
The Distributed Virtual Network for High Fidelity,
Large Scale Peer to Peer Network Simulation

Denis Foo Kune, Tyson Malchow, James Tyra, Nick Hopper, Yongdae Kim
University of Minnesota - Twin Cities

ABSTRACT
The ability to analyze the behavior of large distributed sys-
tems can be limited by the modeling tools used. The Dis-
tributed Virtual Network (DVN) is a discrete event network
simulator providing a platform for realistic, high fidelity,
scalable and repeatable simulations of large distributed sys-
tems. With a global view of the network, it provides the
ability to quantify the behavior of the system under stress
and attack conditions. We present the architecture of the
simulator along with the simulation results from a real world
P2P protocol implementation ported to DVN. We also com-
pare DVN with another similar tool, outlining the benefits
of our contribution.

1. INTRODUCTION
Modeling of peer-to-peer systems such as the Kad network

has proven to be challenging [30][32][33]. As a result, simu-
lation has been frequently used, but general-purpose simula-
tion has presented several challenges in terms of scalability,
fidelity, node diversity support and portability of simulated
nodes. Faced with those challenges, many groups developed
their own ad-hoc simulators [24].

Simulators can be grouped into two categories based on
how much of the underlying communication layers they sup-
port [12]. Low level simulators that can support a large
portion, if not all of the OSI layers of a protocol stack tend
to be very accurate but suffer from resource consumption
problems [27][28]. For example, they may test working code
by running several instances on a single machine, produc-
ing results that are faithful to the implementation but are
typically limited to a thousand or fewer nodes [24]. High
level simulators supports high level functionality or aspects
considered to be important of protocols, and thus tend to
simulate down to the network or transport layers (OSI layers
3 and 4). Since they abstract away the lower communica-
tion layers, they consume lower resource allowing them to
run large scale experiments with upwards of 105 nodes [24],
but may suffer from a lack of fidelity.

Fidelity is important to the security analysis of a dis-
tributed system, as vulnerabilities can reside in subtle be-
haviors of the protocol. Similarly, efficiency has an impor-
tant role to allow simulations to scale up to the same or-
der as currently deployed networks. Thus the typical design
choices involve a trade-off between the scalability and fidelity

of a simulation. Our simulator was developed as a general-
purpose packet-based simulator at the network layer with a
simple datagram transport layer API for protocol plugins.
Those plugins can be ported directly from released code or
developed from the ground up on DVN and cross compiled
to interface with a real network stack. By running the actual
code for protocols above the OSI layer 4, the simulator pro-
vides high fidelity simulations while allowing large network
sizes on the same order as those deployed in the real world.
Abstracting the resource intensive lower layers was a criti-
cal design choice for DVN, which is fit for overlay network
studies for which it was originally conceived.

1.1 Design Requirements
From the challenges outlined above, we derived the fol-

lowing requirements for our overlay network simulator.

Scalability and Efficiency The simulator should support
experiments consisting of a large number of nodes and mes-
sages, bounded by the actual hardware such as memory
available or CPUs avaialble. It should avoid limits includ-
ing thread number limits or maximum port numbers. It is
important to be able to use multiple CPUs in parallel on
a single machine to leverage the current trend of multicore
machines. The simulator should allow independent events
to be executed in parallel. To support the goal of simulat-
ing a deployment of aroung 106 nodes, the simulator would
benefit from distributed computations in order to take ad-
vantage of multiple machines when the resources required
exceed the capacity of a single machine.

Fidelity The simulator should be able to run the same pro-
tocol code as the actual implementation to minimize risks of
bug introduction in the released code. Moreover, the sim-
ulator should allow code from real implementations to be
ported from current active projects to run on the virtual
network thereby allowing accurate modeling of the actual
network. The porting effort should be significantly smaller
than the re-implementation effort. The code designed for the
simulator should also be easily “exported” so that it can be
used on a real implementation. Additionally, the simulator
should provide a means to support the following secondary
fidelity goals:
Network Model. The architecture should provide support
for realistic network conditions encountered by large deploy-
ments such as non-transitive connectivity and network par-
titions.
Event scheduling. The simulator should support scheduling
of a series of events — such as node addition, deletion, net-
work merge or partitioning — at predetermined times, to

enable replicable experiments.

Node diversity. The architecture should support nodes
running with different settings, different versions of a pro-
tocol stack, or completely altered nodes. This allows the
modeling of situations like incrementally deployed upgrades,
networks with“super peers,”or the effects of malicious nodes
on a network.

1.2 Our Contribution
This paper describes our hybrid design that instead of

doing a traditional fidelity and scale tradeoff, provides both
with plugin modules on top of a layer 3 simulator with a sim-
ple datagram transport layer. For improved fidelity, code
developed for the simulator are built as libraries and can
be cross compiled on a real implementation. At the same
time, by eliminating the simulation at layer 3 and below, it
reduces the resource consumptions when compared to more
complete simulators such as NS2 and allows simulations to
scale up to hundreds of thousands of simulated nodes on a
single machine. With some porting effort, real implemen-
tations can run inside of the simulator to ensure maximum
fidelity. We also built a distributed architecture to spread
the load across multiple machines. We named our simulator
the ”Distributed Virtual Network”, or DVN for short.

We compared our simulator to the state of the current
state of the art for peer to peer simulation in the form of
the WiDS[20] toolkit and show a factor of 4 in improved
performance when DVN was compared to WiDS. We also
ported the aMule[1] client version of Kad nodes to simulate
a large Kademlia[21] network on DVN.

We ran large Kad simulations with DVN on different plat-
forms including single and multicore machines with differ-
ent configuations, and Amazon Elastic Computing Cloud
(EC2). We compare the simulation running times on those
platforms and measure DVN’s performance on each one.

2. RELATED WORK
Large scale networks simulation is a hard problem [34]

but a necessity to understand the behavior of massively dis-
tributed systems such as peer to peer networks. Simulation
is an invaluable tool not only for designing the system but
for understanding its behavior in the presence of adversaries
and evaluating mitigation strategies.

