
Design and Implementation of a

Secure Multi-Agent Marketplace

Ashutosh Jaiswal, Yongdae Kim, Maria Gini

University of Minnesota, Department of Computer Science and Engineering,

200 Union St SE, Minneapolis, 55455, MN, USA

Abstract

A multi-agent marketplace, MAGNET (Multi AGent Negotiation Testbed), is a
promising solution for conducting online combinatorial auctions. The trust model
of MAGNET is somewhat different from other on-line auction systems, since the
marketplace, which mediates all communications between agents, acts as a partially-
trusted third party. In this paper, we identify the security vulnerabilities of MAG-
NET and present a solution that overcomes these weaknesses. Our solution makes
use of three different existing technologies with standard cryptographic techniques:
a publish/subscribe system to provide simple and general messaging, time-release
cryptography to provide guaranteed nondisclosure of the bids, and anonymous com-
munication to hide the identity of the bidders until the end of the auction. By doing
so, we successfully minimize the trust on the market as well as increase the security
of the whole system. The protocol that we have developed can be adapted for use by
other agent-based auction systems, which use a third party to mediate transactions.

Key words: Electronic Auctions, Multi-agent Systems, Security

1 Introduction

The business-to-business (B2B) e-commerce market is expanding and is ex-
pected to continue to grow. An online marketplace, used as a meeting point
for B2B businesses, offers benefits to both buyers and sellers. For buyers, a
marketplace can significantly ease the process of searching for and compar-
ing providers, while for sellers a marketplace provides access to much broader

Email addresses: ashutosh@cs.umn.edu (Ashutosh Jaiswal), kyd@cs.umn.edu
(Yongdae Kim), gini@cs.umn.edu (Maria Gini).

Preprint submitted to Elsevier Science 3 June 2004



customer bases [16]. Sellers and buyers can simplify their operations by mak-
ing use of auction-based marketplaces. Such marketplaces can be automated
using software agents to represent the parties involved in the auction. Agents
can either make autonomous decisions or assist their owners in their decision
making process.

The MAGNET architecture provides support for complex multi-agent inter-
actions [5]. MAGNET agents participate in auctions that are reverse auctions,
since the auctioneer pays instead of getting paid; first priced, since the bids
selected are the lowest cost feasible combinations of bids; sealed bid, since the
auctioneer is the only one who sees the bids; and combinatorial, since bids can
include multiple tasks with a single price for the combination. A multi-agent
marketplace as MAGNET can thus effectively be used for carrying out con-
tracting activities required for B2B transactions. However, in the absence of
a secure architecture, its utilization in the real world has remained elusive.

Like most research projects, when the original MAGNET system was designed,
security was not a major concern. However, as the system has evolved, it
has become clear to us that in order for MAGNET to be used in real-world
networks, a security architecture needs to be in place. Specifically, the security
weaknesses of the original MAGNET design are in lack of secrecy of bids,
non-repudiation, early bid opening, and bid manipulation. Such problems are
quite common in auction systems. What makes MAGNET different from other
auction systems is the presence of a trusted third party, the market, which
acts both as a boon and a bane for security.

The presence of the market poses a unique challenge, that of ensuring the
sanctity of the trust endowed in it. We came to realize that by ensuring this
trust in the market we could overcome most of the existing security problems
in MAGNET. Our solution is achieved by some modifications to the market
architecture itself. The major modification is the use of a publish/subscribe
system by the market to notify the agents about its actions. By cross-checking
the actions taken by the market, other agents can ensure that the market is
acting properly. Thus our notion of trust is dependent on the vigilance of other
agents. In a similar manner, we can ensure that other agents are acting in a
proper manner.

This paper is organized as follows. In Section 2 we examine the existing de-
sign of MAGNET and the resulting vulnerabilities. In Section 3 we present
the security assumptions for MAGNET. We outline the proposed protocol in
Section 4. In Section 5 we analyze the efficiency and security of the protocol
that we presented. Implementation of the proposed protocol is discussed in
Section 6. We compare our work with existing methods in Section 7. Finally,
in Section 8 we present conclusions and talk about future work.

2



2 MAGNET and its Vulnerabilities

The motivation for coming up with a security model for MAGNET is to make
it usable on public networks without compromising the data exchanged on it.
MAGNET provides support for a variety of types of transactions, from simple
buying and selling of goods and services to complex multi-agent negotiation
of contracts with temporal and precedence constraints [5]. However, if such a
system is to be used for carrying out transactions in a commercial enterprise
world, it is imperative to have a reasonable security mechanism. This section
reviews the current architecture of MAGNET and the potential vulnerabilities
it poses.

