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Abstract

In an adversarial environment, various kinds of security attacks become possible if
malicious nodes could claim fake locations that are different from where they are
physically located. In this paper, we propose a secure localization mechanism that
detects the existence of these nodes, termed as phantom nodes, without relying
on any trusted entities, an approach significantly different from the existing ones.
The proposed mechanism enjoys a set of nice features. First, it does not have any
central point of attack. All nodes play the role of verifier, by generating local map,
i.e. a view constructed based on ranging information from its neighbors. Second, this
distributed and localized construction results in quite strong results: even when the
number of phantom nodes is greater than that of honest nodes, we can filter out
most phantom nodes. Our analytical results as well as simulations under realistic
noisy settings demonstrate our scheme is effective in the presence of a large number
of phantom nodes.
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1 Introduction

With thousands of tiny devices, Wireless Sensor Networks (WSNs) can support
ubiquitous surveillance with a very low profile, and they can be quickly de-
ployed without infrastructure. These features make them attractive for a wide
variety of applications such as environmental and habitat monitoring (36),
surveillance and tracking for military (13), emergency response and structural
monitoring (40). Networked sensors can monitor the behavior of animals in
wildlife. It may be used to detect smoke in forest to indicate a fire. The passage
of soldiers or tanks of enemy can be monitored. In such mission, the essen-
tial query accompanying the detection of events is, where are the detected
animals, where is the fire, where is the enemy? To answer this question, a
sensor node needs to know its location in deployment area. When we are in-
terested in only a certain area, we can query only nodes in a certain geographic
area. In addition, knowledge of node location can be used to support various
location aware application. For example, it can be used for location-based
routing (19; 2) or geographic hash table (30). The wakeup schedule of sensor
nodes can be more efficiently coordinated based on location of sensor nodes
while providing enough sensing coverage (1; 9). The location of sensor node
can be used to track the movement or behavior of targets (35; 28; 11). For
example, in hospital we can track the movement and interaction of patients,
doctors, nurses.

These applications run correctly when the localization error is limited to a
certain range (12). However, if malicious nodes (attackers) distort the coor-
dinate system severely by claiming fake locations, the performance of these
applications could degrade significantly. To address these issues, various meth-
ods (8; 17; 18; 20; 22; 31; 37; 38) are proposed. They provide a set of nice
mechanisms to detect and filter out compromised nodes and anchors. Most
approaches depend on a few trusted entities (nodes or anchors), requiring at
least the majority of these entities are not compromised. We argue that since
the number of trusted entities in these approaches is relatively small, it would
be relatively easy to break. Naturally, we raise the following question: Is it

possible to design a pure decentralized secure localization scheme that can de-

tect phantom nodes, without requiring any trust entities? The objective and
intellectual contribution of this work lie in our answer to this challenging
question.

1.1 Protecting Faked Ranging and Location

To obtain correct location information in the presence of attackers, several ap-
proaches have been proposed. These approaches share some common features:
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adversaries try to fake location information and honest nodes (called verifiers)
try to verify if each piece of location information is correct. Depending on
which information the approach verifies and who plays the role of the verifier,
there can be three different approaches.

In the first category, few trusted, but centralized nodes (called verifiers) vali-
date the position or ranging claims of individual nodes (18; 31; 37). (We call
this Centralized Phantom node Detection, CPD in short.) In CPD, a set of
verifiers are effective to detect Sybil and Wormhole attacks independent from
the number of attackers. However, it is not clear how to protect such verifiers
from adversaries in WSNs. We argue that the CPD approach is relatively easy
to break, because the number of verifiers is normally much less than that of
regular nodes, and they could be traced and located more easily based on the
traffic pattern, since they are involved with more communication than regular
nodes.

In the second category, (set of) regular nodes verify the location information of
anchors, who know their location. Through this verification, regular nodes can
filter out compromised anchors or beacon information (possibly) generated by
adversaries (20; 21; 22). (We call this Compromised Anchor Detection, CAD

in short.) When a regular node receives a set of beacons from anchors in its
range, it find the majority of consistent beacons. These approaches rely on the
assumption that the majority of anchors or their beacons are not compromised.
However, for a given area, if a majority of anchors are compromised all regular
nodes in the area will be deceived. The number of anchors are relatively few in
deployment area, and they are easy to be found and compromised by attacker
because they periodically announce their locations.

A common weakness of the above two approaches comes from the central-
ization. A natural approach that overcomes this weakness is to remove the
centralized nodes. In other words, it is desirable to design a localization mech-
anism where each node plays the role of both verifier and regular node, so that
they can filter out phantom nodes. We call this new approach as Decentralized
Phantom node Detection, DPD in short. DPD can inherently overcome some
of the weaknesses of both CPD and CAD. Since DPD does not have trusted
verifiers, attackers need to compromise much more nodes to make the attack
successful. Furthermore, since there is no globally shared information, the
damage, if any, is confined locally. We argue that a successful implementation
of DPD would make localization much more robust against various attacks.
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1.2 The Contributions of This Work

In this paper, we are targeting to the scenarios where attackers announce
phantom nodes, who fake their locations, in proximity of legitimate nodes.
To design a mechanism to support DPD, we focus on the development of
the local map for individual nodes. A local map is a visual representation
on the locations of neighbors of a node, which can be constructed correctly
by verifying all location claims of its legitimate neighbors and filtering out
phantom nodes generated by attacks.

Briefly, to find an actual local map without including phantom nodes, we
project the neighboring nodes on a virtual plane and identify the inconsis-
tency exhibited by the phantom nodes. Since there are no trusted entities,
the process is speculative in nature. Interestingly, we demonstrate that this
speculative process can filter the phantom node out with a very high prob-
ability when the process is repeated multiple times. In addition, since this
novel speculative process mandates no agreements among neighboring nodes,
it leads to two immediate benefits: First, the breach caused by the attacks is
confined. A node’s compromised decision does not propagate to affect other
nodes’ decisions. Second, much less information exchange is required, leading
to less energy consumption, a nice property desired by WSNs. Beside these
two benefits, our approach has the following major contributions:

• First, we propose an atomic commitment protocol to prevent phantom nodes
generating consistent ranging claims.

• Second, our approach recovers a local map by projecting regular nodes at
their locations and detect/filter phantom nodes. It requires no trusted bea-
cons or anchors. We demonstrate that we can successfully filter out phantom
nodes even when the number of phantom nodes is much larger than the hon-

est nodes.
• Our approach works well under noisy distance measurements.