2.1 Simulation techniques
Parallel and distributed simulators based on discrete events

have been developed previously [35, 7, 13]. Parallel Discrete
Event Simulation can be divided into two categories, con-
servative and optimistic [11] [12]. In conservative engines,
the logical time is advanced in a coordinated fashion. Op-
timistic simulators try to move ahead with the risk of hav-
ing to roll back in time. DVN uses a conservative engine
to guarantee the chronological order of events. However, it
uses the network delay to build a safe window to allow inde-
pendent parallel processes to move ahead if they can. DVN
uses a master-worker relationship similar to WiDS [19] with
the other nodes to avoid flooding the physical network with
synchronization messages [36]. In the WiDS toolkit [20],
the authors introduce Slow Message Relaxation (SMR), a
variant of optimistic scheduling where the scheduler for a
simulator worker might be ahead of the schedulers for other
simulator workers. If it happens that a message is destined

to a virtual node running on the worker who is ahead, that
worker treats the message as a “slow” message, analogous to
one that has experience severe network delays. This tech-
nique is a tradeoff between performance and accuracy since
slow messages might skew the statistical distribution of mes-
sage delays. Given DVN’s performance on a single machine
using worker node decoupling, there was no need for such a
tradeoff.

2.2 Related Simulators
WiDS [20] was designed to allow development of protocol

stacks from scratch that could be ported to real applications.
We wanted to do the reverse. We wanted to take the real
code and run it on a simulator with minimal changes to
adapt to the simulated network layer.

NS-2 and NS-3 [27, 28] could support ported protocols,
however porting the Kad node to an NS-2 custom agent
would have required a large porting effort, along with re-
strictions on the size of the network. Using PDNS - Par-
allel/Distributed NS to address the scalability issue would
have been possible, but it was not clear that the performance
would have been acceptable for very large simulations in dis-
tributed mode. DVN starts with supporting large numbers
of Kad nodes per simulator instance and allows distribution
or those instances. NS-3 pays close attention to realism and
simulates the undelying layers to a fine detail. Each node
is a computer’s outer shell and hosts a complete communi-
cation stack. In our experiments, we only needed the top
layers of the stack, including the application layer where the
overlay routing takes place. Therefore, to optimize the sim-
ulator we had to trim out the underlying layers from the IP
network layer and down.

ModelNet [42] could support ported protocols such as the
kad protocol, but it would have performance implications
limiting us to simulations size a couple of orders of magni-
tude smaller than what we have achieved.

SSFNet [8] is an infrastructure built in Java that can sup-
port nodes written in Java and C++ as long as they are com-
pliant to the SSFNet API bindings. The simulator has been
used to run up to 384,000 nodes in the Network Worm simu-
lation published by Liljenstam et al. [18] In that publication,
the authors mention that their model used approximations
of the worm infection patterns to generalize the simulation
at a coarse level, while only simlating parts of the network
in detail. In our publication, we wanted to run a full pro-
tocol implementation for the entire network with hundreds
of thousands of nodes, which would have been problematic
with SSFNet unless we used Liljenstam’s method, thereby
potentially affecting the accuracy of the simulations.

2.3 Scalability and fidelity of existing simula-
tors

Haeberlen et al. [14] suggests that current simulation and
experiments are considering single points in the entire possi-
bility space. They are critical of the trend to accept ns-2 and
planetLab [6] results as the general case when in fact gen-
eralization might not be appropriate. We believe that the
scalability and fidelity of the DVN would allow researchers
to have more meaningful simulation results close to actual
implementation.

Naicken et al. [23] analyze several simulators along some
of the criteria mentioned in the introduction. The simu-
lations surveyed include the following: P2PSim [30], Peer-

Sim [32], Query-Cycle Simulator [38], Narses [25], Neuro-
grid [26], GPS [43], Overlay Weaver [29], DHTSim [9], and
PlanetSim [33]. Only one simulator [32] was reported to
support 106 nodes, and those were virtual nodes purposely
built in Java for the simulator. With DVN we wanted to
port an existing protocol implementation in C to the simu-
lator environment, along with the heavier resources it might
consume due to the original target being a single machine.
Naicken et. al. also report that the majority of papers in
the Peer-to-Peer litterature that use simulations tend to use
their own custom simulator, built specifically for their pur-
poses. Although DVN was built with Kad simulations in
mind, it was an attempt to be more general so as to benefit
other projects.

ModelNet [42] allows researchers to run unmodified soft-
ware prototypes and supports a finer granularity of the net-
work topology than the description supported by the dsim
language of DVN, but DVN can simulate much larger net-
works using ported virtual nodes.

Other simulators such as OPNet, GlomoSim(wireless), Net-
Sim and OMNeT++ have the same tradeoffs of running the
real code against scale. In DVN we trimmed down anything
that was not needed, from the network layer down, giving
us an efficient, scalable and high-fidelity simulator.

Of the simulators mentioned above, only PeerSim can
scale to millions of nodes, but it requires code in java which
might limit the ability to port the code to a real implemen-
tation, or vice versa. The emulator approach by Kato and
Kamiya [15] uses java as well, but is at the other end of the
spectrum offering high fidelity with real code, but is severely
limited in scalability (number of active nodes up to 1000).

MACE [16] is a compiler that outputs C++ source code
from protocol specifications. The output generated could be
compiled into a DVN module once the event callbacks and
datagram network interface are put in place. In DVN, we
have a single API to the simulation stack or the real network
stack, which can be viewed as a simple MACEDON [37] API.
While DVN does not compile protocol code, it can import
the code from another implementation for simulation.

2.4 Emulators and virtual machines
VCSTC [39]: The Virtual Cyber-Security Testing Capa-

bility (VCSTC) is intended to test the operational functions
and security impacts of a given network device. VCSTC
then simulates the network environment in which the device
will be deployed, which could include large scale networks.
While reusing the VCSTC infrastructure would be possible,
it would imply major retooling of the architecture to move
the focus from a device under test to the behavior of the net-
work itself. VCSTC uses nodes emulated inside of virtual
machines to generate the test traffic. In our case, such an
architecture would not scale up to the level that we needed.

DETER Test Bed [2]: The Cyber DEfense Technology Ex-
perimental Research (DETER) Network is based on a large
number of physical and virtual nodes, built on the emulab
platform. It allows the execution of actual malware on nodes
with a very small likelyhood that the malware would detect
that it is not running in the virtual world. The experiments
allows researchers to gather empirical evidence on how inter-
connected malware would interact. The test bed also allows
arbitrary topologies and could assist in network and security
experiments not necessarily involving active malware. This
configuration is very resource heavy and suffers from scal-

ability issues. Accurate results from running protocol im-
plementation can be obtained, but only on 1:10 or smaller
models of the network.

