon,jin25}@math.snu.ac.kr
2 Department of Computer Science

University of Minnesota - Twin Cities, USA
kyd@cs.umn.edu

Abstract. An identity (ID)-based signature scheme allows any pair of
users to verify each other’s signatures without exchanging public key cer-
tificates. With the advent of Bilinear maps, several ID-based signatures
based on the discrete logarithm problem have been proposed. While these
signatures have an advantage in the fact that the system secret can be
shared by several parties using a threshold scheme (thereby overcoming
the security problem of RSA-based ID-based signature schemes), they all
share the same efficiency disadvantage. To overcome this, some schemes
have focused on finding ways to verify multiple signatures at the same
time (i.e. the batch verification problem). While they had some success in
improving efficiency of verification, each had a slightly diversified defini-
tion of batch verification. In this paper, we propose a taxonomy of batch
verification against which we analyze security of well-known ID-based
signature schemes. We also propose a new ID-based signature scheme
that allows for all types of multiple signature batch verification, and
prove its security in random oracle model.

Key words : ID-based signatures, Batch verifications

1 Introduction

In 1984, Shamir proposed a new model for public key cryptography, called
identity (ID)-based encryption and signature schemes. The goal was to sim-
plify key management procedures of certificate-based public key infrastructures
(PKIs) [27]. Since then, several ID-based encryption and signature schemes.
based on integer factorization problem, have been proposed [9, 29, 30, 21]. While
these ID-based signatures have improved key management and key recovery,
their disadvantage lies in the fact that the signer’s key is shared with the private
key generator [13, 10]. This problem can be alleviated using signatures based

? The first and second authors were supported in part by Korea Telecom.
?? The third author is supported in part by DTC Intelligent Storage Consortium at

the University of Minnesota. Part of this work was done while the third author was
visiting Seoul National University in 2003.



on the discrete logarithm problem (DLP) instead, since in this case the secret
key can be shared by several parties using a threshold scheme. Several ID-based
signatures with these properties that use pairings in elliptic curves have been
proposed [14, 25, 8].

In spite of several advantages of ID-based signatures schemes based on pair-
ings, they suffer from an efficiency problem that puts restrictions on their use
in applications: Their signature verifications are between ten and two hundred
times slower than those of DSS or RSA [1]. This problem may be critical in
some applications such as electronic commerce and banking service, in which
one server may have to verify many signatures simultaneously. To improve the
efficiency of performance for multiple signature verification, many researchers
have studied so called batch verification.

Even so, each proposed approach has a different definition of batch verifi-
cation. We classify multiple signatures (i.e. input of batch verification) into the
following three types, according to the number of signers and messages:

Type 1 multiple signatures on a single message generated by multiple signers
Type 2 multiple signatures on multiple messages generated by a single signer
Type 3 multiple signatures on multiple messages generated by multiple signers,

where each message is signed by a distinct user

Type 1 signature was traditionally classified as multisignature and has been
studied for a long time [16, 23, 24, 20, 6]. Due to its simplicity, it allows for very
efficient batch verification. Type 2 batch verification proposals centered around
batch RSA [11, 2] and have been a topic of research since late 80’s. Compression
of multiple RSA signatures of type 2 into one signature is also called condensed
RSA [19]. More precisely, our discussion deals with different notion of batch
verification, called screening [2]. That is, we only want to determine whether the
signer has at some point authenticated the text rather than verifying if each string
provided is the valid signature corresponding to the message. Recently, Boneh
et al. proposed aggregate signatures (BGLS scheme) using bilinear maps, in
which multiple signatures are aggregated into a single signature [3]. They allow
for batch verification of type 3, but the efficiency gain is almost half of usual
verifications. We note that there have been many efforts that aim at speeding
up simultaneous verifications of modular exponentiations for DSA signatures [22,
18, 2, 7]. These approaches are independent of specific signature schemes, but the
efficiency gain over the sum of individual verifications is limited. On the other
hand, our approach can give significant improvement in efficiency.

Our Contributions In this paper, we discuss batch verifications of ID-based
signatures according to the above taxonomy. (1) We discuss security of batch
verification of type 2 in the Cha-Cheon scheme. We provide a loose security re-
duction of batch verification of type 2 in Cha-Cheon scheme to the computational
Diffie-Hellman problem (CDHP). It is the same as in the Hess scheme [14]. (2)
We show that previous signature schemes are not secure in batch verification of
Type 1 or 3. (3) We propose a new ID-based signature scheme that is secure



in batch verification of Type 1 and 3 and provide security proof under random
oracle model.

Organizations The rest of the paper is organized as follows: In Section 2, we
introduce hard problems which our scheme relies upon. In Section 3, we analyze
previously proposed ID-based signatures in batch verification of Type 2. We
also discuss why those ID-based signature schemes fail to provide secure batch
verification of Type 3 and Type 1. In Section 4, we propose a new ID-based
signature scheme admitting secure batch verification of Type 3 and Type 1,
provide proof of security and discuss the batch verification of each type. We
conclude in Section 5.

2 Preliminary

2.1 Bilinear Maps

Consider an additive cyclic group G of prime order ` and a cyclic multiplicative
group V . Let e : G×G → V be a map which satisfies the following properties.