2.1 Current Architecture

The current MAGNET architecture is composed of multiple agents and the
market. The agents are self-interested agents, which attempt to gain the great-
est possible profits from their endeavors. An agent can take one of two different
roles: customer or supplier. A customer agent has to fulfill a set of tasks, and
does so by soliciting help from supplier agents. An agent can act at the same
time as customer in a negotiation and as supplier in another. The market is
the meeting point for the agents, and the place which mediates all communi-
cations between agents. To accomplish its goal, the customer agent generates
a plan, which is a collection of tasks with time and precedence constraints,
and submits through the market one or more Requests For Quotes (RFQs) to
suppliers. Any supplier agent who wants to bid will respond with bids. The
customer agent after receiving the bids decides which bids, if any, to accept.
Finally the winning supplier agents execute the tasks included in their winning
bids [6]. Following is a more detailed description of these steps.

2.1.1 Planning

In this phase the customer agent selects a market which specializes in the
types of product or service categories necessary to accomplish its goals. The
agent then comes up with a plan which would fulfill its goal. While coming
up with the plan, the customer agent takes into account the value of its goal,
which in general is time-dependent, the component tasks needed, and their
precedence and time constraints. Based on the plan, the agent generates one
or more RFQs and forwards them to the market.

3



2.1.2 Bidding

In this phase the market sends out notifications to the associated supplier
agents about the availability of a new RFQ. Supplier agents then contact the
market and obtain the RFQ. Any supplier agent interested in the RFQ, can
formulate a bid in response to the RFQ. The supplier agent then forwards the
bid to the market for validation and delivery to the customer agent. The mar-
ket can hold the bids until the deadline of the auction is reached, or forward
them right away to the customer agent. On receipt of bids, the customer agent
evaluates them and selects one or more bids, which fulfill its plan. The cus-
tomer agent then sends out a bid acceptance notice to the respective supplier
agents through the market. The market keeps a record of the bid acceptance
and notifies the winning supplier agents of their bid acceptance.

2.1.3 Execution

During the execution phase, each supplier agent works on the tasks which the
customer agent had approved in the previous phase, while the customer agent
monitors the execution of these tasks. The customer agent can also re-plan
and issue a new RFQ if the plan execution does not proceed according to its
expectations. Once the supplier agent is done executing the plan, it notifies
the customer agent. The customer agent then makes a payment (or a payment
commitment) to the supplier agent. This payment is recorded by the market
as well. The protocol is illustrated in Figure 1.

Currently the planning and bidding phase of the MAGNET system have been
implemented, however, the execution phase has not been implemented. Hence
in this paper we will consider only the first two stages of the protocol.

2.2 Vulnerabilities

The original design of MAGNET had not considered security issues. This leads
to the vulnerabilities described below.

2.2.1 Secrecy of the bids

In a sealed bid auction, it is necessary that the bids are opened only after
the end of the auction. The timing of the disclosure of the bid information
is important. The MAGNET system is primarily designed to carry out first
price, private, sealed bid, reverse, combinatorial auctions. To avoid collusion,
it is necessary that the bid data from a supplier agent is not available to
other supplier agents. In addition, MAGNET can be utilized for carrying out

4



a public auction as well. In such a case it is imperative that the bid data is not
made available, even to the customer agent before the closing time of auction.
In the current system, the customer agent receives all the bids through the
market. In addition none of the communication in MAGNET uses encryption
of any kind at present. Thus both the customer and the market (as well as
any eavesdropper) have access to the bid data before the close of the auction.

2.2.2 Authentication

As pointed out in the earlier section, communications between agents in MAG-
NET do not use any kind of encryption. Thus it is possible for an eavesdropper
to intercept the communication between the parties involved in an auction
and modify its content. There are no means for assuring the suppliers that the
RFQs they received were actually sent by the customer agent they claim to
come from. At the same time the customer agent has no means of determining
if the bid was actually submitted by the supplier agent, which the bid states
it originates from.

2.2.3 Non-repudiation

Closely related to the problem of authentication is the issue of non-repudiation.
In MAGNET, if the winning supplier agent declines to go ahead with the con-
tract, there is no means of proving that it was indeed that agent who submitted
and won the bid. Similarly, agents can repudiate any other communication, if
this suits their purposes.

2.2.4 Prior opening of bids

As discussed before, the bids submitted should not be opened before the end
of the auction period. MAGNET does not require that bids are not opened
early, but early opening creates opportunities for counter speculation [4]. Also,
an insider in the market can open and inform its collaborators of the contents
of any bid. In MAGNET, the customer agent and the market both have access
to all the bids before the end of the auction. If the customer decides to collude
with a supplier agent, it would be harming itself, as it might lose out on a
potentially better bid (see 3). However, the market can always collaborate
with a supplier and give it available information pertaining to other bids. The
collaborating supplier agent can thus modify its own bid to gain a competitive
advantage over other agents. Thus we need a mechanism to prevent early
opening of bids.

Furthermore, the information about the bidder itself can be important infor-
mation to other bidders. Therefore, it is also necessary to have some kind of

5



anonymization mechanism which would make it impossible to determine the
originator of a message.