3. ARCHITECTURE

3.1 Overview
The DVN simulator is composed of a central engine im-

plementing conservative discrete event scheduling with non-
blocking events. Simulations are directed from a distributor
that can dispatch tasks to separate processes. The distribu-
tor computes a safe windows that allows each process to run
a group of nodes in parallel. The scheduler supports plug-
gable run-time library modules that implement the protocol
stacks. Those modules, written in C/C++ allows porting of
communication protocols directly from the released imple-
mentation enabling a high fidelity representation of the real
network. Such a tool could be important to the security
analysis on current distributed systems where subtle pro-
tocol behaviors can be important. The network topology
is composed of networks with predefined statistical delays
and packet losses. Those networks are interconnected with
to each other with links having their own delay and packet
loss characteristics. The simulation scripts loaded by the
simulator allows dynamic creation of nodes and networks.
The logging mechanism is centralized and allows the proto-
col implementation to output their own logging metrics for
maximum flexibility. A side effect of the fidelity requirement
is that the nodes are running in the context of the simulator
in the user space process and they have access to the process
I/O as well. Thus, they are allowed to direct their output to
files of their choosing in addition to using the SVN logging
interface.

3.2 Event Scheduler
DVN’s scheduler is a variant of a conservative calendar

queue[5]. The master instance of DVN spawns one or more
worker instances as separate processes. The master instance
only coordinates events by using its master event scheduler.
Each worker instance gets a copy of the scheduler, and resyn-
chronizes the differences after a run for a safe period of time.
The scheduler has a tunable time slot granularity, typically
set to one millisecond thus all events are approximated to
the nearest millisecond. Inserting an event is done by first
hashing the current time slot to a key in our hash table. If
there are multiple time slots in a single hash table bucket, a
simple minimum heap is used to identify the correct one in
O(log(1 +α)), where α is the ratio of keys to the size of the
hash table. Finally, a simple dynamic array is used to keep
track of all concurrent events in a single time slot. DVN uses
another minimum heap to keep track of all the time slots,
allowing for retrieval of the next time slot in O(logn) for n
occupied time slots on the scheduler. The overall structure
for event insertion and lookup is shown in figure 1.

3.3 Parallel and Distributed Simulation
For large simulations, DVN can distribute the work load

between multiple processors running parallel instances of
DVN. The master DVN instance divides the current sim-
ulation into sections containing an equal number of nodes
which are then sent to each DVN worker through the Simula-
tion Distributor as illustrated in figure 2. Each DVN worker
instance loads the module libraries that contain the imple-

Figure 1: DVN’s event scheduler

mentation of the protocol. The Simple Network Routing
Interface (SNRI) layer resides between the protocol imple-
mentation and the network stack, providing event callbacks
and datagram messaging services. DVN supports two mod-
els of data gathering; logs can be made from the central
dispatcher or individual modules can log events based on
their own internal states.

Figure 2: DVN’s Architecture

3.4 Simple Network Routing Interface (SNRI).
SNRI defines a simple set of inbound/outbound opera-

tions on a DVN module. It allows the protocol implemen-
tation to set callback events or send datagrams to a remote
host. When an event is triggered or a message received,
SNRI makes the appropriate calls into the module library.
SNRI was designed to be simple to enable rapid develop-
ment and testing of a protocol implementation. Using a
lightweight wrapper, the protocol code can then be deployed
on a real network stack. This allows for the identical code
to run both on DVN and on a real network.

3.5 DVN Modules
Virtual nodes running in the simulator communicate asynhron-

uously with the underlying simulated network layer. This
avoids the potential use of blocking calls that could cause
a DVN worker to halt. An incoming datagram for a node

instance will trigger a callback function to allow the node to
process it. Global variables within a module can be safely
used as long as they are registered via SNRI, which will then
allow DVN to track those variables as part of the current
node’s state and swap those in prior to running that node’s
logic. Because DVN can load more than one module in a
given simulation, it allows a user to create a heterogeneous
network with multiple variants of a protocol, or even com-
pletely different protocols. This feature is an important tool
to study application layer protocols such as overlay network
protocols.

The porting process from a real world implementation to
a dvn module requires some effort, but SNRI was designed
to streamline the process. The original protocol source code
should be in C/C++ to be able to link against SNRI. The
isolation of the communication protocol is done in four main
steps. First, the algorithm is extracted by removing the up-
per application layer, including the Graphical User Interface
if any. Next, the lower network layer is substituted with
the SNRI layer. Since SNRI provides a datagram interface,
the porting effort from UDP to SNRI should be minimized.
Next, the program flow might need to be adapted to run on
top of the callback system. SNRI does not provide blocking
calls in order to ensure that a virtual node safely coexists
in a process with other node instances, so the protocol algo-
rithms have to use an event callback approach. Finally, the
global variables have to be registered with SNRI to allow
DVN to track an individual node’s state.

3.6 Logging.
The ability to gather meaningful statistics for the simula-

tion results is one of the key components of a simulator [24].
DVN provides a central logging mechanism that can save
events in ASCII text format or binary format. Individual
modules can log events based on their internal states, or
DVN can log events from the simulation itself. The statis-
tics collection methods are left to the module developers in
order to ensure maximum flexibility in terms of the type,
frequency, and amount of data meaningful to the analysis of
the simulated network. Future plans include a direct con-
nection to a database for centralized logging to help in data
analysis without compromising on flexibility.

3.7 Network Model.
DVN is intended to support simulations for application

layer overlay protocols and thus only models the underlying
network with delays and reliability. It allows for a coarse
granularity topology definition of small networks intercon-
nected into a larger network with multihop paths being ap-
proximated with a single delay and reliability model. The
model includes a base delay, a width and a long tail allow-
ing a small number of packets to be delivered with very long
delays to match the reported end to end delay measure-
ments [4][3][31]. Using the DSIM language, separate net-
works can be created as an event during the simulation and
those networks can be connected at anytime using events as
well. This model was chosen to provide an adequate abstrac-
tion to avoid burdening the user with specifying all possible
links in the system.