1. Bilinear For any aP, bP ∈ G, e(aP, bP ) = e(P, P )ab.
2. Non-degenerate If e(P, Q) = 1V for all P (or Q) in G, then Q (or P ) is

the identity of G, respectively.
3. Efficient There exists an efficient algorithm to compute the map.

We call such a bilinear map as an admissible bilinear pairing.
The Weil pairing and Tate pairing in elliptic curve give good implementations

of the admissible bilinear pairing. Let E be an elliptic curve over Fq where q = pn

and p is a prime. For a prime ` and an ` torsion subgroup E[`] of E, we define
a Weil pairing eW : E[`] × E[`] → F∗qα for suitable α. Now let G = E(Fq)[`]
and define a map e : G × G → F∗qα , where e(P,Q) = eW (P, φ(Q)) and φ is
an automorphism over G. Then e is an efficiently computable non-degenerate
bilinear map. The Tate pairing has similar properties and is more efficient than
the Weil pairing. For the details, refer to [4].

2.2 Some Problems

Let G be a cyclic group of prime order ` and P a generator of G.

1. The decisional Diffie-Hellman Problem (DDHP) is to decide whether c = ab
in Z/`Z for given P, aP, bP, cP ∈ G. If so, (P, aP, bP, cP ) is called a valid
Diffie-Hellman (DH) tuple.

2. The computation Diffie-Hellman Problem (CDHP) is to compute abP for
given P, aP, bP ∈ G.

Now we define a gap Diffie-Hellman group.



Definition 1 A group G is a gap Diffie-Hellman group if the DDHP in G can be
efficiently computable and there exists no algorithm which can solve the CDHP
in G with non-negligible probability within polynomial time.

If we have an admissible bilinear pairing e in G, we can solve the DDHP in G
efficiently as follows:

(P, aP, bP, cP ) is a valid DH tuple ⇔ e(aP, bP ) = e(P, cP ).

Hence an elliptic curve becomes an instance of a gap Diffie-Hellman group if the
Weil (or the Tate) pairing is efficiently computable and the CDHP is sufficiently
hard on the curve.

From now on, we assume that G is a gap Diffie-Hellman group generated by
P , whose order is a large prime ` and all schemes are performed in the group G
if not special remarks. To implement the a gap Diffie-Hellman group we consider
G as a subset of elliptic curve as above with an admissible pairing e originated
from the Weil pairing or Tate pairing.

2.3 ID-based Signature Schemes and Attack Models for Batch
Verifications

An ID-based signature scheme consists of four algorithms: Setup, Extract, Sign-
ing and Verification.

Setup A key generation center (KGC) sets the system’s secret key Ks that is
called the master key and the system parameters Param.

Extract For each identity ID, KGC generates the secret key DID corresponding
to ID using Ks and Param.

Signing A user with ID produces a signature (ID, m, σ) on a message m using
her secret key DID and Param.

Verification Given the signature (ID, m, σ), a verifier checks the validity of
the σ using Param.

In batch verification, we replace the Verification process by the following pro-
cess:

Batch Verification Given multiple signatures σ1, · · · , σk on messages m1, · · · ,mk

and corresponding identities ID1, · · · , IDk, a verifier checks the validity of all
signatures at once.

In the batch verification, if m1 = · · · = mk then we call this the batch verifica-
tion of (multiple signatures) of Type 1. If ID1 = · · · = IDk then we call this the
batch verification of Type 2. If each message is signed by distinct ID’s then we
call this the batch verification of Type 3.

We formalize the attack model for batch verification of Type 1, 2 and 3 in the
general ID-based signature scheme. We call a forger F a k-batch forger of Type i,
where i=1, 2, 3, when F executes the following game. Note that F performs
an existential forgery under the adaptively chosen message and ID attack.



Setup A k-batch forger F is given public system parameters.
Queries F can access the hash, Extract and Signing oracle. F obtains the

hash values of his queries, the secret keys of his chosen ID’s and the signatures
of his chosen ID’s and messages.

Outputs Finally, F outputs ID1, · · · , IDn and message m1, · · · , mn and corre-
sponding signatures σ1, · · · , σn of Type i where n ≤ k and i = 1, 2, 3.

F wins if the outputs pass the batch verification process of each type within
polynomial time bound with non-negligible probability and there exists one index
i such that the IDi has not been queried to the Extract oracle and the message
mi corresponding to IDi has not been asked to the Signing oracle.

3 Batch Verifications in ID-based Signatures

In this section, we discuss the security of previous ID-based signature schemes.

3.1 Batch Verifications of Type 2 in the Cha-Cheon Scheme

The Cha-Cheon ID-based signature scheme consists of four algorithms: Setup,
Extract, Signing and Verification.

Setup Given a gap Diffie-Hellman group G with an admissible pairing e and its
generator P , pick a random s ∈ Z/`Z and set Ppub = sP . Choose two hash
functions H1 : {0, 1}∗ × G → (Z/`Z)∗ and H2 : {0, 1}∗ → G∗. The system
parameter is (P, Ppub, H1, H2). The master key is s.

Extract Given an identity ID, the algorithm computes QID = H2(ID) and DID =
sH2(ID) and outputs DID as a private key of the identity ID.

Signing Given a secret key DID and a message m, pick a random number r ∈ Z/`Z
and output a signature σ = (m, U, h, V ) where U = rQID, h = H1(m, U), and
V = (r + h)DID.