The remainder of the paper is organized as follows: Section 2 introduces the
assumptions and notations. Section 3 provides an overview and the details of
our approach are introduced in Section 4. The effectiveness of our approach
on existing attacks is shown in Section 5. We present the experimental results
in Section 6, and present related works in Section 7. Section 8 concludes the
paper.
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2 Preliminaries

In this section, we present our assumption used in the rest of paper. We assume
all legitimate communication channels are established bidirectionally: if Node
i can hear Node j, then Node j can hear Node i. In wireless networks, asym-
metric links (41) are common due to the hardware calibration, the anisotropic
property of the antenna and propagation media. However, bidirectional links
can be easily established through a two-way handshaking. To make localized
filtering effective, we also assume a reasonable network density (e.g., > 10
nodes per radio range). In the paper, for the sake of clarity, we describe the
protocol in a two-dimensional plane. However, our approach can be applied
to higher-dimensional spaces as well.

We assume range-based localization. A ranging is to measure physical prop-
erties such as distance or angle. In our work, we assume that the ranging is
provided by each node based on the Time Difference of Arrival (TDoA) be-
tween RF signal and ultrasound signal (However, other different signals, or
other ranging technique can be similarly applied). We briefly introduce the
conventional localization based on TDoA which will be modified in our pro-
posed approach. In the conventional TDoA, Node i generates RF signal and
ultrasound signal simultaneously. Then, its neighbor j receives RF signal and
ultrasound signal after certain propagation times, where the arrival of ultra-
sound signal is later than RF signal due to its longer propagation speed. As
the propagation delay of RF signal is negligible, the time difference between
the arrivals of RF signal and ultrasound signal can be used to estimate the dis-
tance between the two nodes. The measured distance d̂ij is the time difference
of arrivals of RF signal and ultrasound signal multiplied by the ultrasound
propagation speed.

After ranging measurement, the positions of nodes are estimated by minimiz-
ing the differences between the measured distances and estimated distances.
This process can be formally described as follows: Let d̃ij be the estimated
distance between Nodes i and j. The sum of differences between the measured
distances and the estimated Euclidean distances is:

N
∑

i=1

|d̂ij − d̃ij|
2

(1)

The position of Node j’s location is estimated by taking Minimum Mean
Square Estimate (MMSE) of the equation, following the method in (32). In
graph theory, this is known as the graph realization problem, finding Euclidean
positions for the vertices of a graph. According to (33), this is strongly NP-
hard for the two-dimensional case or higher. Knowing the length of each graph
edge does not guarantee a unique realization, because deformations can exist
in the graph structure that preserve edge lengths but change vertex positions.
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Rigidity theory distinguishes between non-rigid and rigid graphs. Non-rigid
graphs can be continuously deformed to produce an indefinite number of dif-
ferent realizations, while rigid graphs cannot.

Our proposed scheme is suitable to both localization with and without an-
chors. Without anchors, the global location can be still obtained by methods
in (23; 10). In localization with anchors, we can obtain the global location
directly from anchors while detecting the compromise of anchor as described
in Section 5. In this case, the strength of security increases proportional to
the number of neighbors including anchors and regular nodes.

2.1 Notation

The following notations are used throughout the paper.

• v: a node which verifies the locations of its neighbors
• Nbr(v): the node set consisting of v’s neighbors and v
• pk: the location of node k on virtually computed local plane
• N : the number of neighboring nodes
• M : the number of inter-node distance measurements
• dij: the physical distance between nodes i and j

• d̂ij: the measured distance to node j by i
• d̃ij: the computed distance between nodes i and j

• D: a set of distance measurements, i.e., {d̂ij | i, j ∈ A}

3 Overview

Here, we provide an overview on our two-phase approach to detect the phan-
tom nodes. First, in Section 3.1, we explain how to prevent the phantom nodes
generating consistent ranging (distance) claims 1 to multiple honest nodes.
Second, if the phantom nodes exhibit a set of inconsistent ranging claims, we
propose a speculative method to detect them in Section 3.2.

1 Here, a set of ranging claims is said to be consistent, when such claims can project
a node into a physical location in the 2-D or 3-D space (in case of 3-D localization)
and the distances between this physical location and other nodes’ locations match
the claims.

6



Fig. 1. The difficulty in generating consistent range claims

3.1 Prevent Faked Consistent Ranging Claims

Our basic design only allows a node to claim about its distances to other
neighboring nodes, not its own location. Therefore, to disrupt the operation of
location-dependent applications, (a set of) malicious nodes, whose goal is to
create a phantom node, must fake a set of distances to all of its neighboring
nodes. If the locations of neighboring nodes are known a priori, a set of fake,
albeit consistent, ranging distances can be easily created by calculating the
distances from a fake location to each of its neighbors’ location. Therefore, it
is important for our design to hide the location information during the ranging
process. Without the location information of the neighboring nodes, it is hard
for an attacker to generate a set of consistent ranging values (distances), and
hence to fake itself into a different physical location. For example, as shown
in Figure 1a, suppose an attacker D at the location p obtains three ranging
distances in the 2-D space from three honest nodes A and B and C, it can only
conclude that A, B and C are located at the edges of three concentric circles
centered at p. To claim a different physical location p′ within the 2-D space, the
attacker D needs to fake three different ranging distances that are consistent.
Without knowing the precise locations of the neighbors, such consistency is
difficult to achieve. As shown in Figure 1a, to move from the position p to p′,
the attacker D needs to claim two shorter ranging distances to Nodes B and
C, but a longer ranging distance to Node A; However in case of Figure 1b,
the attacker D needs to claim the opposite. Since the locations of A, B and
C are unknown to the attacker, it cannot decide which claim to make. We
note that a sensor network normally has a high node density (≫ 10), which
makes a consistent ranging claim practically impossible without the neighbors’
location information.

We note that the aforementioned basic design works correctly if the attackers
do not collude with each other. In the case of collusion, it is possible that in 2-D
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Fig. 2. A fake location with inconsistent ranging distances

case, multiple attackers collaboratively identify the locations of honest nodes.
Specifically, if three attackers can obtain the distances between themselves and
a honest nodes, the location of this honest node can be calculated using the
trilateration technique (23). Once the locations of honest nodes are obtained,
the attackers can generate consistent, albeit faked, range claims. The key idea
to deal with colluded attack is to reveal all ranging values atomically by using
an atomic commit protocol, which we describe in more detail in Section 4.1

In summary, to prevent phantom nodes generating a set of fake, albeit con-
sistent, ranging claims, the design guideline is hiding the location and ranging

distance information before revealing them atomically. Once the consistent
ranging claims are prevented, we can identify the phantom nodes by detecting
the inconsistent ranging claims, which is addressed in the rest of the paper.