3.8 Simulation Description Language (DSIM).
To aid in the simulation setup, DVN provides a mini

scripting language called DSIM, which is built using Flex [10].

DSIM is a simple language used to model simulations within
DVN by defining events. It describes all components in-
volved in a DVN simulation: network topology using net-
work creation events, node instantiation events, network
events, and simulation timing with start and stop events.
The language allows creations of small interconnected net-
works, and the specification of the delay models withing
those networks. The network definition allows hierarchical
networks analogous to the AS-level topology of today’s In-
ternet. Scripting commands are available to allocate and
introduce nodes into the network by dynamically loading
modules described in the porting process above. All events
have a time stamp allowing the simulation to alter the net-
work topology at any time to simulate large-scale network
events. The language also supports simultaneously loading
multiple modules to allow for heterogeneous systems that
have multiple types of nodes.

3.9 DVN in parallel and distributed mode

Basic Layout.
DVN is designed to support parallel and distributed sim-

ulations by using a simple master-worker model between a
single master synchronization process and worker processes
running subsets of the simulation. The master of a sim-
ulation is responsible for assigning virtual nodes to actual
DVN worker instances running the simulation. It then dis-
tributes the events for relevant virtual nodes to the assigned
DVN workers. Each worker keeps track of local events and
communicate events that affect nodes on remote workers by
talking directly to those parallel instances. The master is
responsible for synchronizing all the workers by computing
and sending a safe simulation window to all workers and
waiting for them to complete before starting the next time
slot.

Paralell and Distribution System.
Each worker system talks to the master for synchroniza-

tion, and talks to every other worker directly to communi-
cate network events. The master dispatches events that in-
dicate simulation events such as nodes join and the workers
each manage the raw handles to the node instances. As the
simulated node process their individual events,they create
packets and timed event, those are tracked and processed
by the worker. Packets sent to nodes that resides on re-
mote processes will be sent directly to those processes after
the appropriate process has been resolved from the destina-
tion address of the packet. In this way, DVN limits potential
simulation overhead by allowing the workers to directly com-
municate only when they need to. Once all events for a given
simulation time have been completed, the master engages all
the workers to begin processing the next safe time window.

Event cone worker node decoupling.
In order to determine events that are safe to process in

parallel, in DVN we introduce a model where the master
computes a safe execution window for all worker instances,
based on the network delay. The core idea is that events
generated on a node will take a minimum delay to get to
the destination. Thus, in the meantime a remote worker
process can safely run in parallel until the time when it will
be affected by the generated event. This model is analo-
gous to the special relativity light cone as defined in Lorenz-

Minkowski geometry [22], where a subject will not experi-
ence an event from a remote source sooner than the time
taken for light to travel from the source to the subject.

Consider G to be the set of all networks in our simula-
tion, with each network having a network model specifying
a mean delay, d and a width δd. We define τ = d− δd to be
the fastest that a packet can move from a node to another
node within the same network. In other words, packets will
arrive no sooner than t + τ at the destination, for a packet
sent at time t. Thus,

∀i ∈ {1, ..., |G|}, τi = di − δdi

Our safe window is defined by w,

w = t+min(τi), where t is the current virtual time.

The events in the scheduler are sorted by time and the mas-
ter scheduler checks the time window of events that are
safe to process before dispatching those windows to parallel
workers.

DVN Worker Instance.
To manage its internal events, each worker maintains a

scheduler for packets, a scheduler for timers, and a scheduler
for DSIM events that include a portion of nodes that will
be created on a particular worker following the simulation
script. At each synchronization step, the worker is given a
time segment to process from the master and notifies each
scheduler to process all events within that window.

DVN executes directly the module code as a library and
thus allows calls to the system I/O. Using this property, a
bridge module can be created with a dual stack; one talk-
ing on DVN using SNRI, and the other talking over a real
IP stack. That bridge module can act as a NAT router
and forward requests from the real world into the simula-
tor after stripping the appropriate headers off. This method
allows the validation of the protocol implementations run-
ning in the simulator, allowing a greater fidelity to the real
world. In this configuration, the bridge module will have
to compensate for the difference between the wall time and
the simulation time prior to injecting messsages between the
two networks.

4. SIMULATING THE KAD NETWORK ON
DVN

The Kad network is a large deployed peer-to-peer dis-
tributed hash table [40]. The network hosts over a million
nodes on average and can be accessed various clients, one of
them being aMule [1]. To the best of our knowledge this net-
work has never been simulated on a very large scale. There
has been reported performance issues with this network [41].
Some of the proposed fixes would require varying levels of
client modification and could potentially have serious side
effects if released alongside ”broken” clients. This makes it
a very interesting study subject for large scale simulations
on DVN. We used the original aMule code base to extract
the Kad Distributed Hash Table engine as a stand alone ex-
ecutable first. Then we ported it to a DVN module. To
ensure correctness we verified that the behavior of the Kad
module on DVN matched the one of the real Kad nodes on
a physical network.

4.1 Porting Kad
We used aMule v2.1.3 and isolated the Kad protocol im-

plementation by removing the graphical user interface, re-
sulting in a stand alone executable that can be used as the
reference implementation when testing the network behav-
ior. We then used the stand alone protocol implementation
and replaced system calls made to the operating system with
DVN functions including those to send and receive packets.
Since both of those network functions operate on basic data
structures, the porting process was relatively simple. Such
a process is outlined in figure 3. All references to the system
time were changed to references to the virtual DVN time.
The memory management of Kad was done using static and
global variables. This was changed to reside within a single
global structure that is allocated at initialization time and
passed to the simulator as part of the node initialization pro-
cedure. DVN then tracks the global variables for each node
automatically, ensuring that each node’s state is available
when the code for that node is running.

Figure 3: Summary of the porting process of the
Kad protocol implementation to run on DVN

After the Kad protocol implementation was ported and
running, we found the simulation runs to be slow. This
wasn’t an issue with DVN, but rather the Kad module it-
self. The original implementors had only intended one copy
of this software to run per machine. After the porting pro-
cess, a virtual Kad node was still consuming a lot more
CPU and memory resources than a module developed from
the ground up for DVN. When simulating around 105 nodes,
bottlenecks started to become evident. The Kad implemen-
tation had timers that were checked very frequently for ex-
piration. We changed the Kad node to use callback mecha-
nisms instead of a frequent polling. Additionally, Kad was
allocating three very large static buffers to hold the textual
results of searches, which were not needed in our simulations
and were therefore removed. After those fixes we found that
the memory consumption went down and the simulated mes-
sage rates improved.