Verification Given a signature σ = (U, V ) of a message m for an identity ID,
compute h = H1(m, U). The signature is accepted if and only if e(P, V ) =
e(Ppub, U + hQID).

Let σi = (mi, Ui, hi, Vi) be the signatures using the Cha-Cheon scheme signed by
a single user with ID on distinct k-messages mi, Ui = riQID, Vi = (ri + hi)DID

and hi = H1(mi, Ui) where i = 1, 2, · · · k, QID = H2(ID) and DID is a secret key
of user. Then we can verify all k-signatures at once as follows:

– Compute QID = H2(ID) and hi = H1(mi, Ui) for all i = 1, · · · , k.

– Check whether e(P,
∑k

i=1 Vi) = e
(
Ppub,

∑k
i=1 Ui + (

∑k
i=1 hi)QID

)
or not.

We know that the Cha-Cheon scheme is secure in gap Diffie-Hellman group
in random oracle model [8]. Now we analyze the security of batch verification of
Type 2 in the Cha-Cheon scheme.



Theorem 1. Let F0 be k-batch forger of Type 2 which performs an existential
forgery under an adaptively chosen message and ID attack against the Cha-Cheon
scheme within a time bound T0 with probability ε0 in random oracle model. The
forger F0 can ask queries to the oracles H1, H2, Extract and Signing at most
qH1 , qH2 , qE, and qS-times, respectively. And VqH1 ,k denotes k times the number
of k-permutations of qH1 elements, that is, VqH1 ,k = k · qH1(qH1 − 1) · · · (qH1 −
k + 1). If ε0 ≥ (12VqH1 ,k + 6(qH1 + k · qS)2)qH2/(` − 1), then the CDHP can
be solved with probability ≥ 1/9 and within running time ≤ 144823VqH1 ,k(1 +
qS)qH2T0/

(
ε0

(
1− 1

`

))
.

To prove the above theorem, we consider the properties of the ID-based
scheme. While each secret key of user is chosen independently in the traditional
public key system, all secret keys of users are mutually related in ID-based
system. In fact, they are produced from one secret key of the whole system
which is called the master key. Hence in ID-based setting it is reasonable to give
not an specific ID but a system parameter to a forger. Using [8, Lemma 1], we
can reduce the adaptively chosen ID attack to the given ID attack.

Now, consider the following lemma to reduce the security of batch verification
of Type 2 in the Cha-Cheon scheme to the CDHP under the given ID attack
model.

Lemma 1. Let F be k-batch forger of Type 2 which performs an existential
forgery under an adaptively chosen message and given ID attack against the Cha-
Cheon scheme within a time bound T with probability ε in random oracle model.
The forger F can ask queries to the oracles H1, H2, Extract and Signing
at most qH1 , qH2 , qE, and qS-times, respectively. We assume that, within time

bound T , F produces, with probability of success ε ≥ 12VqH1
,k+6(qH+k·qS)2

` , multi-
ple signatures σ = (mi, Ui, hi, Vi), i = 1, 2, · · · , n and n ≤ k, which pass the batch
verification. Then, there is another probabilistic polynomial time Turing machine
which has control over the machine obtained from F by simulation, and which
produces another multiple signatures σ′i = (m′

i, Ui, h
′
i, V

′
i ), i = 1, 2, · · · , n such

that hj 6= h′j, for some j ∈ {1, · · · , n} and hi = h′i for all i = 1, · · · , n such that

i 6= j within time T ′ =
144823VqH1

,k(1+qS)T

ε .

The Lemma 1 can be proved using the similar method with [15, Theorem
2] except the number of signatures in output n ∈ {1, · · · , k}. In [15], they deal
with the ring signature, so the number of signatures i.e. random parts Ri’s are
fixed as the number of users in the ring. But in the batch verification of Type 2,
the number of signatures which is batch verified is not fixed, it is only less than
k. So to fix the number of signatures during the oracle replay, we use a random
variable tuple (ω, n, f) not (ω, f) when we apply the splitting lemma. Note that
the number of signatures n is included in the fixed parts when we apply the
splitting lemma. Thus we need k times the original VqH1 ,k in [15, Theorem 2].

Proof (of theorem 1). Using the above Lemma 1, we can prove the theorem 1
in the given ID attack case. We construct an algorithm C to solve the CDHP



using the forger F . We assume that P , aP , bP are given as the CDHP instances.
The algorithm C simulates a real signer to get signatures which pass the batch
verification of Type 2 from F . If C does not fail this simulation, C gets multiple
signatures what he wants and using the general oracle replaying technique, C
can solve the CDHP. In Setup, the algorithm C fixes a target identity ID, and
put Ppub = aP .