3.2 Detect Faked Inconsistent Ranging Claims

The goal of attackers is to convince honest nodes the existence of several non-
existing nodes or the fake locations of the attackers. To achieve this, attackers
generate fake ranging information between the phantom nodes and other hon-
est nodes. Figure 2 illustrates this idea. An attacker claims that it has a set
of distances to all neighbors in order to fake its position. However, the design
guideline aforementioned ensures that such a claim is inconsistent with high
probability. In other words, there is no such location in the plane that sat-
isfies these distance constraints simultaneously. This can be easily explained
in visualization method using classical multidimensional scaling (34). In this
method, a set distance measurements between any two neighbors are taken
for principal coordinate analysis. From the analysis it creates a configuration
of points. Ideally, those points are in two or three dimensions, and Euclidean
distances between them reproduce the original distance measurements. How-
ever, if a part of the distance measurements are compromised, the points are
reproduced in higher dimensional space.
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With trusted verifiers equipped with ultrasound devices, the distance bound-
ing method (31), can easily reject the distance claims that are shorter than the
real distance. However, these trusted verifiers could be an attractive target of
attackers. In the second part of the paper, we propose a speculative method to
detect such inconsistency in phantom nodes in sensor networks. More specif-
ically, our objectives are (1) to detect phantom nodes that have inconsistent
ranging claims, (2) to identify the real location of legitimate nodes, (3) poten-
tially to find the positions of attackers that are generating phantom nodes.

4 The Detailed Approach

In this section, we focus on identifying the phantom nodes that generate in-
consistent ranging from/to the set of honest nodes. For simplicity, we describe
a two-dimensional localization. However, our algorithm extends straightfor-
wardly to three dimensions.

Formally, we stated the problem as follows:

Definition: A set of nodes is consistent, if and only if the nodes can be
projected on a single Euclidean plane (in 3-D case, Euclidean space), keeping
the measured distances among themselves.

Problem: Given a node set Nbr(v) that consists of a node v and its neigh-
bors, and a distance set D that consists of the measured distance, denoted
by {d̂ij|d̂ij = d̂ji, i, j ∈ Nbr(v), i 6= j}, find the largest consistent subset of
Nbr(v).

We divide the algorithm into two main phases: distance measurement and
phantom node filtering. In the first phase, each node measures the distances
securely to its neighbors using an atomic commit protocol. In the second phase,
each node projects its neighboring nodes to a virtual local plane to determine
the largest consistent subset of nodes. After two phases are complete, each
node establishes a local view without phantom nodes. Such a local view is
useful in many services such as location-based routing and sensing coverage.
Alternatively, any local coordinate system can be reconciled into a unique
global coordinate system. The algorithm is easily distributed because a node
only uses distance measurements to immediate neighbors and between neigh-
bors. Furthermore, if one node in the network moves, only the O(1) clusters
containing that node must update their position information. The following
two sections describe the phases of the approach in more detail.
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Fig. 3. Ranging Process in Phase 1

4.1 Phase I: The Atomic Commit Protocol for Distance Measurement

We note that it is possible that an attacker could silently collects the distance
announcement from honest nodes, and then calculates the relative locations
of the honest nodes. As a result, this attacker could fake a set of consistent
range claims later on. To prevent such type of attack, we require that distance
measurements are announced in an atomic manner. This is achieved by our
atomic commit protocol. This protocol is generic enough to apply to diversified
ranging technique. However for the sake of clarity, here we describe an instance
that is based on the Time Difference of Arrival (TDoA) technique (32), which
estimates the distance using the difference of propagation speeds between radio
and ultrasound signals

Specifically, our atomic commit protocol consists of two steps:

Step 1: Disseminate Encrypted Measurements

(1) Each node v announces that it will participate in the secure localization.
Let Nbr(v) be the set of all neighbors of v announcing participation.

(2) Node v first sends an RF signal to a node u ∈ Nbr(v). After a random
delay δvu v also sends ultrasound signal to the node u, while keeping the
delay δvu secret. Receiver node u records the time tvu until ultrasound
signal arrives after it receives RF signal.

(3) After collecting ultrasound signal and RF signal from every node in
Nbr(v) (or after pre-determined time interval), v encrypts δvu, tuv for
every u ∈ Nbr(v) using a secure symmetric key encryption algorithm
with a fresh random key k. Node v, then, broadcasts this information to
its neighbors. Any node failing to report in this step will be dropped from
Nbr(v).
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Step 2: Reveal Measurements Atomically

(1) After collecting encrypted messages from every node in Nbr(v) (or after
pre-determined time interval), v discloses the encryption key k. Any node
that fails to reveal its encryption key in this step will be dropped from
Nbr(v).

(2) After received encryption keys from every node in Nbr(v), v can compute
the distance d̂ij between any node i and j in Nbr(v). As propagation delay
of RF signal is negligible, the distance can be estimated as (tij − δij)×S
as shown in Figure 3, where S is propagation speed of ultrasound. Note
that 1) tij are included in the message from j and δij is included in the
message from i.

(3) After collection of neighbors’ announcements, the node v compares the
data collected. For each collected distance, if d̂ij = d̂ji, it is included in
the filtering phase which is described in Section 4.2.

Note that this algorithm prevents a node u from computing the location of
v, since, even after receiving the ultrasound and RF signal from v, u cannot
correctly compute the distance to v due to the random delay. Furthermore, v’s
information is disclosed only after every node in Nbr(v) announces its ranging
information in step 1. After disclosing the symmetric key in step 2 atomically,
nodes in Nbr(v) are able to compute the distance to v. At this point of time,
malicious node can no longer fake new distance measurement.

We employ a symmetric key to make the encryption and decryption cheap.
The ranging information needs to be encrypted to make the information secret

until disclose step. The ranging information also needs to be verified that it is
generated by the node that really generated it. The symmetric key can be used
to satisfy both purposes. The key does not need to be pre-distributed before
deployment. This is because although an attacker generates its key on-line
randomly, it cannot generate consistent ranging unless it knows other honest
nodes’ location. It only increases the number of phantom nodes participating.