2.2.5 Manipulation of closing time

In an auction system it is possible that an insider might manipulate the clos-
ing time of an auction in order to exclude some bids from the auction. In
MAGNET, the customer is free to ignore any of the bids received, but it can-
not extend the closing time of the auction without issuing a new RFQ. The
market can, however, prevent bids sent out by suppliers from getting to the
customer agent. It can also convey the closing time differently by modifying
the RFQs on their way to the suppliers.

2.2.6 Fairness

At times an important security requirement of an auction system is fairness.
In order to maintain trust in the auction system, it is necessary that the
bidders be assured that their bids were given fair treatment before deciding the
winning bidder. Authentication and non-repudiation are important to ensure
the supplier agents their bids are transmitted to the customer agent without
any modification, and to ensure the customer agents their RFQs are delivered
intact to the suppliers. Since the auctions in MAGNET are private, fairness
in winner determination is not an issue. Hence our solution will not address
this problem.

2.2.7 Fault tolerance

Some of the above mentioned problems can be caused just because of a failure
of the auction service or bidding process. In case of MAGNET, either the
failure of the customer agent or the market can be responsible for the failure
of the auction process. This, strictly speaking, is not a security hole but a
problem which might lead to other security problems. We plan on addressing
this issue in the future.

3 Security Assumptions

The current architecture, despite its security vulnerabilities, is an example of
a unique approach to multi-agent interactions. In earlier multi-agent systems,
agents communicated and contracted with each other directly. In most cases
these negotiations were complicated by an environment in which there is no

6



mutual trust between the agents. MAGNET makes use of a trusted third party,
the market, which is utilized by the agents to carry out all the transactions.
Thus agents can utilize their resources towards plan execution and bidding,
instead of negotiating in a chaotic manner. The main trust assumptions for
the market are:

• It is responsible for conveying the RFQs from the customer agent to the
interested supplier agents. It is also responsible for communicating the bids
from the supplier agent back to the customer agent.
• It acts as a record keeper by keeping records of all the transactions and

movement of RFQs and bids that take place through it. In case of dispute,
the market will act as an arbitrator using the saved records.
• It is responsible for aggregating statistical data from the auctions and mak-

ing them available to interested parties at a later period of time. These data
may include average duration of tasks, average costs, reputation of suppliers,
etc. We assume that this statistical aggregation is performed correctly by
the market. How to do this fairly and securely is one of our future concerns.

The customer agent is responsible for initiating negotiations in the manner
described earlier. We assume that the customer agent will not collude with
any of the supplier agents, since this will defeat the purpose of conducting an
auction. In such case, the customer would be only wasting time and resources
in trying to contract through MAGNET (besides paying any fee that might
be charged by the market for its services). Agents wishing to do so (pos-
sibly because of a preferred business relationship) can always communicate
directly with each other but outside the MAGNET system. We assume that
the customer agent communicates with the supplier agents only through the
market and vice-versa. This assumption is necessary to ensure that avenues
for customer-supplier collusion are discouraged and reduced. Furthermore, the
market will keep records of all transactions being conducted which can be used
to ensure non-repudiation. This assumption becomes especially important in
case MAGNET is utilized for conducting a public auction.

4 Proposed Architecture

4.1 Building Blocks

Before we explain details of the protocol, we briefly introduce the notation
used in this paper:

7



PKc Public-key of a customer C

SKc Secret-key of a customer C

Ka Symmetric-key a

m Message

EPKc
(m) Public key encryption of m using PKc

DSKc
(m) Public key decryption of m using SKc

SSKc
(m) Signature of message m using SKc

TE(m) Time-release encryption of m

hash(m) Hash of m

Publish(m) Publishing of m

We now briefly introduce three key techniques used in our solution.

4.1.1 Publish/subscribe systems

One of the major components that we use in our protocol is a publish/subscribe
system. In such a system, publishers can publish messages under certain top-
ics. Subscribers can subscribe to topics of their interest and are notified of new
postings under those topics, which they can then examine. Topics can be clas-
sified hierarchically and the message content defined in a way deemed suitable
by the users. Such systems minimize message duplication. They have the added
benefit of allowing anonymous postings by publishers and subscribers [22]. In
our proposed architecture the market hosts such a publish/subscribe system,
to which both the customer and supplier agents have access. All published
messages are signed by the originator, which can be verified by the agents
accessing them.