Note that ID-Hash Query, Extract Query, Message-Hash Query, and
Signing Query are the same as the proof of [8, Lemma 2]. After the queries,
if the simulation does not fail, the forger F outputs multiple signatures σi =
(mi, Ui, hi, Vi) for given ID, where i = 1, 2, · · · , n and n ≤ k. Then C re-
plays the oracles and obtains another multiple signatures σ′i = (mi, Ui, h

′
i, V

′
i ),

i = 1, 2, · · ·n using the Lemma 1. Let V =
∑n

i=1 Vi, V ′ =
∑n

i=1 V ′
i . Since the

signatures pass the batch verification of Type 2, C knows that the following two
equations are satisfying:

e(P, V ) = e

(
Ppub,

n∑

i=1

Ui +

(
n∑

i=1

hi

)
QID

)

e(P, V ′) = e

(
Ppub,

n∑

i=1

Ui +

(
n∑

i=1

h′i

)
QID

)

Thus from V =
∑n

i=1(ri + hi)DID and V ′ =
∑n

i=1(ri + h′i)DID, C can compute
V −V ′ =

∑n
i=1(hi−h′i)DID. Since there exist an i ∈ {1, · · ·n} such that hi 6= h′i,

C obtains abP = DID = (V − V ′)/
∑n

i=1(hi − h′i). The total running time is
bounded by the running time of the Lemma [15]. Thus applying [8, Lemma 1],
we obtain the result of theorem 1. ut

Remark 2 We may consider batch verification of Type 2 in the Hess scheme.
In the original Hess scheme, we must compute a hash value and compare it
with some value to verify. But a hash function does not have any homomorphic
property, thus we cannot use directly the original Hess scheme for batch verifica-
tion. Hence we slightly modify the signing and verification processes in the Hess
scheme to apply the batch verification. Let the signature of a user with ID be
σ = (ID, m,R, h, V ) where h = H1(m,U), U = e(P, R), V = hDID +R and DID

is a secret key of user. Then the batch verification of Type 2 in the Hess scheme
is possible and the security of them can be reduced to the CDHP similarly to the
above theorem.

The time complexity of the reduction is dominated by T0 times k-th power
of the number of H1 hash queries over ε0. That is, if k increases then the time
complexity of security reduction increases exponentially. Thus the Theorem 1
gives a security proof of the batch verification in the Cha-Cheon scheme of
Type 2 only when the of signature k is very small. It is the same for that of the
Hess scheme.



3.2 Batch Verification of Type 3 in the Cha-Cheon Scheme

We also consider the batch verification in the Cha-Cheon [8] scheme of Type 3.
However, it is not secure.

Let ID1 be an identity of honest user U1 and ID2 an identity of a 2-batch
forger F of Type 3 in the Cha-Cheon scheme. We may assume that F can
access to the ID-hash oracle and obtain Q1 − H2(ID1), Q2 = H2(ID2). Now
F selects two random values r1, r̃2 and messages m1, m2, compute U1 = r1Q1,
h1 = H1(m1, U1) and

U2 = r̃2Q2 − h1Q1 − r1Q1.

Finally, F computes h2 = H2(m2, U2) and V1 = (r′2 + h2)D2, V2 = r′′2D2,
where r′2 + r′′2 = r̃2, and outputs two signatures σ1 = (ID1,m1, U1, h1, V1) and
σ2 = (ID2,m2, U2, h2, V2). Though F does not know the discrete log of U2, r2,
these multiple signatures pass the batch verification of Type 3:

e(Ppub, U1 + h1Q1 + U2 + h2Q2) = e(P, r1D1 + h1D1 + r̃2D2 − h1D1 − r1D1 + h2D2)
= e(P, r̃2D2 + h2D2)
= e(P, V1 + V2).

That is, F pretends to generate signatures which pass the batch verification of
Type 3 with the honest user U1. Thus the batch verification of Type 3 in the
Cha-Cheon scheme is not secure.

Remark 3 In the case of the Hess scheme, because of the same reason with the
previous subsection, we consider the modified Hess scheme. Similarly to the Cha-
Cheon scheme, let U2 = e(Ppub,−h1Q1) · e(P, R̃2) = e(P,−h1D1 + R̃2) where a
random point R2 is the same role as U2 = r2QID in the Cha-Cheon scheme, then
the forged signatures generated by the forger alone pass the batch verification.

In the Cha-Cheon and Hess scheme, a random part U is used as an input of
the hash function H1. Thus although all messages are same, the hash outputs
are all distinct. So the batch verification of Type 1 in the Cha-Cheon scheme is
the same as that of Type 3.

4 ID-based Signature Scheme Admitting Batch
Verification of Type 3

4.1 New ID-based Signature Scheme

This scheme consists of four algorithms: Setup, Extract, Signing and Verification.



Setup Given a gap Diffie-Hellman group G with an admissible pairing e and its
generator P , pick a random s ∈ Z/`Z and set Ppub = sP . Choose two hash
functions H1 : {0, 1}∗ × G → (Z/`Z)∗ and H2 : {0, 1}∗ → G∗. The system
parameter is (P, Ppub, H1, H2). The master key is s.

Extract Given an identity ID, the algorithm computes QID = H2(ID) and DID =
sH2(ID) and outputs DID as a private key of the identity ID corresponding to
QID = H2(ID).

Signing Given a secret key DID and a message m, pick a random number r ∈ Z/`Z
and output a signature σ = (U, V ) where U = rP , h = H1(m, U), and V =
rQID + hDID.

Verification Given a signature σ = (U, V ) of a message m for an identity ID,
compute h = H1(m, U). The signature is accepted if and only if e(P, V ) =
e(QID, U + hPpub).

The proposed scheme is secure under the assumption that the CDHP is hard
as in the following theorem.