Our approach can be used based on other localization technique other than
TDoA. For instance, if the distance is measured by Received Signal Strength
Indication (3; 4) instead of time difference of arrivals between ultrasound signal
and RF signal, we only need to change following part in the protocol described
above. In Step 1, node v sends an RF signal to a node u ∈ Nbr(v) with random
signal strength setting svu while keeping the setting secret, instead of using
random delay δvu in the above. Receiver node u records received signal strength
s′vu instead of recording the TDoA between ultrasound signal and RF signal,
tvu in the above. In Step 2, it computes the distance d̂ij between any node i
and j in Nbr(v) using radio propagation model, signal strength at sender, and
the received signal strength.
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4.2 Phase II: Phantom Node Filtering

Algorithm 1. Speculative filtering

for i = 1 to iter do

each node v picks up two neighbors i and j randomly
create local coordinate system L using v, i, j, d̂vi , d̂vj , d̂ij

initialize undirected graph G(V,E)
for each neighbor k ∈ Nbr(v) do

calculate the location of k, pk, on L by multilateration of d̂kv, d̂ki and d̂kj

from v, i, j

end for

create node v in V with location pv

for each neighbor k ∈ Nbr(v) do

create node k in V with location pk

end for

for each pair of nodes i, j ∈ V and their ranging d̂ij do

d̃ij = |pi − pj|

if |d̂ij − d̃ij | < ǫ then

create edge e(i, j) in E

end if

end for

find the largest connected cluster C and save it
end for

Among all saved C, choose the one with the largest size

In this section, we propose a novel speculative procedure, which can effectively
and efficiently filters out phantom nodes. The filtering procedure is described
in Algorithm 1. Initially, the node v picks up two neighbors i and j randomly as
pivots. (Note that node i and j could be phantom nodes themselves). Using the
node v as the origin, the neighbors i and j and three distance measurements
among v, i and j, the local coordinate system L is constructed. In the node v’s
coordinate system, we use a graph G(V, E) to construct a consistent subset.
The set V is used to contain the node v and its neighbors, and the set E is used
to keep the edges between two nodes when the distance information between
them maintains consistency. Initially the graph G is empty. The update process
of the graph G is as follows: The location of the neighbor k is determined on
the local coordinate system L by trilateration (32) from three nodes v, i, j with
measured distances d̂kv, d̂ki and d̂kj. The relative locations of the four nodes
v, i, j, k are unique to a global rotation, translation, and reflection. In graph
theory, the quadrilateral is globally rigid.

After projecting all the neighbors on L, the distance between the projected
neighbors is compared with the measured distance. For any two nodes i and
j the distance d̃ij = |pi − pj | is calculated from the projected location on L. If

|d̂ij − d̃ij| ≥ ǫ, the edge between i and j is not included in E. (the threshold
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value of ǫ depends on the noise of the ranging results. More information can
be found at Section 6.) The largest connected set V that contains node v
is regarded as the largest consistent subset in the speculative plane L. This
filtering procedure is done iter times (iter is a key parameter discussed later
in Section 4.5), and the cluster with the largest size is chosen as a final result.

4.3 Identifying Consistent Subset

Algorithm 1 obtains a connected cluster in each iteration. In this section, we
show that (i) the one with the largest size must consist of only legitimate nodes
and (ii) we can determine the case where a chosen pivot is, unfortunately, a
phantom node.

Theorem 1: When all the pivots chosen are honest nodes, the consistent

cluster computed by the proposed solution in Algorithm 1 does not contain

phantom nodes.

Proof Sketch: Let Node v at location p1 creates a local map. It selects two
other pivots at locations p2, p3. We denote the plane created by honest pivots
at locations p1, p2, p3 by P and the largest cluster by C. Obviously, every
honest node will be projected to real plane P , keeping the consistent relative
positions. As a result, Algorithm 1 creates the edges between honest nodes.
On the other hand, in our attack model, on behalf of a phantom node, the
attacker generates a set of distances. According to Section 3.1, these distances
cannot be projected consistently on the real plane P . Instead such a phantom
node is projected to a point on the phantom plane P ′ as shown in the Figure 4.
Therefore, the consistent edges between phantom node and honest node can
not be created, if without coincidence. Therefore, the consistent cluster with
honest pivots at locations p1, p2, p3 is composed of honest nodes.

Theorem 2: If at least one of pivots is a phantom node, the size of largest

cluster is small compared to the one when none of pivots is a phantom node.

Proof Sketch: Let Node v at location p1 creates a local map. It selects two
other pivots at locations p2, p3, at least one of which is a phantom node. Say
pivot at location p2 is a phantom node. We denote the plane created by pivots
at locations p1, p2, p3 by P ′ and the largest cluster by C ′. From Theorem 1,
we know the phantom pivot at location p2 is not on plane P . Thus, the plane
P ′ containing p2 is different from P . Since P ′ is different from P , any node on
P cannot be on P ′ unless it is located on the line, the intersection of P and P ′

as shown in Figure 4. As a result, most of legitimate nodes are excluded from
C ′. Since the filtering is local process of legitimate node v, and pivoting is
speculatively determined by v, the inconsistent distance measurements project

the non-collusive phantom nodes on different phantom planes. Thus, with a
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high probability, the consistent edge between phantom nodes and chosen pivots
can not be created. This leads any cluster C ′ made by the phantom nodes on
a phantom plane P ′ is much smaller than C on P .

Case Study: As an example, Figures 5, 6 and 7 reflect the properties of
Theorem 1 and 2. Figure 5 plots the real locations of the nodes, among
which node 0 is a verifying node, node 6 is a phantom node, node 5 and 18 are
not compromised, Figure 6 shows the cluster created when the pivot (node
5 and 18) is not compromised (Theorem 1), Figure 7 is the cluster when the
phantom pivot (node 6) is used, which size is much smaller than the size of
cluster shown in Figure 6 (Theorem 2).

4.4 Localized Adversarial Effect of a Phantom Plane

In Section 4.3, due to the speculative nature of our approach, we assume that
with a high probability, a large phantom plane can not be created consistently
among non-collusive phantom nodes. In this section, we study the impact if
this assumption doesn’t hold, i.e., phantom nodes are able to launch collusion
attack. As shown in the Figure 4, node v is located at the intersection of
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a phantom plane and a real plane. If the number of phantom nodes on the
phantom plane is larger than the number of node on the real plane, node v
will be deceived. It is also true that any other nodes located in the intersection
line can be deceived as well. However, we note that any honest node that is
not located at the intersection, can not perceive the existence of the phantom
plane P ′ from its own local view. It can only perceive the large real plane P .
This observation indicates that even if a large phantom plan is created through

collusion attack, it can only compromise the views of a limited number of nodes

located at the intersection line. Suppose there are N honest nodes in the real
plane P and none of three nodes are collinear, to compromise the views of all
these nodes, more than N2

2
phantom nodes are needed, which is much larger

than the number of honest nodes N . This gives us the insight why our scheme
works well in the presence of a large number of phantom nodes.

4.5 Cost Analysis

The cost for our protocol consists of (i) the communication cost during ex-
change of distance information in Phase I, (ii) computation cost for encryption
and decryption of symmetric key, and (iii) the computation cost in filtering
phase.

In our proposed solution, suppose a node has N − 1 neighbors. It generates
ranging information with N − 1 neighbors, thus communication cost is O(N).

Each node encrypts its own distance measurement message, and decrypts
neighbors distance measurement message. Thus, the the computation cost
for encryption and decryption of symmetric key is O(N).