4.1.2 Time-lock puzzles

Another cryptographic technique which we utilize is timed-release cryptogra-
phy, also known as time-lock puzzles [21]. These methods provide a way of
encrypting a message such that no one can decrypt the message until a sub-
stantial amount of time has elapsed. Good time-lock puzzles prevent the use
of parallel algorithms for decryption. Assume A wants to encrypt a message
m with a time-lock puzzle for a period of T seconds. A picks at random two
large primes p, q and computes n = pq, φ(n) = (p− 1)(q − 1). She then com-
putes t = TS where S is the number of squarings modulo n per second that
can be performed by the solver. Then A picks a long random key k for some

8



secure symmetric encryption scheme and encrypts m using k. Let us call the
resulting cipher-text Cm. She then computes Ck = k + a2t

mod n for some
random a, 1 < a < n. Since A knows φ(n), she can do this efficiently. The
time-lock puzzle will contain (n, a, t, Ck, Cm). In order to extract m anybody
would need to compute a2t

and the only way to do this without knowing φ(n)
is to perform t sequential squarings. The time delay ensured by this solution
is not absolute real time, but some time period which depends on the CPU
power of the solver.

4.1.3 Communication anonymizer

In absence of an anonymization technology, it becomes easy for an outsider,
as well as an insider, to associate bids to the bidder. This may not be an
important requirement in certain auctions, but in MAGNET this is necessary
to reduce and discourage market-supplier collusion and to make the supplier’s
bid unlinkable until the end of auction. A peer-to-peer (P2P) anonymizing
network like Tarzan [10] can be used for this purpose. Tarzan achieves its
anonymity with layered encryption and multi-hop routing. First, a host run-
ning an application that wants anonymity chooses a group of hosts to form a
path through the network. Next, this source-routing host establishes a tunnel
using these hosts, which includes the distribution of session keys. Finally, it
routes data packets through this tunnel. The end point of this tunnel is a
Network Address Translator (NAT). This NAT bridges the hosts in Tarzan
and the hosts that are not aware of Tarzan. Similarly, the NAT receives the
response packets from the outside hosts and reroutes them back through this
tunnel. Selection of the NAT from amongst the peers is done at random. In
our protocol all the communication between the suppliers and the market is
anonymized using a P2P network created by the suppliers.

4.2 Securing MAGNET

Based on the requirements mentioned before we now propose the following
architecture to enhance the security of the MAGNET system. We outline
our protocol into the following phases: contracting, planning, bidding, auction
close, and winner determination. Fig 2 illustrates the protocol in detail.

4.2.1 Planning

The customer sends a signed RFQ to the market for publishing.

Customer
SSKc

(RFQ)
−−−−−−−→Market

9



4.2.2 Bidding

The supplier receives the RFQ through the publish/subscribe system. If in-
terested, it generates a bid-message comprising of three parts:

(1) General Information (GI ): consists of the RFQ number and a sufficiently
long random number, (RFQ#, r).

(2) Auction-session key: a symmetric session key, Ka.
(3) Bid data: consists of the price quoted by the supplier, the list of tasks,

the time-line for plan completion, GI, and supplier’s public-certificate.

It then signs and encrypts the message and sends it to the market:

Market
[(RFQ#,r),TE{EPKc

(Ka)},EKa
{SSKs

(Bid)}]
←−−−−−−−−−−−−−−−−−−−−−−−−−− Supplier

For all the bid-messages received by the market, it publishes (RFQ#,(r,hash(M)))
on the publish-subscribe system, where M is the bid-message sent by a supplier
to the market. The supplier can also check the publish/subscribe system and
verify that its bid was actually received and displayed by the market. The cus-
tomer can then retrieve the bids from the publish/subscribe system. However,
it cannot access the bid data unless it decrypts the time-release cryptography.
Since the exact timing of a time-lock puzzle is difficult to determine [21], the
supplier agent would construct a puzzle that would take the customer longer
than the auction deadline to solve.

4.2.3 Auction close

Once the auction closes the suppliers would release Ka to the market in an
encrypted form, along with the customer’s copy:

Market
EPKm

{SKs(Ka,r)},EPKc
{SKs(Ka,r)}

←−−−−−−−−−−−−−−−−−−−−−− Supplier

The market would then pass on the customer’s portion of the encrypted key:

Customer
EPKc

{SKs(Ka,r)}
←−−−−−−−−−−−Market

This individual encryption is necessary so that no one except for the market
and the customer can decrypt the bids.

10



4.2.4 Winner determination

The customer agent uses various algorithms to determine the winner from the
bids it has received [2, 3]. From the suppliers’ certificates embedded in the
bids, it can use statistical data to assist in the winner determination process.
Once the winner has been determined, it would use the market’s white-board
to notify the suppliers about this.

Customer
SSKc

(RFQ#,rwinner)
−−−−−−−−−−−−→Market

Once the market publishes this result on the publish/subscribe system any
supplier can check to see if it is the winner. The customer agent can do a
cross-verification by examining the publish/subscribe system, in order to deter
any wrong doing on market’s behalf. The market can then carry out statistical
aggregation by decrypting the bids using their respective auction-session keys.

5 Analysis

5.1 Efficiency

The protocol that we have proposed follows the original message exchange
mechanism as closely as possible to avoid a major redesign of the existing sys-
tem. However, by utilizing a publish/subscribe system, the need for acknowl-
edgment generation for each message has been eliminated. The suppliers and
the customers can independently verify the data received by the other party, in
an asynchronous manner, thus leading to better utilization of their resources.
Using an anonymization layer can add some delay in message propagation,
but the benefits are significantly higher.