Theorem 2. Let F0 be a forger which performs an existential forgery under an
adaptively chosen message and ID attack against our ID-based scheme within a
time bound T0 with probability ε0 in random oracle model. The forger F0 can
ask queries to the oracles H1, H2, Extract and Signing at most qH1 , qH2 , qE,
and qS-times, respectively. Assume that ε0 ≥ (10(qS + 1)(qS + qH1)qH2)/(`− 1),
then the CDHP can be solved with probability ≥ 1/9 and within running time ≤
(23qH1qH2T0)/

(
ε0

(
1− 1

`

))
where ` is a security parameter.

Using the forking lemma [26] and [8, Lemma 1], we can prove this theorem. We
discuss the rigorous proof of this theorem in the Appendix.

4.2 Security of Batch Verifications

In the our ID-based signature scheme, secure batch verification of Type 3 has
possible and that of Type 2 is the same performance with the Cha-Cheon
scheme. Given k signatures (ID1,m1, U1, h1, V1), · · · , (IDk,mk, Uk, hk, Vk), we
can do batch verifications as follows:

– Compute Qi = H2(IDi) and hi = H1(mi, Ui) for all i = 1, · · · , k. Check
whether

e

(
P,

k∑

i=1

Vi

)
=

k∏

i=1

e (Qi, Ui + hiPpub) .

Now we discuss the security of batch verification of our scheme. At first we
show the security of batch verification of Type 3. To reduce the adaptively chosen
ID attack to the given ID attack in the case of batch verification of Type 3, we
need the following lemma:

Lemma 2. If there is a k-batch forger F0 of Type 3 under an adaptively cho-
sen message and ID attack to our scheme within time bound T0 with probabil-
ity ε0, then there is a k-batch forger F of Type 3 under an adaptively chosen



message and given ID attack within time bound T ≤ T0 with the probability
ε ≤ ε0

(
1− k

`

) (
k

qH2+k

)
, where qH2 is the maximum number of queries to H2

asked by F0 and k is the maximum number of signatures to be aggregated. In
addition, the number of queries to hash functions, Extract and Signing asked
by F0 are the same as those of F .

We show the proof of the Lemma 2 in the Appendix.

Now in random oracle model we show the security of batch verification of
Type 3 under an adaptively chosen message and given ID attack.

Lemma 3. Let F be k-batch forger of Type 3 which performs an existential
forgery under an adaptively chosen message and given ID attack against our
scheme within a time bound T with probability ε in random oracle model. The
forger F can ask queries to the oracles H1, H2, Extract and Signing at most
qH1 , qH2 , qE, and qS-times, respectively. If ε ≥ (10k(qS + 1)(qS + k · qH1))/`,
then the CDHP can be solved with probability ≥ 1/9 and within running time
≤ (23qH2kT )/ε.

Proof. We construct an algorithm C using the forger F to solve the CDHP.
We assume that P , aP , bP are given as the CDHP instances. The algorithm
C simulates a real signer to obtain signatures which pass the batch verification
from F . If C does not fail this simulation, he gets multiple signatures which pass
the batch verification and using the general oracle replaying technique, it can
solve the CDHP. In Setup, the algorithm C fixes a target identity ID0, and put
Ppub = aP .

Note that ID-Hash Query, Extract Query, Message-Hash Query, and
Signing Query are the same as the single signature case. After the queries, if
the simulation does not fail, the forger F outputs other n−1 ID’s and n multiple
signatures

σi = (mi, Ui, hi, Vi), i = 1, 2, · · · , n

where n ≤ k.
Then C replays the oracles and obtains another n′ − 1 ID′’s and n′ multiple

signatures σ′i = (m′
i, U

′
i , h

′
i, V

′
i ), i = 1, 2, · · ·n′, where n′ ≤ k. By the forking

lemma, the replay succeeds with the probability ≥ 1/9 and the running time ≤
(23qH2T )/ε. Note that we may assume h1 6= h′1 since the probability of collision
of two random numbers is negligible. Since the random commitment r is fixed
before the hash queries of a message, the corresponding random commitment
of σ must be the same with that of σ by the forking lemma. That is, we have
IDi = ID′j = ID0 and Ui = U ′

j for some i ∈ {1, · · · , n} and j ∈ {1, · · · , n′}
without loss of generality let i = j′ = 1. And according to the Extract Query,
C knows each secret key Di corresponding to IDi except that of ID1 and by
ID-Hash Query, C knows discrete log of each Qi = H2(IDi), xi, except that



of H2(ID0). Hence from

V =
n∑

i=1

Vi =
n∑

i=1

(riQi + hiDi) =
n∑

i=1

{xi(riP ) + hiDi},

V ′ =
n′∑

i=1

V ′
i =

n′∑

i=1

{x′i(r′iP ) + h′iD
′
i},

compute V = V − V ′ −∑n
i=2 Vi −

∑n′

i=2 V ′
i = (h1 − h′1)D1 so (h1 − h′1)

−1V =
D1 = abP as desired. The total running time is bounded by the running time of
the forking lemma. ut

As the same reason with the Cha-Cheon scheme, the batch verification of
Type 1 has the same performance with that of Type 3. In Type 2 signatures,
the performance of our scheme is the same as that of the Cha-Cheon scheme.