4.2 Evaluation
We evaluted the correctness and performance of DVN by

comparing the behavior of the virtual network to experi-
ments using real kad nodes in a controlled environment.

4.2.1 Simulation and real word
To verify the correctness of DVN, we compared the net-

work behavior of virtual Kad nodes running on DVN with

real nodes running in a controlled network. In this exper-
iment, we ran 3,000 virtual nodes for two virtual hours on
DVN and we ran 3,000 real Kad nodes on a separate testbed
(call it Itlabs), consisting of 14 actual machines running sev-
eral hundred instances of real nodes. Each real node had a
unique ID, and were using different UDP ports. Figure 4
shows the number of lookup messages 1 sent per 60-sec win-
dow. The virtual DVN Kad nodes and real Itlabs Kad nodes
exhibit the same behavior. An average latency of 250ms was
used in the DVN simulations. Measurements carried out by
Leonard and Loguinov [17] mentions latencies around 200ms
between DNS servers. Thus for end users we chose a 250ms
delay and verified that our simulations agreed with the real
world experiments.

4.2.2 Symmetric Links
We compared the memory footprint between running a

Kad node on a normal machine and running it on DVN.
1000 nodes are created in DVN and run for 30 virtual DVN
minutes. The peak traffic happens 200 seconds in the sim-
ulation. The virtual memory usage for DVN at that point
was 43.1 MB. The same experiment was performed, deploy-
ing 1000 Kad nodes on a single machine and letting them
run for 30 minutes. During the peak traffic time, each Kad
node was using about 1.5 MB for a total of 1.5 GB of virtual
memory for 1000 Kad nodes deployed on a single machine.

We looked at the global behavior of a small virtual Kad
network over time. Figure 5 shows multiple snapshot of the
global connection map. The nodes’ routing tables are dis-
played as rows with “hotter” colors indicating a higher den-
sity of nodes appearing in routing tables around that region.
The nodes were sorted by hash IDs to reveal the XOR-metric
connections of the Kad network. The bright vertical streaks
on the plot indicates initial bootstrapping nodes that are
very popular since they were in the network first and were
used to bootstrap new nodes in the netwok. The diagonal
blocks indicates nodes keeping other nodes with a close hash
ID in buckets within their routing tables.

A symmetric link is where node A has node B in its rout-
ing table and node B also has A in its routing table. We
want to know the percentage of symmetric links in a Kad
node’s routing table. This allows us to determine whether
the Kad network is symmetric or asymmetric. We expect
that the Kad network, due to its design, would be mostly
symmetric, because each node would be added in the same
bucket at the appropriate level of the routing table.

Finding the number of symmetric links in a routing table
involved having access to both a node, its routing table, and
the nodes in the routing table. This would be hard to eval-
uate on the real network as we do not control all the nodes;
our real deployment is limited to 16,000 nodes. Crawling
the whole Kad network and polling every node’s routing ta-
ble is possible but would involve a substantial bandwidth
cost and would not result in an instantaneous snapshot of
the network, since it would take on the order of one hour at
100Mbps to poll every node’s routing table. By that time,
the earlier nodes that were polled would have had their rout-
ing tables changed due to churn. Moreover, deriving the per-
centage of symmetric links analytically is difficult due to its
dependence on network dynamics, mostly node churn again.
Thus, simulation was the most feasible way of quantifying

1These lookup messages are used to maintain nodes routing
tables.

0 20 40 60 80 100 120
0

5

10

15

Time (Minutes)

N
u

m
b

e
r

o
f

L
o

o
k
u

p
 M

e
s
s
a
g

e
s

DVN

Itlabs

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

Time (Minutes)

N
u

m
b

e
r

o
f

L
o

o
k

u
p

 M
e

s
s

a
g

e
s

DVN

Itlabs

(a) 2 hours (b) 20 minutes

Figure 4: Kad node network behavior measurement

(a) initial (b) 1 hour (c) 3 days

Connection map of a 50,000 node simulation sorted by node hash IDs. At time t=0, t=1 hour and t=3 days. The warmer colors

indicate a higher density of nodes present on routing tables. The checkered pattern along the diagonal is caused by the Kad buckets

where nodes keep track of other nodes close to their hashes. The popular nodes appear as vertical streaks.

Figure 5: Global view of a sample Kad network experiment sorted by hash ID

how symmetric the Kad network actually is. We found that
the percentage of symmetric links in our simulated environ-
ment is 53%. Thus, for a particular node A, about half of
the nodes in its routing table also have point to A in their
routing table.

4.3 Heterogeneous Kad Simulation
To ensure greater flexibility within simulations, DVN sup-

ports heterogeneous nodes within a single simulation. In this
experiment we ran 200 Kad nodes over 30,000 seconds. Half
of these nodes ran our standard Kademlia module, while
the other half ran a modified version. This modified version
was programmed to stop responding to network activity at
15,000 seconds, emulating a packet dropping attack by mul-
tiple nodes. Figure 6 presents measured the routing table
changes of a single node, while Figure 7 shows the number
of different messages sent and received. Interestingly, rout-
ing table size does not change for about 5,000 seconds after
the modified nodes died, meaning that it takes more than
5,000 seconds to stabilize the routing table. The latter fig-
ure shows that the number of outgoing messages increases,
while the number of incoming messages decreases showing
that unresponsive nodes had a noticeable impact during the
time interval.

Figure 6: Kad node network behavior measurement

Figure 7: Kad node network behavior measurement

5. PERFORMANCE

5.1 Scalability with Kad nodes
Our test platform included a DELL PowerEgde 6950 with

4 dual-core AMD 8216 (2.4GHz) CPUs and 16GB of RAM.
We ran DVN with the Kad module, logging output serially
to a file. We generated DVN simulation (DSIM) files for
1,000, 5,000, 10,000 and 20,000 nodes. Each of the simula-
tions were on a single simulated network with 250ms latency
for message delivery and no dropped messages. The boot-
strap set consisted of 10 interconnected nodes. Then the
rest of the nodes were added in batches of 300 nodes at a
time, using any of the nodes in the aforementioned set as a
bootstrap node. We were able to successfully perform sim-
ulations of 200,000 Kad nodes on this machine. Maximum
memory usage during this simulation was 10 GB or 50 KB
per node. We were able to simulate 14 DVN hours in 77.4
hours – a slowdown of 5.5 times. While this is slower than
realtime, it is expected for such a large simulation.