Encryption and decryption of data is usually the most computationally in-
tensive task in a security protocol. We have tried to minimize the encryption
of messages whenever possible. Thus, instead of encrypting the entire third
section with time-release cryptography mechanism, we introduced a second
section, since encrypting and decrypting Ka is computationally cheaper be-
cause of the smaller size of the data. The most computationally intensive task
in our protocol is time-release decryption. However, this step is not needed as
long as the customer waits for the auction to close and the supplier releases
the auction-session key Ka.

Our motivation behind using a time-lock puzzle is mostly as a deterrent to
prior opening of the bids and is not meant to impose a computational penalty

11



on the customer. However, in case the supplier fails to provide Ka (e.g. the
supplier comes under a Denial of Service attack, or it refuses to send the key
on purpose), the customer can proceed with time-lock decryption. In such a
case, if the customer faces a resource crunch, it can seek the market’s help in
decrypting it. The market is likely to have more computing power than the
customer or the supplier agents, since it provides the auction infrastructure,
and thus can offer its resources for decryption to the customer. However, even
after decrypting the time-lock puzzle the market would not be able to get to
Ka since it will be encrypted by customer’s public key PKc (for the same
reason, anyone who intercepts the bid cannot get to the bid data). Thus the
customer can safely shift the burden of time-lock decryption on the market,
if required.

We have tried to come up with a practical value of S for different clock speeds
of a present day processor (Intel Pentium 4), which is presented in Fig 3. The
processors that we tested with range in clock speeds of 1.2 GHz to 2.4 GHz.
From these values we have determined corresponding values of t = TS for a
single day (86400s) shown in Fig 4. The software setup for the systems used
to carry out the tests are the same as described in section 6.4.

5.2 Security

Our security architecture overcomes the vulnerabilities in the existing MAG-
NET system, and, at the same time, it tries to enhance the basic trusted third
party model. We overcome the problem of secrecy of bids and the identity
of the bidder by employing cryptographic techniques of anonymization and
public-key encryption and decryption. By employing a time-release cryptog-
raphy mechanism, we ensure that the bids are not accessible by any agent
until the close of the auction.

We try to ensure the trusted third party model in MAGNET by including
additional safeguards. By requiring that the market publishes all the data
received from customers and suppliers on the publish/subscribe system, we
enable cross verification of the data by the opposite party. The copies of the
messages published by the market can be used to ensure non-repudiation in
situations where the sender refuses to acknowledge an action.

Since the RFQs are publicly available for verification, it is difficult for the
market to manipulate the closing time of the bids without being noticed by
the customer. By making the market post the data related to all the bids
received, we also ensure that it does not purposefully reject any messages.

As discussed before, prior opening of the bids is a form of collusion existing
in current auction systems. By not making the auction session-key (and the

12



resulting bid data which it encloses) immediately available to the market, we
limit the market-supplier collusion. There could still be a collusion between
the market and a supplier, but the market would be able to provide bid data
only for the supplier agents who are already colluding with it. In absence of
bid data for all the suppliers, a market-supplier collusion would not be useful.
A collusion between all the suppliers and market would be similar to collusion
between all the suppliers. This, as we discussed earlier, is beyond the scope
of our current effort. The only visible information prior to decryption of the
bid is the RFQ# and the random number (r) generated by the supplier. By
enclosing the public certificate of the supplier with the remainder of the bid
data, we ensure that the identities of the supplier agents are not known to
the customer or the market before the end of the auction. However, once
the auction is closed, the customer agent can use the information about the
suppliers’ identity to make its decision based on past statistical data.

The proposed solution leaves room for a Denial-of-Service (DOS) attack. An
attacker can always send junk bids through the anonymous channel without
providing its keys after auction close (section 4.2.3). The customer (or the
market) would need to solve all the time-lock puzzles to obtain bids and to
provide non-repudiation of the bidder, which might be a waste of resources if
the resulting bids are junk. This problem arises due to our policy of protecting
the bidder’s identity until the auction close. In other words, our current mech-
anism does not have the ability to check if the bidder is authorized to bid in
the auction. Even though MAGNET follows the open auction model, we need
to have some kind of access control mechanism to provide non-repudiation.
One way to address this issue is to use group signatures [11]. If the bid message
is signed using a group signature, it is guaranteed that the bidder is a member
of the group as long as the signature is verifiable. If the solution of the time
lock puzzle results in a meaningless bid, the group manager can “open” the
group signature to trace the actual signer. If the market plays the role of the
group manager, this opens up the possibility of market-supplier collusion. The
market can open the signature prior to closing, and the bidder information
can be released to other suppliers. This can be overcome by designating an in-
dependent trusted third party as the group manager. However a more elegant
solution would be the use of “time release group signature” where the signa-
ture can be verified immediately, while the “open” operation can be allowed
only after solving the time lock puzzle. Unfortunately, at the time of writing
of this paper, there is no such practical signature mechanism in existence.