The computation cost in filtering phase for each node is estimated as follows:
The projection cost by trilateration is proportional to the number of neighbors
N − 1. The projection is done for several trials. From Algorithm 1, we know
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that iter controls the number of trials. Thus, the computation cost for each
node is iter × (N − 1). The value iter is determined differently depending on
the ratio of honest nodes and phantom nodes. This is because our algorithm
is speculative in nature. Obviously, it is unacceptable if such speculation takes
a large number of trials.

We’ll show the expected number of trials iter in Algorithm 1 is small even
with a large percentage of phantom nodes. To identify the largest consistent
subset, our speculative algorithm can not stop before the node v successfully
selects two honest pivots. Suppose q is the probability that a random neighbor
is a phantom node, the probability at least one of pivot is a phantom pivot
is 1 − (1 − q)2. During iter trials, the probability that at least one of trial
succeeds in selecting two honest pivots is:

P [X ≥ 1] = 1 − (1 − (1 − q)2)
iter

The number of trials required to ensure the successful filtering with proba-
bility 95% and 99% is shown in Figure 8. As shown in Figure 8, even 50%
nodes are phantom nodes, the number of trials needed is only 16 to achieve
99% success ratio. We also note that the number of trials only affects the
computation overhead. No extra communication is needed when the number
of trials increases.

With the node density of 10, to achieve 99% success ratio, we need 16 iterations
with 10 trilateration per iteration, a computation that finishes within several
milliseconds in Mica motes.

4.6 Number of Trials Available
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Fig. 10. Average number of possible pairs of pivots for the given number of neighbors

If the computation overhead can be ignored, ideally we want to perform as
many trials as possible. This section analyzes the expected number of trials
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available for computation. Suppose the node v can obtain distance measure-
ments from all neighboring nodes that are less than r meters away, as shown
in Figure 9, to verify a certain node k we need at least two honest nodes exist
within common range r from v and k so that an unique plane is determined.
And, as long as there exist at least two honest nodes within the overlapped
area shown in Figure 9, each local unique plane can be stitched together,
resulting in one unique plane with v at the origin.

As described in Algorithm 1, a node v uses itself as the first pivot, and two
randomly selected neighbors are used as second and third pivot. For one test
node k, if z is the distance between node v and k, the size of overlap region
shown in Figure 9 is:

Aoverlap(z) = 2r2cos−1(
z

2r
) − z

√

r2 − (
z

2
)
2

Two selected pivots must be the common neighbor of node v and the the
tested node k. The average number of common neighbors throughout all the
possible values of z is:

Navg =
n

πr2

∫ r

0
f(z) × Aoverlap(z)dz = 0.586503 × n

where f(z) is probability density function of z.

f(z) =
∂[Pr(Z ≤ z)]

∂z
=

∂

∂z
[
πz2

πr2
] =

2z

r2
.

Since the average total number of common neighbors is 0.586503 × n, the
number of available pairs is approximately ((0.586503×n)− 1)× (0.586503×
n)/2. As we know from Section 4.5, 16 trials can render a 99% success ratio
even with 50% phantom nodes. Accordingly, a node density of 10 neighbors
can sufficiently satisfy the requirement. To illustrate the analytical results
numerically, Figure 10 shows the relation between the number of neighbors
and the number of pairs available for speculative filtering.

4.7 Avoid Collinear Pivots

If two pivots chosen are collinear with node v, i.e., they form a straight line,
the chance that a node’s location flips from one side of this line to the other
side is high. This type of localization error could lead to a high rate of false
positives in which an honest node are filtered out as phantom nodes. In this
section, we investigate the relation between ranging measurement error and
localization error in cases of collinear and non-collinear pivots. Our conclusion

17



−300 −200 −100 0 100 200 300
−250

−200

−150

−100

−50

0

50

100

150

200

250

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19
20

x 

y 

Fig. 11. Collinear pivots case
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Fig. 12. None collinear pivots case
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Fig. 14. Localization error

from this study indicates that it is critical for us to prevent using collinear
pivots to establish the local coordinate system. Following are details of our
analysis.

One criterion by which we evaluate the performance of the algorithm is how
the computed localization differs from the known ground truth. This error is
expressed as:

σ2
p =

N
∑

i=1

(x̂i − xi)
2 + (ŷi − yi)

2

N

where N is the number of nodes, x̂i and ŷi compose the localized location

of node i, and xi and yi composed the true location of node i. This metric is
simply the mean-square error in Euclidean 2D space.

It is useful to compare σ2
p to σ2

d, the mean-square error in the raw distance
measurements, since the error model of the measurements determines the min-
imum achievable σp of an ideal localization algorithm. The mean-square error
of the distance measurements is:
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σ2
d =

∑

i,j

(d̂ij − dij)
2

M

where M is the number of inter-node distances, d̂ij is the measured value of

distance i, and dij is the true value of distance between node i and j.

Figures 11 and 12 show an example of neighbor distribution. Node v has
node id = 1 and neighbor 2, . . . , 20 has real relative location shown in the
figure. The distance measurement error for each pair of nodes is calculated as

(d̂ij − dij)
2

and shown in Figure 13.

In the first trial, pivots 1, 8, 19 are selected and in the second trial, pivots
1, 8, 13 are selected. In Figure 11, the pivots 1, 8, 19 are collinear, which is
prone to flipping. Figure 14 shows the comparison of the localization errors,
(x̂i − xi)

2 + (ŷi − yi)
2, for each node between first and second trail. Obvi-

ously the collinear pivots (Figure 11) cause significantly higher localization
error than non-collinear pivots (Figure 12). In the collinear case, the large
localization error is mostly from the vertex flipping rather than the ranging
measurement error. To reduce such the error due to vertex flipping, we adopt
the solution proposed in (23). According to (23), their algorithm regards only
those triangles with a sufficiently large minimum angle as robust. To select
the robust triangles, (23) chooses a threshold dmin based on the measurement
noise and identify those triangles that satisfy: b sin2 θ > dmin where b is the
shortest side and θ is the smallest angle. The equation bounds the worst-case
probability of a flip error for each triangle. When dmin was chosen to be 3σ,
for Gaussian noise, this bounds the probability for flipping to be less than 1%.
In our solution, for a triangle made by three pivots and the shortest side b and
smallest angle θ of the triangle the threshold is tested. The pivots that do not
satisfy the condition will be excluded.

5 Robustness against Existing Attacks

In this section, we applies our proposed approach to existing attacks, i.e.,
wormhole attack, node replication, sybil attack, etc. We first create virtual
planes following the approach described in the previous sections. Then, two
virtual planes are stitched together using Algorithm 2. During this process,
wormhole attack, node replication, sybil attack are detected.