From the Lemma 2, Lemma 3 and the Theorem 1, we obtain the following
result.

Theorem 4 Let F0 be a k-batch forger which performs an existential forgery
under an adaptively chosen message and ID attack against our ID-based scheme
with probability ε0 within a time bound T0 in random oracle model. The forger
F0 can ask queries to the oracles H1, H2, Extract and Signing at most qH1 ,
qH2 , qE, and qS-times, respectively.

– In the Type 1 or 3 case, if ε0 ≥ (10(qS +1)(qS + qH1)(qH2 +k)qH2)/k(`−k),
then the CDHP can be solved with probability ≥ 1/9 and within running time
≤ (23qH1(qH2 + k)T0)/

(
ε0k

(
1− k

`

))
.

– In the Type 2 case, if ε0 ≥ (12VqH1 ,k + 6(qH1 + k · qS)2)qH2/(` − 1), then
the CDHP can be solved with probability ≥ 1/9 and within running time
≤ 144823VqH1 ,k(1 + qS)qH2T0/

(
ε0

(
1− 1

`

))
.

4.3 Efficiency of Batch Verifications

In this section, we compare the efficiency of verifications of k individual Cha-
Cheon signatures with that of k-batch verification of Type 3 in our scheme. Here
we assume that we use an elliptic curve with an admissible Tate pairing as a gap
Diffie-Hellman group.

To estimate the performance of our scheme, we first present experimental
results for the cost of several cryptographic primitives in Table 1. We used Miracl
library v.4.8.2 [17] in P3-977 MHz with 512 Mbytes memory. In MapToPoint and
Pairing, we considered a subgroup of order q in a supersingular elliptic curve E
over Fp, where p is a 512 bit prime and q is a 160 bit prime. Note that the pairing
value belongs to a finite field of 1024 bits.

To verify a single Cha-Cheon signature, we need to compute two pairings,
a scalar multiplication in an elliptic curve and a MapToPoint the total running
time is about 73.17ms. So the running time to verify all individual signatures



Table 1. Cost of basic operations

Function modulus (bits) exponent (bits) performance (msec)

Scalar Mul. in EC 512 160 7.33

MapToPoint 512 (160) 2.42

Pairing 512 (160) 31.71

signed by k distinct signers on k distinct messages is about 73kms. In the batch
verification of Type 3 k multiple signatures using our scheme, we need to compute
k+1 pairings, k scalar multiplications, k MapToPoints, which takes about (41k+
32)ms. Thus if k is large, we can save about half of the verification time. In the
batch verification of Type 2 k multiple signatures, we need to compute only
two pairings, one scalar multiplication and one MapToPoint, which takes about
73ms. Thus the verification cost of the batch verification of Type 2 is almost
that of a single signature.

5 Conclusion

In this paper, we classified batch verifications into three types, Type 1, 2, and 3,
according to the number of signers and messages, and discussed security of pre-
vious well-known ID-based signature schemes in each type of batch verification.
We have shown that the previous ID-based signature schemes are not secure in
batch verifications of Type 1 and 3. We also proposed a new ID-based signature
scheme admitting secure batch verification. The batch verification of Type 2
in our scheme has the same security reduction as in the previous schemes, and
those of Type 1 and 3 are secure against existential forgery, under the adaptively
chosen message and ID attack in random oracle model. Finally we discussed the
efficiency of batch verification of Type 3 in our scheme.

References

1. P. Barreto, H. Kim, B. Lynn and M. Scott. Efficient Algorithms for Pairing-Based
Cryptosystems. Advances in Cryptology - Crypto 2002, LNCS Vol. 2442, pp. 354–
368, Springer-Verlag, 2002.

2. M. Bellare, J. Garay, and T. Rabin. Fast Batch Verification for Modular Exponen-
tiation and Digital Signatures. Advances in Cryptology - Eurocrypt’98, LNCS Vol.
1403, pp. 236–250, Sringer-Verlag, 1998.

3. D. Boneh, C. Gentry, B. Lynn, and H. Shacham. Aggregate and Verifiably En-
crypted Signatures from Bilinear Maps. Advances in Cryptology - Eurocrypt 2003,
LNCS Vol. 2656, pp. 416–432, Springer-Verlag, 2003.

4. D. Boneh, B. Lynn, and H. Shacham. Short signature from the Weil
pairing. Advances in Cryptology - Asiacrypt 2001, LNCS Vol. 2248, pp.
514–531, Springer-Verlag, 2001. The extended version is available at
http://crypto.stanford.edu/~dabo/abstracts/weilsigs.html.



5. X. Boyen. Multipurpose Identity-Based Signcryption - A Swiss Army Knife for
Identity-Based Cryptography. Advances in Cryptology - Crypto 2003, LNCS Vol.
2729, pp. 383–399, Springer-Verlag, 2003.

6. A. Boldyreva. Threshold Signatures, Multisignatures and Blind Signatures Based
on the Gap-Diffie-Hellman-Group Signature Scheme. Proceedings of PKC 2003,
LNCS Vol. 2567, pp. 31–46, Springer-Verlag, 2003.

7. C. Boyd and C. Pavlovski. Attacking and Repairing Batch Verification Schemes.
Advances in Cryptology - Asiacrypt 2000, LNCS Vol. 1976, pp. 58–71, Springer-
Verlag, 2000.