6 Implementation

The current implementation is done using C functions for the customer, sup-
plier, and the market to carry out the requisite encryption and decryption op-

13



erations. These functions currently read the data which need to be processed
from a file, carry out the requisite operations, and then write the resulting
data back to a different file. These files can then be sent over to other agents
using any suitable protocol like HTTP, SMTP, SOAP etc. Since not all the
MAGNET’s components are in place at the moment, such an approach leaves
space for a seamless future integration with the resulting complete system.
Following is a description of the functions that are implemented and how they
relate to the proposed protocol.

6.1 Customer

The customer needs to read a RFQ, sign it with its key, and then output the
signed message for transportation to the market. Later when it receives the
bids from the suppliers, it needs to decrypt these bids and decide a winner
from amongst them. In the end it needs to notify the market and suppliers
about the winners, if there is any.

All this functionality has been implemented in the form of functions which
read the RFQ from a file (which will be outputted from the RFQ generation
functions of MAGNET), sign it with the customer’s private key and then
write out the signed RFQ back to a file. Similarly these functions provide the
ability to read the encrypted bid from a file, decrypt it using the session key
read in from another file (which is obtained only after an auction closes) and
write out the decrypted bid to another file. Once the winner is determined,
the RFQ number and the random number obtained from the winning supplier
is concatenated and written to a file in order to be transported to the market.

6.2 Market

The market’s responsibility is to publish and record all the messages that
it obtains from the customers and the suppliers, so that other entities in
the system can verify them. It also needs to be able to carry out time lock
decryption on behalf of the customer in case it becomes necessary to do so.

The market can use these functions to verify the signature on the RFQ ob-
tained from the customer. Once the RFQ is verified, it writes out the original
signed RFQ to a file, which can be read by suppliers. The functionality of a
publish/subscribe system has not been implemented yet owing to the absence
of an actual market. It should be easy to create a web-service to carry out
this functionality in future. The market can also verify a supplier’s signature
on a bid, create a hashed version of the bid, concatenated with the RFQ and
supplier information and write it to a file to be used for future verification. In

14



presence of a publish/subscribe system, this information could be published
on it.

After the close of an auction the supplier would release the session key used
to encrypt the bids. The market can decrypt the message encrypted using
its public key to obtain the session key, and also pass the same message to
the customer, who can decrypt it using its own private key. Once the session
key is obtained the market can decrypt the bid and store the information for
future use to a file. On obtaining the winner notification from the customer,
the market can verify customer’s signature, store the information for future
use, and pass the information to the supplier.

6.3 Supplier

The supplier needs to be able to verify and read a RFQ. After it has obtained
the information from the RFQ it can generate a bid in response to the RFQ.
This bid will be encrypted using a session key generated by the supplier,
which in turn needs to be time-lock encrypted and then public key encrypted
for the customer. It also needs to be able to verify the winner information to
determine if it is the winner.

The supplier functions for RFQ and winner verification are similar to those
for the market. However the bid and session key time-lock encryption function
is unique to the supplier. Having generated the bid, the supplier writes out
the bid to a file. This file can be transported to the market using any of the
protocols mentioned above. The communication anonymizer functionality for
suppliers has not been implemented yet.

6.4 System details

Implementation of the protocol was carried out in C using the libcrypto library,
which is a part of the OpenSSL [26] package. For message transportation
PKCS7 [12] and S/MIME [19] format were used. Advanced Encryption System
(AES) [14] was utilized for symmetric encryption/decryption with a minimum
key-length of 128 bits and a maximum key-length of 192 bits. The RSA [20]
algorithm was used for public/private key encryption/decryption. The same
algorithm was used to create public certificates for the entities in the system.
SHA1 [13] was used as the message digest algorithm. The primary test machine
was a 1.8GHz Intel Pentium-4m system, with 512 MB RAM running Gentoo
Linux (kernel 2.6.3-r1). The version of the openssl package used was 0.9.7.

15



7 Related Work

Most of the related work has either been in the area of securing auctions or
in agent security, without much overlap between the two. In the field of auc-
tion security majority of the work has been done on sealed bid auctions in
which the auction outcome is made public. Most of these protocols require m

auctioneers out of which at least n should be trustworthy (threshold cryptog-
raphy). Franklin and Reiter proposed one of these earlier systems in which
using a variation of the secret sharing scheme algorithm they try to reduce
the trust on the auctioneer [9]. In their system the value of n is a third of
m. The resulting system requires exchange of numerous messages making it
highly inefficient. This system cannot be applied to MAGNET as there exists
only a single instance of the market (auctioneer).