The stitching process of two planes is described in Algorithm 2. It tests if a set
of nodes C1 on plane P1 and another set of nodes C2 on plane P2 can be com-
bined consistently. If there are more than three common nodes in C1 and C2,
we fix those common nodes. If the relative topology of those nodes on P1 are
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Algorithm 2. Combine(P1,P2)

plane P1 contains a set of nodes C1 and plane P2 contains a set of nodes C2

if |C1 ∩ C2| < 3 then

return false
end if

for nodes i, j ∈ C1 ∩ C2, i 6= j do

if P1 and P2 have different values for d̃ij then

return false
end if

end for

fix C1 ∩ C2, and stitch two planes P1 and P2.
if There exists d̂ij, i ∈ P1, j ∈ P2, and |d̂ij − d̃ij| ≥ ǫ then

return false
end if

return true
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different from the topology on P2, two planes cannot be combined consistently.
When two planes are stitched together by fixing those common nodes, if there
exists distance measurement d̂ij between a node i in C1 and another node j
in C2, and the difference between measured distance and computed distance
on the stitched map is non-trivial, |d̂ij − d̃ij| ≥ ǫ, they cannot be combined
consistently. Otherwise, the stitched plane is regarded as a consistent map. In
addition, if C1 ∩ C2 = C1 = C2, then we conclude that C1’s map is the same
as C2’s.

Figure 15 lists five types of phantom node attacks and our approach to detect
the attacks. We describe the process in node 1’s local view. The real plane in
the first column in Figure 15 is the actual placement of each node. We mark the
malicious nodes with circles. For each neighboring node or the nodes connected
through wormhole, the distance measurements are collected as specified in
the Section 4.1. From the collected distance measurements, node 1 creates its
virtual plane as described in Algorithm 1. Then, we input the virtual plane to
Algorithms 2.

(a) No Attack: In Figure 15a, the real plane consists of 9 honest nodes. Node
1 has distance measurements with nodes 2, . . . , 9. For any two planes P1

and P2 created by different sets of pivots, the same plane is created, and
Algorithm 2 always returns true.

(b) Compromised Anchor: The anchor generates ranging information like
other non-anchor nodes, and the compromised ranging information can be
filtered with our proposed method. In addition, anchor generates beacons
that contain anchor’s location on global coordinate system. This information
may not needed in fact because the global location can be always obtained
by stitching local maps following methods in (23; 10). However, anchor
nodes are provided, we can still detect the compromise of global location in
beacon by comparing distance between global locations of two anchor nodes
with the distance between two anchor nodes in the stitched local maps.

In our example in Figure 15b, the real plane consists of 10 regular nodes
and two anchor nodes 11 and 4, where the anchor 4 is compromised. We
assume the compromised anchor 4 generates consistent distance measure-
ment, but modified anchor location in its beacon. The node 1 has distance
measurements with 2, . . . , 9, and the node 10 has distance measurements
with 2, 3, 10, 5, 6, 11, 8, 9, 12. Two distinct virtual planes P1 and P2 are con-
structed by node 1 and node 10, and inputed to Algorithm 2. It returns
true because the compromised anchor does not generate inconsistent dis-
tance measurement. However, when the distance between anchors on the
stitched map, d̃4,11, is compared with the difference of global locations,
|(x4, y4) − (x11, y11)|, we detect the inconsistency.
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Real Plane Distance Mea-
surement

Virtual Plane after
Filtering

Attack Detection

(a) No Attack

1   2   3

4   5   6  

7   8   9

Node 1 collects:

d̂1,2, . . . , d̂1,9

d̂2,1, . . . , d̂2,9, . . .

Plane P1 by node 1:

1   2   3

4   5   6  

7   8   9

C1 ← {1, . . . , 9}

C2 ← {1, . . . , 9}

Combine(P1, P1) → true

(b) Compromised
Anchor

1   2   3  10

 4   5   6  11 

7   8   9  12

Node 1 collects:

d̂1,2 . . . , d̂1,9, . . .

beacon : (x4, y4)

Node 10 collects:

d̂10,2, d̂10,3, d̂10,5, . . .

beacon : (x11, y11)

Plane P1

by node 1:
Plane P2

by node 10:

1   2   3

4   5   6  

7   8   9

2   3  10

5   6  11

8   9  12

C1 ← {1, . . . , 9}

C2 ← {2, 3, 5, 6, 8, 9,

10, 11, 12}

Combine(P1, P2) → true

d̃4,11 6=

|(x4, y4)− (x11, y11)|

(c) Wormhole
Attack

1   2   3

7   8   9

11 12 13

17 18 19

14 15 164   5   6  

Node 1 collects:

d̂1,2, . . . , d̂1,9

. . . , d̂5,15, . . .

Plane P1

by node 1:
Plane P2

by node 11:

1   2   3

4   5   6  

7   8   9

11 12 13

14 15 16

17 18 19

C1 ← {1, . . . , 9}

C2 ← {11, . . . , 19}

Combine(P1, P2) → false

(d) Replication
Attack

1   2   3

4        5  

6   7   8

11 12 13

14      15 

16 17 18

Node 1 collects:

d̂1,2, . . . , d̂1,8

d̂1,11, . . . , d̂1,18

. . .

Plane P1

by node 1:
Plane P2

by node 11:

1   2   3

4        5  

6   7   8

11 12 13

14      15 

16 17 18

C1 ← {1, . . . , 8}

C2 ← {11, . . . , 18}

Combine(P1, P2) → false

(e) Sybil Attack
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Node 1 collects:

d̂1,2, . . . , d̂1,8

d̂1,11, . . . , d̂1,18

. . .

Two virtual planes P1

and P2 by node 1:
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C1 ← {1, . . . , 9, 11, . . . , 18}

C2 ← {1, . . . , 9, 11, . . . , 18}

Combine(P1, P2) → false

Fig. 15. Attack detection

(c) Wormhole Attack: The wormhole attack is the attack where two nodes
physically or logically located far away behave as if they have short path to
deliver messages. Figure 15c shows wormhole attack. In the figure, 9 nodes
are located far away from other 9 nodes. Thus, the node 1 has distance
measurement only with 2, . . . , 9 because it is far away from other 9 nodes.

Two compromised nodes in the center create wormhole to pretend to be
neighbor. For example, node 5 announces a fake distance measurement with
node 15. Two virtual planes P1 and P2 created by node 1 and 11 are failed
to be combined in Algorithm 2 because distance measurement between node
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5 and 15, d̂5,15, is not matched to the distance d̃5,15 on the stitched map.