8. J. Cha and J. Cheon. An ID-based Signature from Gap-Diffie-Hellman Groups.
Public Key Cryptography - PKC 2003, LNCS Vol. 2567, pp. 18–30, Springer-Verlag,
2003.

9. Y. Desmedt and J. Quisquater. Public-key Systems based on the Difficulty of
Tampering. Advances in Cryptology - Crypto’86, LNCS Vol. 263, pp. 111–117,
Springer-Verlag, 1987.

10. U. Feige, A. Fiat, and A. Shamir. Zero-knowledge Proofs of Identity. J. Cryptology,
Vol. 1, pp. 77–94, 1988.

11. A. Fiat. Batch RSA. J. Cryptology, Vol. 10, No. 2, pp. 75–88, Springer-Verlag, 1997.
A preliminary version appeared in Advances in Cryptology - Crypto’89, LNCS Vol.
435, pp. 175–185, Springer-Verlag, 1989.

12. F. Zhang and K. Kim, Efficient ID-based blind signature and proxy signature from
bilinear pairings, ACISP 03, LNCS Vol. 2727, pp. 312–323, Springer-Verlag, 2003.

13. A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification
and Signature Problems. Advances in Cryptology - Crypto ’86, LNCS Vol. 263, pp.
186–194, Springer-Verlag, 1987.

14. F. Hess. Efficient Identity Based Signature Schemes Based on Pairings. Selected
Areas in Cryptography - SAC 2002, LNCS Vol. 2595, pp. 310–324, Springer-Verlag,
2002.

15. J. Herranz and G. Sáez. Forking Lemmas in Ring Signatures’ Scenario. Progress in
Cryptology - INDOCRYPT 2003, LNCS Vol. 2904, pp. 266–279, Springer-Verlag
Heidelberg, 2003.

16. K. Itakura and K. Nakamura. A Public-key Cryptosystem Suitable for Digital
Multisignatures. NEC Research and Development, Vol. 71, pp. 1–8, 1983.

17. Shamus Software Ltd. Miracl: Multiprecision integer and rational arithmetic
c/c++ library. http://indigo.ie/~mscott/.

18. D. M’Raithi and D. Naccache. Batch Exponentiation - A Fast DLP based Sig-
nature Generation Strategy. ACM Conference on Computer and Communications
Security, pp. 58–61, ACM, 1996.

19. E. Mykletun, M. Narasimha and G. Tsudik. Providing Efficient Data Integrity
Mechanisms in Outsourced Databases. Network and Distributed System Security
(NDSS), 2004.

20. S. Micali, K. Ohta and L. Reyzin, Accountable-subgroup Multisignatures. On pro-
ceedings of CCS 2001, pp. 245–254, ACM, 2001.

21. U. Maurer and Y. Yacobi. Non-interactive Public-key Cryptography. Advances in
Cryptology - Eurocrypt’91, LNCS Vol. 547, pp. 458–460, Springer-Verlag, 1992.

22. D. Naccache, D. M’Raithi, S. Vaudenay, and D. Raphaeli. Can D.S.A be Improved?
Complexity trade-offs with the Digital Signature Standard. Advances in Cryptol-
ogy - Eurocrypt’94, LNCS Vol. 950, pp. 77–85, Springer-Verlag, 1994.

23. K. Ohta and T. Okamoto. A Digital Multisignature Scheme based on the Fiat-
Shamir Scheme. Advances in Cryptology - ASIACRYPT’91, LNCS Vol 739. pp.
75–79, Spring-Verlag, 1991.



24. K. Ohta and T. Okamoto. Multi-signature Schemes Secure against Active Insider
Attacks. IEICE Transactions on Fundamentals of Electronics Communications and
Computer Sciences, Vol. E-82-A, No. 1, pp. 21–31, 1999.

25. K. Paterson. ID-based Signatures from Pairings on Elliptic Curves. Electronics
Letters, Vol. 38, No. 18, pp. 1025–1026, 2002.

26. D. Pointcheval and J. Stern. Security Arguments for Digital Signatures and Blind
Signatures. J. Cryptology, Vol. 13, No. 3, pp. 361–396, 2000. A preliminary version
has appeared in Advances in Cryptology - Eurocrypt’96, LNCS Vol. 1070, pp. 387–
398, Springer-Verlag, 1996.

27. A. Shamir. Identity-base Cryptosystems and Signature Schemes. Advances in Cryp-
tology - Crypto’84, LNCS Vol. 196, pp. 47–53, Springer-Verlag, 1985.

28. C. Schnorr. Efficient Identification and Signatures for Smart Cards. Advances in
Cryptology - Crypto’89, LNCS Vol. 435, pp. 239–252, Springer-Verlag, 1989.

29. H. Tanaka. A Realization Scheme for the Identity-based Cryptosystem. Advances
in Cryptology - Crypto’87, LNCS Vol. 293, pp. 340–349, Springer-Verlag, 1987.

30. S. Tsuji and T. Itoh. An ID-based Cryptosystem based on the Discrete Logarithm
Problem. IEEE Journal of Selected Areas in Communications, Vol. 7, pp. 467–473,
1989.

31. F. Zhang and K. Kim. Efficient ID-based Blind Signature and Proxy Signature
from Bilinear Pairings. ACISP 03, LNCS Vol. 2727, pp. 312–323, Springer-Verlag,
2003.