Figure 8: DVN Performance (messages) for 1, 5, 10
and 20 thousand Kad nodes

Figure 9: DVN Performance (virtual time speedup)
for 1, 5, 10 and 20 thousand Kad nodes

The output logs were divided into windows of 100 DVN
seconds. The number of messages sent in each 100-seconds
window was recorded and plotted as the simulation pro-
gressed, as shown in Figure 8. These messages include“Hello”,
“Kademlia” and “Bootstrap” messages and are used for dis-
covering the network. The initial spike is due to the boot-
strapping nodes discovering the network. The periodic waves

(a) Actual completion time (b) Time spent in user space (c) Time spent in system calls

Figure 10: Time to complete a simulation and number of parallel processes used

are due to various routing table maintenance messages. We
also measured the amount of time required to process each
of those 100 DVN second time slots and plotted them as
the simulation progresses as shown in Figure 9. It is clear
that the processing time is directly proportional to the num-
ber of messages being transmitted within the system. The
number of messages is directly proportional to the number
of nodes being simulated. Message transmission events are
visible only when large traffic spikes are observed and those
become the dominant factor affecting network performance.

The overhead incurred by the DVN simulator is relatively
small compared to the resource consumption of the actual
Kad nodes. The actual DVN architecture requires less than
30 MB. The rest of DVN’s memory consumption depends on
the nodes’ state and the network traffic, since the scheduler
will need to hold on to the packets until delivery. Thus, the
memory requirement is dependent on the number of nodes,
the number of packets and the size of those packets. In
our overhead estimation experiments, we ran between 1000
and 1500 nodes at 100 nodes increase per experiment. The
memory consumption on the heap was noted for each exper-
iment. We were able to estimate that the memory consump-
tion for each Kad node on a small simulation was about 165
KB on average. This number goes up with larger networks
since each node has a larger routing table that occupies more
space. The complete resulting overhead of DVN including
memory used to hold all messages during transit was found
to be less than 30%.

5.2 Scalability using multiple processes
DVN leverages the common multicore architecture of mod-

ern processors by distributing the work between multiple
parallel instances. On a single machine, it forks multiple
worker processes and manages the Inter-Process Commu-
nication (IPC) with a section of shared memory. We ran
simulations on multiple platforms using between 1 and 14
parallel intances of DVN workers and measured the time
taken to complete those simulations. We ran our tests using
a simulation generating a large number of events per sim-
ulated millisecond. This would create the same conditions
for the scheduler as a large simulation would. The module
that generates those events was kept as simple as possible
so that the computation of the scheduler would dominate,
allowing us to benchmark it appropriately. We ran the same
simulation on three platforms while being careful not to ex-
ceed the amount of physical memory on those platforms to
avoid memory paging costs. The platforms were as follows:

• Single processor, single core AMD Athlon 64 3200+ at
2.0 GHz with 4GB of memory, named “1core”

• 8 virtual core instance on Amazon Elastic Compute
Cloud (20 EC2 compute units), with 7GB of memory,
named “ec2 8core”

• 8 core (dual processor, quad-core) Intel i7-920 at 2.6
GHz with 6GB of memory, named “real8”

The results are shown in Figure 10. As expected, in Fig-
ure 10 (a), the “1core” machine performs the worse. It
showed no significant gains from using more than one worker
instance. The multi-processor machines saw significant gains
until 5 parallel instances were used. At which point, the
master scheduler was spending more time to distribute events
to instances, and many instances had to wait for others to
complete their current time slice, even with decoupling en-
abled. This behavior is evident in Figure 10 (b) where there
is a jump time spent by the user processes on a simulation
with 5 or more parallel worker instances and some of them
have to wait for other instances to complete. The simulation
on EC2 behaved in a manner very similar to a single core
machine, even though it had 8 virtual cores. That behavior
might be due to the way the hypervisor allocates computing
resources. Figure 10 (c) shows the amount of time spent in
system calls. With increasing parallel instances, there are
more accesses to the shared memory segment, along with
locking and unlocking of the relevant portions for a write
event. The simulation on EC2 again shows a peculiar shape
that could be attributed to the hypervisor’s behavior.

Figure 11 shows the time to complete a simulation with
50,000 Kad nodes on an 8 core machine against the number
of parallel worker instances. A noticeable bump can be see
when we use more than 8 instances on an 8 core machine
as we run out of parallel processors to support the parallel
worker instances.

6. DVN V/S WIDS
A simulator with similar requirements as DVN is WiDS[20],

a toolkit aimed at facilitating the development and debug-
ging of distributed system. It can operate in a distributed
fashion and has been reported to run very large simulations
on the order of 106 virtual nodes built for WiDS, using hun-
dreds of machines in a distributed simulation. DVN and
WiDS share very similar design characteristics and WiDS
has been known to be very scalable, given enough process-
ing power. In that respect, it is the current state of the art,
making WiDS a very good comparison point for DVN. There

Figure 11: 50,000 node virtual Kad network with
multiple worker simulator processes

are some differences that make DVN more flexible and more
efficient than WiDS, making DVN better suited for large
scale modeling of networks with heterogeneous nodes.

6.1 General Architecture Comparison
Event Scheduler DVN and WiDS use a similar construc-
tion for the event scheduler. WiDS uses a C++ map for all
the time slots it is tracking, and DVN uses a combination
of a hash table and a binary tree to resolve collisions in in-
dividual entries of the hash table. WiDS then uses a linked
list to track individual events within a time slot. DVN uses
an array that grows dynamically. When a particular time
slot is processed, DVN can free a large array very effectively.
Because the hash table starts with a large number of entries,
the constant time lookup dominates for most simulations.