(d) Replication Attack: Figure 15d shows the replication attack through a
wormhole, in which 8 nodes are located far away from other 8 nodes. The
attacker does not involve in any direct compromise of nodes, but two repli-
cators in the left and right side each, replicate the messages of honest nodes
through the wormhole.

For example, a replicator in the left side replicates distance measurement
messages of nodes 1, . . . , 8 in the left side to the other replicator in right side
which announces the replicated messages to nodes 11, . . . , 18 in right side.
The distance measurement messages of nodes 11, . . . , 18 are also replicated
from right side of nodes to left side of nodes in the similar way. In result,
nodes in left side and nodes in right side believe they are neighbors to each
other. Node 1 creates a plane P1 filtering inconsistent distance measurement
between nodes in left side and in the right side. In result, the plane P1

contains nodes 1, . . . , 8. Node 11 creates a plane P2 filtering inconsistent
distance measurement between nodes in left side and in the right side. In
the result, the plane P2 contains nodes 11, . . . , 18. Two planes P1 and P2

fails in Algorithm 2 because they do not have common nodes.

(e) Sybil Attack: The sybil attack is the attack where a compromised node
takes role of several node entities to the honest node, thus consume the
fixed resource more than it has to. Figure 15e is when the sybil nodes are
created. The node in the center is compromised and it takes a role of non-
existing node 11, . . . , 18. If it inserts false distance measurement messages
between phantom nodes 11, . . . , 18, it may create phantom plane consisting
of phantom nodes. However, the honest nodes on real plane P1 will be
separated from the phantom nodes on the phantom plane P2. Two planes
P1 and P2 fails in Algorithm 2.

6 Simulation Results

In this section, we provide the simulation results for our proposed scheme.
We generate a set of sensor nodes on the random locations. The node and all
of its neighbors participate in the phantom node detection in a decentralized
manner. After each node updates its neighbor list, they exchange distance
information and filter phantom nodes. We describe the performance metric
and simulation results with consideration of ranging measurement error. We
also provide the simulation result when the sybil node is assumed. We varies
the number of neighbors (node density) from 5 to 50 with 10 – 30 trials
for a verification of a given topology of neighbors. The number of phantom
nodes and honest nodes are set to between 0 and 20. We assume the ranging
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Fig. 16. Distribution of number of nodes verified (10 trials)

measurement has error rates 1%, 3% and 5%.

6.1 Case Study

We first illustrate the speculative filter through a case study. In this experi-
ment, we speculatively choose a pair of pivots in each trial (10 trials in total),
and record the number of legitimate nodes and the number of phantom nodes
identified in each trial as shown in Figure 16. When 10 trials are done, with
more than 99% probability, at least in one trial, two pivots are legitimate
nodes. In the trial 1, 3 and 8, the consistent subsets consists of phantom
nodes, but it is not selected as a final result because that the size is small
compared to other trials as shown in Figure 16. The trials among 2, 4, 5, 6,
7, 9 and 10 are selected as the final largest consistent subset. In those trials,
most of phantom nodes (20 phantom nodes are tried by two attackers) are
filtered. A few phantom nodes is included in this example, but interestingly,
these phantom nodes included are projected to the actual attacker’s locations.
Thus they are not actually phantom any more. Figure 17 shows the real lo-
cations of legitimate nodes (indicated by filled circles) and fake locations of
phantom nodes (indicated by empty circles). The Figure 18 is the projected
location from collected data. The legitimate nodes are projected to their real
locations while most of phantom nodes are either filtered or projected to their
actual attacker’s locations.

6.2 Performance

The effectiveness of the proposed scheme is evaluated by the false positive
rate, the probability that a honest node is determined as a phantom node and
by the false negative rate, the probability that a phantom node is determined
as a honest node, which are calculated by:
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false positive rate =
number of honest nodes failed verification

total number of honest nodes

false negative rate =
number of phantom nodes authenticated

total number of phantom nodes generated

The performance results slightly varies according to the density of neighbors,
ranging measurement accuracy, and number of phantom nodes. Overall false
negative rate and false positive rate is around 0.1 most of cases, showing
that our solution is effective to filter phantom nodes. The false negative rate
includes the case when the phantom node is projected to the attacker’s actual
location.

6.3 Density and Number of Trials

In the simulation we limited the number of trials so that at least one of them
has all honest pivots. This can be calculated as follows: First, determine the
maximum number of phantom nodes possible, which is the resiliency against
the attacker. Then, from the ratio between the number of honest nodes and
the maximum number of compromised nodes, we can calculate the required
number of trials to ensure one of the trials has all honest pivots. When the
number of honest nodes is 20 and the maximum number of phantom nodes is
20, 16 trials are required.

6.4 Localization Error

The ranging measurement error is directly related to localization error and
localization error affects the performance of phantom node detection. The
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Fig. 20. False positive rate
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Fig. 21. False negative rate

ranging measurement accuracy depends on the media employed and the lo-
calization error depends on the localization technique used together with the
ranging measurement error. We assume the displacement of the positions the
attackers try to achieve is more than the random localization error.

According to our experiment, when the ranging is measured with a high accu-
racy, the false positive rate and false negative rate is almost zero. On the other
hand, when the ranging is measured coarsely, the false positive rate and false
negative rate increase. Our study in section 4.7 indicates that this is because
trilateration in (32) is sensitive to the ranging measurement error, not because
of our filtering solution.

Figure 19 shows the false positive rate and false negative rate according to
the threshold ǫ for noise tolerance. The threshold value ǫ is the maximum
acceptable difference between the distance estimate in distance measurement
phase and the distance between projected nodes on the virtual plane. For a
given threshold value ǫ, the false positive rate trades off with the false negative
rate. When the threshold ǫ is determined more strictly the possibility that the
honest nodes are not verified as legitimate increases while the possibility that
the compromised nodes are filtered increases.
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Figure 19 shows the performance according to various threshold values for the
ranging measurement error 1%, 3%, 5%. We use the threshold value 37 for
ranging measurement error 3% where the false negative rate and false positive
rate are intersected. As shown in Figure 19, as the ranging measurement error
increases, the false negative and false positive rate increase. While the false
negative rate decreases sharply in the early stage in the graph, the false positive
rate increases gradually but does not have sharp increase in the later stage.
This means that the phantom node detection is not sensitive to the ranging
measurement error and the value of threshold. Also, we note that the false
negative rate varies in range of 0.05−0.25, but the phantom nodes not filtered
are projected to the actual attacker positions. This indicates that our solution
can not only detect the phantom node but also possibly identify the real
locations of the attackers.