SAM [15] is a system in which the trust is shifted from the auctioneer to a
hardware implemented secure co-processor [28]. The basic idea is to replace the
auctioneer by a combination of hardware and software which can be trusted by
all the parties involved in the auction mechanism. Members examine the source
code and the executable of the auctioneer software, before it is embedded into
the secure co-processor. Any tampering of the hardware results in its self-
destruction. The system is similar to MAGNET in the sense that only a single
auctioneer exists in the system. However, the market in MAGNET is not
absolutely trusted as SAM is supposed to be.

Protocols in which the auctioneer is completely eliminated have also been
proposed [1]. The idea behind such protocols is to let the bidders decide the
winner themselves by splitting and distributing all the bids amongst all the
bidders. Using a secret sharing scheme, the bids can be assembled only if all
the bidders are willing to do so. As long as a single bidder does not collude
with the other bidders, individual bids cannot be determined. In case all the
bidders collude, the auction mechanism becomes an “open cry” auction. Once
the bids are reassembled the winner can be determined by finding the highest
bid. This system cannot be applied to MAGNET as the winner determination
process is more complex than simply determining the highest bid [2].

Some work has also been done on developing secure auction protocols for com-
binatorial auctions [25]. The focus of the research was on finding an optimal so-
lution to combinatorial auctions, using secure auction servers. A system which
utilizes a temporarily secret bid commitment has also been proposed [24].

When it comes to securing agents research has been done in the field of secure
agent matchmaking [8], whereas an agent is used to establish communication
between different individuals with similar interests. All individuals run the
same copy (or clone) of the agent code. This in essence means communicating

16



amongst various instances of the same agent having identical characteristics.

Research has also been done on constructing secure agent societies from the
ground up [18]. The FIPA [7] agents standard body has proposed some stan-
dards in this direction [23] as well. At the same time there has been work
conducted on adding security and trust to existing agent systems [27]. There
has also been work, on using a secure agent to secure transactions between
other agents [17].

However, none of the systems described above meet all the security require-
ments faced by multi-agent marketplaces like MAGNET in the manner we
have described.

8 Conclusion and Future Work

In this paper we have presented ideas from recent work in security protocols for
conducting secure electronic auctions using multiple agents. We have proposed
a security architecture that would ensure the security of MAGNET and sim-
ilar multi-agent marketplaces when used over public networks. Using various
existing technologies, our protocol builds upon the trust model of the original
marketplace and develops a system which has better methods of controlling
fraud and deception.

We have implemented the proposed solution for use within the existing MAG-
NET system. Eventually we would like to release a secure version of the system
to be used over the Internet. Once the market agent has been implemented we
would also like to implement the publish/subscribe system and setup a com-
munication anonymizer amongst the agents. We would also like to focus our
work on establishing protocols for agent registration and payment collection in
the execution phase once an auction has been closed. Including fault tolerance
into the system, so that the auction does not fail because of the failure of the
entities involved, is also a part of our future plans.

References

[1] Felix Brandt. A verifiable, bidder-resolved auction protocol. In Proceed-
ings of the 5th International Workshop on Deception, Fraud and Trust
in Agent Societies (Special Track on Privacy and Protection with Multi-
Agent Systems), pages 18–25, 2002.

[2] J. Collins and M. Gini. Performance of winner determination search
in combinatorial auctions with time constraints. Submitted to the First

17



International Joint Conference on Autonomous Agents and Multi-Agent
Systems, July 2002.

[3] John Collins, Güleser Demir, and Maria Gini. Bidtree ordering
in IDA* combinatorial auction winner-determination with side con-
straints. In J. Padget, Onn Shehory, David Parkes, Norman Sadeh, and
William Walsh, editors, Agent Mediated Electronic Commerce IV, volume
LNAI2531, pages 17–33. Springer-Verlag, 2002.

[4] John Collins, Scott Jamison, Maria Gini, and Bamshad Mobasher. Tem-
poral strategies in a multi-agent contracting protocol. In AAAI-97 Work-
shop on AI in Electronic Commerce, July 1997.

[5] John Collins, Wolfgang Ketter, and Maria Gini. A multi-agent negoti-
ation testbed for contracting tasks with temporal and precedence con-
straints. 7(1):35–57, 2002.

[6] John Collins, Ben Youngdahl, Scott Jamison, Bamshad Mobasher, and
Maria Gini. A market architecture for multi-agent contracting. pages
285–292, May 1998.

[7] FIPA. The foundation for intelligent physical agents.
http://www.fipa.org/.

[8] L. N. Foner. A security architecture for multi-agent matchmaking. In
Second International Conference on Multi-Agent Systems, 1996.

[9] M. Franklin and M. Reiter. The Design and Implementation of a Secure
Auction Service. In Proc. IEEE Symp. on Security and Privacy, pages
2–14, Oakland, Ca, 1995. IEEE Computer Society Press.