Although WiDS has a conservative scheduler, it intro-
duces the “Slow Message Relaxation” (SMR) which is an
optimistic strategy. With SMR, the distributed simulation
running on a parallel instance will try to go ahead for a
window of virtual time, even if that window has not been
identified as safe. If that parallel instance is given a mes-
sage with a timestamp for which the local simulation has
exceeded, WiDS identifies the message as a “Slow Message”
and simply overwrites the message’s timestamp to the cur-
rent time. While this avoids state conflicts that would cause
a rollback, a large number of Slow Messages could affect the
statistical properties of the network model. DVN ensures
that windows provided to its parallel instances is safe by
using message delays in the Event Cone Decoupling mecha-
nism.

Modules DVN uses dynamic libraries for its node modules.
With the dsim language to run the simulations. Dsim allows
a user to run instances of multiple modules implementing
multiple protocols in a single simulation. Those modules are
loaded dynamically as instances of those nodes are created
following the script inside the dsim file. WiDS runs the
node itself, with a modified lower layer allowing for multiple
instances of the same node, but precluding node diversity.

Events Events on both DVN and WiDS can be divided
into two categories: network and callbacks events. Callback
events are inserted directly at the target time on the sched-
uler and network events are inserted with an added delay
calculated using the topology of the network between the
sender and receiver nodes. The events are dequeued at the

proper time and dispatched to the destination virtual node
for processing. With both types of events going through the
scheduler, the efficiency of the scheduler is of great impor-
tance.

Topology Because of DVN emphasis on performance and
scalability network events are simulated at the application
layer above the OSI layer 4 (Transport). DVN assigns all
nodes a virtual IP address. Each node in a DVN simula-
tion is placed into a network. Each of these networks has a
user specified delay and packet success rate. networks can
be connected to one another by specifying the interconnect
delay and inter network packet success rate. The resulting
topology is similar to the AS level graph, with DVN ab-
stracting intra-AS communication with a single delay/loss
model. WiDS models the network topology by specifying
every single necessat edge between communicating virtual
nodes in the network. This requires n2 connections for an
n node simulation, or an a priori knowledge of the nodes
that will talk to each other. Additionally, as the simulation
size grows, the description of the network becomes a chal-
lenge and the parsing time for the simulation file increases,
affecting the start time.

Parallel Simulation To achieve greater scalability DVN
can distribute parts of the simulation to parallel instances
with state synchronization over a shared memory link. A
master instance reads the simulation script and allocates an
equal number of nodes for each dvn worker connected to it
and forwards the network topology along with the nodes.
The master node then tracks the time slots and orchestrates
the workers who track their own event lists. During the sim-
ulation of a given time slot, if a node on a dvn worker needs
to send a message to a node residing on another dvn worker,
the communication happens over the physical network con-
necting both workers.

6.2 Empirical comparison
We evaluate the performance of DVN and WiDS based

on the number of nodes, the number of messages, individual
message sizes and general memory overhead. For these tests
we wanted to mimic the behavior of a simple peer-to-peer
network. Both modules would start by sending a message
to a single bootstrap node. After receiving a response from
the bootstrap, nodes send messages to a randomly chosen
node within the simulated network. Nodes send messages at
specified intervals using the delayed callback mechanism on
both simulators. The contents of the data packets was gen-
erated randomly. The size of each packet was configurable
within the test module. The tests were ran on a single ma-
chine. Our testbed consisted of a 2.0GHz Pentium 4 desktop
with 1 GB of ram running Windows XP Professional SP2.
All tests were run on the Windows operating system. DVN
tests were compiled using cygwin version 2.573.2.2. WiDS
was compiled using Visual Studio 2008. In both instances,
the compiler optimizations were turned on and debugging
and profiling turned off.

Figure 12a shows the result of running experiments with
varying message lengths and varying number of messages per
simulation. For this experiment we ran 10,000 nodes under
a varying message loads. It is apparent that the length of
the messages affects the performance of the simulation due
to memory allocation, and populating the messages with
data. In the plot, we show that DVN can process a system

(a) 10,000 nodes for 2 hours (b) 25.7 million messages sent by a varying amount of nodes

Figure 12: WiDS and DVN Comparison

sending 500 bytes messages at the same speed WiDS can
process a system with 5 bytes messages. Furthermore the
DVN system sending 5 byte messages runs about four times
faster than WiDS under the same conditions.

The second experiment in Figure 12b compares the impact
of the number of nodes on both WiDS and DVN. For this
test we fixed the number of messages at 25.7 million. Dur-
ing our test simulations DVN ran in constant time regardless
of the amount of nodes simulated. Since the computation
time on DVN is dominated by the scheduler, i.e. assuming a
relatively small processing time on our simple test module,
this is expected behavior. Both tests degrade linearly as the
number of messages increase. Although the number of nodes
do not affect performance significantly, WiDS has some ex-
tra degradation as the number of nodes increases. An inter-
esting note on the plot is the higher simulation time for a
small network of 10 nodes. At this scale, the node’s process-
ing code dominates over the scheduler code and causes the
spike.

6.3 Discussion
While DVN and WiDS achieve somewhat similar goals,

programming for and working with them has some prag-
matic differences. To send datagram messages within WiDS
one allocates a buffer of type WIDSBuffer. The actual size
of this buffer is set within a configuration file. This is the
same configuration file that WiDS reads node information
from when starting a simulation. Within DVN a buffer of
the standard C type char is used to send messages. The
effect of this that DVN can choose its buffer size dynami-
cally, during runtime. A WiDS programmer must input the
size of the largest buffer that will be needed into the con-
figuration file. This can lead to a large performance hit in
certain circumstances. In our original experiments, WiDS
was running an order of magnitude slower than DVN until
we noticed this configuration option.

WiDS stores configuration files in xml format. While this
is it easy to read, it causes a one time performance hit at
the start of the simulation. To ensure a fair comparison, all
times reported in Figure 12 exclude this load time. Each
node and each network link needs to be described individu-
ally, making it inconvenient to run large simulations of over
10,000 nodes.

The dsim language created for DVN allows the description
of individual nodes, but allows groups of nodes to be created

as well. To avoid abnormal spikes due to the instantaneous
creation of a large number of nodes, DVN will spread the
node creation based on parameters specified in the dsim in-
put. As a result, the configuration times for DVN were very
small, even for large simulation of 106 nodes.