6.5 Number of Phantom Nodes

We provide the simulation results when the number of phantom nodes the at-
tacker can generate is large (more than the honest nodes). Figures 20 and 21
show the performance according to various numbers of phantom nodes. As
shown in Figure 20, when the number of phantom nodes increases, the num-
ber of honest nodes excluded increase. However, the fraction of honest nodes
excluded increases slightly as shown in Figure 20. Although the attacker tries
to create high number of phantom nodes, the filtering procedure results in only
a small number of phantom nodes attached (false negative). The interesting
result shown in the Figure 21, when the total number of phantom nodes in-
creases, the percentage of these nodes that can avoid detection reduces. Most
of phantom nodes are filtered even if the number of phantom nodes increases.
This is mainly because the phantom plane created by phantom nodes can only
deceive the nodes that are located at the intersect line of the phantom plane
and real plane as shown in Figure 4. To deceive other honest nodes, the at-
tackers need to create a different phantom plane that intersects with the real
plan at the location of individual honest node. The localized view of individ-
ual nodes enables us to filter out phantom nodes, even when the number of
phantom nodes is larger than the honest nodes.

7 Related Works

We describe related works in localization technique in absence of attackers,
localization in presence of attackers, location verification, and other related
attacks.
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7.1 Localization Techniques

In general, localization techniques can be classified largely into range-based
and range-free schemes depending on whether they use ranging estimation.
Range-based techniques measure physical properties such as distance or an-
gle. Based on this information, it calculates its location. In the range-based
approach the physical property is measured by Time of Arrival (ToA) (5),
Received Signal Strength Indication (3; 4), Time Difference of Arrival of two
different signals (TDoA) (32; 29), and Angle of Arrival (AoA) (25). Such mea-
surement of the distance is called ranging. Range-free techniques do not mea-
sure such physical properties. As range-free approach, Bulusu et al. proposed
Centroid method (6; 7), where each node estimates its location by calculating
the center of the locations of all beacons it hears. Niculescu et al. (26) pro-
posed to use the minimum hop count and the average hop size to estimate
the distance between nodes. The APIT method (12) divided the environment
into triangular area among beaconing nodes, and used an algorithm to cal-
culate the maximum area, in which a node will be likely to reside. In this
work, we assume we can obtain distances among the nodes based on ranging
techniques (32).

7.2 Secure Localization and Location Verification

We classify the security issues in localization following taxonomy that we
introduced in Section 1.1.

In the first category, CAD, (set of) regular nodes verify the location infor-
mation of anchors, who know their location. It is equivalent to secure local-

ization, that is, for uncompromised node to determine its location correctly
by verifying location information of anchors. The secure localization was dis-
cussed in (17) based on directional antenna. Liu et al. (22) discussed the
beacon compromise. They proposed greedy filtering and filtering by voting.
Li et al. (20) introduced the way to filter beacon inconsistency by employing
least median squares estimation. In those schemes, regular nodes filter locally
inconsistent location informations, and determine its location based on locally
consistent location information. Thus, it is essentially decentralized scheme,
but the strength of security is limited to the number of anchors or their bea-
cons in local area. For a given area, if a majority of anchors are compromised
all regular nodes in the area will be deceived. In our approach, based on de-
centralized localization technique without purely depending on anchor node,
every node takes a role of both anchor and verifier in its local map. With the
proposed approach, it still be able to obtain global position by stitching local
maps, or verifying anchor’s claim. As both regular node and anchor (if any)
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involves, the strength of security increases more than when it purely depends
on anchors.

In the second category, CPD, few trusted, but centralized nodes validate the
position or ranging claims of individual nodes. It is equivalent to location ver-

ification, that is, for uncompromised node to verify the neighbor’s location. In
CPD, a set of verifiers are effective to detect Sybil and Wormhole attacks in-
dependent from the number of attackers. Sastry et al. (31) dealt with location
verification, where the prover is in a certain region, using propagation delay
of RF signal and ultrasound. Vora et al. (38) proposed a location verification
system by utilizing a topology of sensor distribution. While those works show
the framework for the location verification problem, the secure localization in
wireless sensor networks was first introduced in (37). In (37) they proposed to
use the distance bounding protocol. For each ranging, surrounding neighbors
become verifiers and they do verifiable multilateration to verify the ranging.
In (8), a set of covert base stations is used for secure positioning. In (18),
they proposed a way to do secure localization and location verification using
anchors as verifiers. In most of these works, they assumed a set of verifiers
for location verification. However, they did not provide how to protect such
verifiers from adversaries. The number of verifiers is normally much less than
that of regular nodes. Thus, in practice it is easy to compromise the verifiers,
and once the verifiers are compromised it will have significant effects on the
disruption of the verification. We overcome this issue by proposing a pure
decentralized approach without the requirement of any trusted verifier.

In summary, in CAD the strength of security depends on anchor nodes, and
in CPD the strength of security depends on few verifiers. Our approach, DPD

removes the trusted centralized entities assumed in both CAD, CPD, and
increase the strength of security. Each node plays the role of both verifier and
regular node, the role of both anchor and regular node. As DPD does not have
trusted verifiers, attackers need to compromise much more nodes to make the
attack successful.

7.3 Other Existing Attacks

There are several attacks where the attacker does not directly involve in lo-
calization process, but the location related information is implicitly distorted.
Sybil attack, wormhole attack, and node replication fall into this category.
In these kinds of attacks, nodes have a fantasy that they are located differ-
ently from the reality. Traditionally, the Sybil Attack can be addressed by the
channel bandwidth resource test and the pairwise key pre-distribution scheme
proposed (24). The wormhole attack can be prevented if the propagation time
of a packet is much smaller than necessary to go through the distant path
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of two communicating nodes, by assuming that the location service is pro-
vided (15). In (14), the directional antenna is used to detect the inconsistency
of the ranging, especially the inconsistency in the direction of the replicated
message transmitted through the wormhole. Wang et al. (39) showed the cen-
tralized method to visualize the wormhole attack by only proximity of neigh-
bors. Other than that, Parno et al. (27) proposed a distributed node-replica
detection scheme where the attacker capture nodes, replicate them and insert
the replicas at some locations. In our work, by obtaining each node’s location
correctly we can detect these kinds of attack.

8 Conclusion

Our secure localization system speculatively projects the neighboring nodes
into a local map with the largest consistent subset of ranging claims. This
approach authenticates the locations of honest nodes and detects the existence
of the phantom nodes without relying on trusted agents. It is devised especially
to be efficient when used in distributed way. Our localized construction results
in quite strong results: even when the number of phantom nodes is greater
than that of honest nodes, we could filter out most of the phantom nodes. In
addition, our cost analysis indicates that our solution requires small overhead,
and our simulation results confirm that our scheme is effective to identify the
source of entities under noisy distance measurements in the presence of a large
number of phantom nodes.
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