[10] Michael J. Freedman and Robert Morris. Tarzan: A peer-to-peer
anonymizing network layer. In Proceedings of the 9th ACM Conference
on Computer and Communications Security (CCS 2002), Washington,
D.C., November 2002.

[11] M. Joye G. Ateniese, J. Camenisch and G. Tsudik. A practical and prov-
ably secure coalition-resistant group signature scheme. In Mihir Bellare,
editor, Advances in Cryptology - CRYPTO 2000, 20th Annual Interna-
tional Cryptology Conference, volume 1880 of Lecture Notes in Computer
Science, pages 255–270, Santa Barbara, California, USA, August 2000.
Springer.

[12] RSA Laboratories. Pkcs #7: Cryptographic message syntax standard.
Technical Report 1.5, RSA Labs, November 1993.

[13] National Institute of Standards and Technology (NIST). Secure hash
standard. FIPS Publication 180-1, April 1995.

[14] National Institute of Standards and Technology (NIST). Advanced en-
cryption standard (aes). FIPS Publication 197, November 2001.

[15] Adrian Perrig, Sean Smith, Dawn Song, and J. Doug Tygar. SAM: A flexi-
ble and secure auction architecture using trusted hardware. In First Inter-
national Workshop on Internet Computing and E-Commerce (ICEC’01),
pages 170–170, April 2001.

[16] Charles Phillips and Mary Meeker. The B2B internet report – Collabo-
rative commerce. Morgan Stanley Dean Witter, April 2000.

18



[17] He Qi, Katia Sycara, and T Finin. Personal security agent: Kqml-based
pki. In Proceedings of the 2nd International Conference on Autonomous
Agents and Multi Agent Systems, Minneapolis, MN,, May 1998.

[18] He Qi, Katia Sycara, and Zhongmin Su. Security infrastructure for soft-
ware agent societies. In Christiano Castelfranchi and Yao-Hua Tan, ed-
itors, Trust and Deception in Virtual Societies, pages 139–156. Kluwer
Academic Publishers, 2001.

[19] B. Ramsdell. S/MIME version 3 message specification. Technical report,
Internet Engineering Task Force, May 1998. Work in progress.

[20] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[21] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock puzzles and timed-
release crypto. Technical Report MIT/LCS/TR-684, MIT, 1996.

[22] Dawn Song and Jonathan Millen. Secure auc-
tions in a publish/subscribe system. Available at
http://www.csl.sri.com/users/millen/papers/dcca8.ps, 2000.

[23] Monique Calisti Stefan Poslad, Patricia Charlton. Specifying standard se-
curity mechanisms in multi-agent systems. In Rino Falcone, K. Suzanne
Barber, Larry Korba, and Munindar P. Singh, editors, Trust, Reputation,
and Security: Theories and Practice, AAMAS 2002 International Work-
shop, Bologna, Italy, July 15, 2002, Selected and Invited Papers, volume
2631 of Lecture Notes in Computer Science, pages 163–176. Springer,
2003.

[24] Stuart G. Stubblebine and Paul F. Syverson. Fair on-line auctions without
special trusted parties. Lecture Notes in Computer Science, 1648:230–240,
1999.

[25] K. Suzuki and M. Yokoo. Secure combinatorial auctions by dynamic
programming with polynomial secret sharing. In Proceedings of Sixth
International Financial Cryptography Conference (FC-02)., 2002.

[26] OpenSSL Project team. OpenSSL. http://www.openssl.org/.
[27] H. Chi Wong and Katia P. Sycara. Adding security and trust to multia-

gent systems. Applied Artificial Intelligence, 14(9):927–941, 2000.
[28] Bennet Yee and Doug Tygar. Secure coprocessors in electronic commerce

applications. In Proceedings of The First USENIX Workshop on Elec-
tronic Commerce, New York, New York, July 1995.

19



Fig. 1. MAGNET’s original three step protocol

20



Supplier

PKc
(Ka)},EKa

{SSKs
(Bid)}]M=[(RFQ#,r),TE{E

download(RFQ)

EPKm
(SSKs

(Ka,r)),EPKc
(SSKs

(Ka,r))

SSKc
(RFQ)

EPKc
(SSKs

(Ka,r))

S
cSK (RFQ#, rwinner )

Planning

Determination
Winner

Close
Auction

Bidding

T
im

e download(M)

Customer Market

Publish(RFQ)

Publish(RFQ#,r
winner

)

Publish[RFQ#,(r ,hash(M))]

A
no

ny
m

iz
at

io
n 

L
ay

er

Fig. 2. The Secure MAGNET system

21



1 1.5 2
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10

5

GHz

S
qu

ar
in

gs
 (

m
od

 n
)/

s

Fig. 3. Value of S for different processors

22



1 1.5 2
2

2.5

3

3.5

4

4.5

5

5.5

6
x 10

10

GHz

t (
fo

r 
T

=
1 

D
ay

)

Fig. 4. Value of t (for T=1 day) for different processors

23