Appendix: Security Proof

Proof of Theorem 2.

Using [8, Lemma 1], we can reduce the forger F0 to F an adaptively chosen
message and given ID attack within time bound T ≤ T0 with the probability
ε ≤ ε0(1− 1

` )/qH2 . We construct an algorithm C using F to solve the CDHP. We
assume that P , aP , and bP are given. Since the forger F is an adaptively chosen
message attacker, he can access to the hash oracles, the extraction oracle, and
the signing oracle, and ask at most qH1 , qH2 , qE , and qS queries for each oracles
respectively. The algorithm C simulates a real signer to get a valid signature
from the forger F . If C does not fail this simulation, he gets a valid signature,
and using the oracle replaying technique he can solve the CDHP.

We may assume the forger is well-behaved in the following sense: A forger F
makes a Extract query for an ID only if an H2 query has been made before for
the ID. Also Signing query is made for a message m only if a H1 queries has
been made before for the m.

Then the algorithm C puts Ppub = aP and performs the following game with
the forger F for a fixed identity ID as follows:

ID-Hash Query When F makes an ID-hash query IDi, C gives to F an answer
H2(IDi) = bP if IDi = ID and H2(IDi) = xiP for xi ∈R Z/` otherwise.

Extract Query When F makes an extract query for IDik
, C gives xik

Ppub =
xik

(aP ) as the secret key corresponding to H2(IDik
) for an identity IDik

.
Note that F must not ask the secret key corresponding to the bP = H2(ID).



Message-Hash Query F makes qH message-hash queries. For the j-th hash
query Qj , C chooses a random value hj ∈ Z/` and gives to F as the hash
value of Qj for j = 1, · · · qH1 and stores them as H1(Qj) = hj .

Signing Query If F asks the signature on mjt of IDit , C chooses a random
value rt ∈ Z/` responses

Sign(IDit
,mjt

) = (IDit
,mjt

, Ut, ht, Vt),

where Ut = rtP − htPpub and Vt = rt(xit
P ) for t = 1, · · · , qS . Since

(P,H2(IDit
), Ut +htPpub, Vt) is a valid Diffie-Hellman tuple, these signatures

pass the verification algorithm.

If the simulation does not fail, the forger F outputs a valid signature (ID,m, U, h, V )
with probability ε. After a replay of the forger F , apply the forking lemma
in [26]. Then C obtains two valid signatures σ = (ID,m,U, h, V ) and σ′ =
(ID,m,U, h′, V ′) such that h 6= h′ with probability ≥ 1/9 within the time
23qH1T/ε. C can easily obtain the value abP from

(hDID − h′DID)
h− h′

= DID = abP.

By the forking lemma [26] and [8, Lemma 1], we obtain the result of this
theorem. ut

Proof of Lemma 2.

Proof. We assume, without loss of generality, the forger F0 has an extract queries
for any ID at most once. We consider an algorithm F that performs the following
simulation:

Setup F chooses a random number r ∈ {1, · · · , qH1}. Let IDi be the F0’s i-th
H2-query and ID′i = ID if i = r and ID′i = IDi otherwise. Let H ′

2(IDi) =
H2(ID′

i), Extract′(IDi)=Extract(ID′
i) and Signing′(IDi,mi)=Signing(ID′i,mi)

Queries If F0 makes the H1, H2 hash queries and Extract, Signing queries,
then F computes H1, H ′

2, Extract′and Signing′ as above and answers the
results.

If the simulation does not fail, F0 outputs signatures σi = (IDi
out,mi, Ui, hi, Vi)

where i = 1, · · · k with probability ε0. Finally, if IDi
out = ID for some i = 1, · · · , k

and IDj
out 6= ID for all j 6= i and all σis are valid signatures, then F outputs σi

where i = 1, · · · , k. Otherwise the simulation fails.
Since the output distributions of H ′

2, Extract′, Signing′-queries are not
distinguishable those of original ones, we know

Pr[For all i ∈ {1, · · · , k}, σ′is are valid] ≥ ε.



Since we consider the hash functions as the random oracles, we obtain the fol-
lowing result.

Pr[IDj
out = IDi for some j = 1, · · · , k and i = 1, · · · qH2

| For all i ∈ {1, · · · , k}, σ′is are valid] ≥
(

1− 1
`

)k

≥ 1− k

`

Furthermore since the randomness of r, we have the following inequality.

Pr[IDi
out = IDr for some i = 1, · · · , k and IDj

out 6= ID for some j = 1, · · · , i−1,

i + 1, · · · , k | IDj
out = IDi for some j = 1, · · · , k and i = 1, · · · qH2 ]

≥ qH2−1Hk−1

qH2
Hk

≥ k(qH2 − 1)
(qh2 + k − 1)(qH2 + k − 2)

≥ k

2(qH2 + k)

Finally, summarizing these, we get the following result as desired:

Pr[IDi
out = IDr = ID for some i = 1, · · · , k and IDj

out 6= ID for some
j = 1, · · · , i− 1, i + 1, · · · , k and For all i ∈ {1, · · · , k},

σ′is are valid] ≥ ε ·
(

1− 1
`

)
· k

2(qH2 + k)
.ut