7. CONCLUSION AND FUTURE WORK
DVN is a very scalable high fidelity network simulator sup-

porting real world implementation of application layer pro-
tocols, inluding peer to peer networks. It provides a flexible
platform that can be used to quantify network performance
and degradation due to attacks, as well as the effectiveness
of countermeasures in a reproducible manner. Dsim files
and modules can be easily distributed to the community for
simulations in a reproducable manner. Distribution of the
module code to developers can ensure a cross compilation
to their platform of choice for a real world implementation
of algorithms and countermeasures.

There are some optimization still possible with DVN. Op-
erating with parallel instances using shared memory cur-
rently works well, but our implementation that uses the
same algorithms over a network for distributed simulations
has shown to be dificult. While distributed simulations are
currently possible, we still need to make the scheduling and
synchronization system more robust. Simulating churn with
nodes entering and leaving the network is an important part
of the simulation. Currently, the dsim language does not in-
clude nodes leaving the network. While that behavior can
be embedded in the module code, it would be cleaner if han-
dled by the master script. Finally, the topology modeling is
a simplified version of today’s network. Different link char-
acteristics can happen even with a single autonomous sys-
tem. A finer granularity of the network model would allow
researchers an even higher fidelity simulation than is now
provided.

8. REFERENCES
[1] aMule network. http://www.amule.org.

[2] T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph,
K. Sklower, R. Ostrenga, and S. Schwab. Experience
with DETER: A testbed for security research. In 2nd
International Conference on Testbeds and Research
Infrastructures for the Development of Networks and

Communities, 2006. TRIDENTCOM 2006, page 10,
2006.

[3] J. Bolot. End-to-end packet delay and loss behavior in
the Internet. In Conference proceedings on
Communications architectures, protocols and
applications, page 298. ACM, 1993.

[4] C. Bovy, H. Mertodimedjo, G. Hooghiemstra,
H. Uijterwaal, and P. Van Mieghem. Analysis of
end-to-end delay measurements in Internet. In Proc.
of the Passive and Active Measurement
Workshop-PAMâĂŹ2002, 2002.

[5] R. Brown. Calendar queues: a fast 0(1) priority queue
implementation for the simulation event set problem.
Commun. ACM, 31(10):1220–1227, 1988.

[6] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman. PlanetLab: An
Overlay Testbed for Broad-Coverage Services. ACM
SIGCOMM Computer Communication Review,
33(3):00–00, July 2003.

[7] J. Cowie, H. Liu, J. Liu, D. Nicol, and A. Ogielski.
Towards realistic million-node internet simulations. In
International Conference on Parallel and Distributed
Processing Tech- niques and Applications (PDPTA),
1999.

[8] J. Cowie, A. Ogielski, and D. Nicol. The SSFNet
network simulator. Software on-line: http://www.
ssfnet. org/homePage. html, 2002.

[9] DHTSim. http://www.informatics.sussex.ac.uk/
users/ianw/teach/dist-sys.

[10] Flex. http://flex.sourceforge.net/.

[11] R. Fujimoto. Parallel discrete event simulation. In
Proceedings of the 21st conference on Winter
simulation, page 28. ACM, 1989.

[12] R. M. Fujimoto. Network Simulation (Synthesis
Lectures on Communication Networks). Morgan and
Claypool Publishers, 2006.

[13] R. M. Fujimoto, K. Perumalla, A. Park, H. Wu, M. H.
Ammar, and G. F. Riley. Large-scale network
simulation: How big? how fast? In IEEE International
Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2003.

[14] A. Haeberlen, A. Mislove, A. Post, and P. Druschel.
Fallacies in evaluating decentralized systems. In
International Workshop on Peer-to-Peer Computing,
2006.

[15] D. Kato and T. Kamiya. Evaluating DHT
Implementations in Complex Environments. In
Proceedings of the International Workshop on
Peer-to-Peer Computing, 2007.

[16] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala,
and A. M. Vahdat. Mace: language support for
building distributed systems. In ACM SIGPLAN
conference on Programming language design and
implementation (PLDI), 2007.

[17] D. Leonard and D. Loguinov. Turbo king: Framework
for large-scale internet delay measurements. In
INFOCOM 2008. The 27th Conference on Computer
Communications. IEEE, pages 31 –35, apr. 2008.

[18] M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S.
Gray. Simulating realistic network worm traffic for
worm warning system design and testing. In WORM

’03: Proceedings of the 2003 ACM workshop on Rapid
malcode, pages 24–33, New York, NY, USA, 2003.
ACM.

[19] S. Lin, A. Pan, R. Guo, and Z. Zhang. Simulating
large-scale p2p systems with the wids toolkit. In IEEE
International Symposium on Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, 2005.

[20] S. Lin, A. Pan, Z. Zhang, R. Guo, and Z. Guo. WiDS:
an integrated toolkit for distributed system
development. In Hot Topics in Operating Systems,
2005.

[21] P. Maymounkov and D. Maźıeres. Kademlia: A
Peer-to-Peer Information System Based on the XOR
Metric. In International Workshop on Peer-to-Peer
Systems, 2001.

[22] C. Misner, K. Thorne, and J. Wheeler. Gravitation.
WH Freeman & co, 1973.

[23] S. Naicken, A. Basu, B. Livingston, S. Rodhetbhai,
and I. Wakeman. Towards yet another peer-to-peer
simulator. In International Working Conference on
Performance Modelling and Evaluation of
Heterogeneous Networks, 2006.

[24] S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai,
I. Wakeman, and D. Chalmers. The state of
peer-to-peer simulators and simulations. SIGCOMM
Comput. Commun. Rev., 37(2):95–98, 2007.

[25] Narses Network Simulator.
http://sourceforge.net/projects/narses.

[26] NeuroGrid. http://www.neurogrid.net.

[27] The Network Simulator - ns-2.
http://www.isi.edu/nsnam/ns/.

[28] The ns-3 Network Simulator. http://www.nsnam.org/.

[29] OverlayWeaver.
http://overlayweaver.sourceforge.net.

[30] P2PSim. http://pdos.csail.mit.edu/p2psim.

[31] V. Paxson. End-to-end Internet packet dynamics. In
Proceedings of the ACM SIGCOMM’97 conference on
Applications, technologies, architectures, and protocols
for computer communication, page 152. ACM, 1997.

[32] PeerSim P2P Simulator.
http://peersim.sourceforge.net.

[33] PlanetSim: An Overlay Network Simulation
Framework. http://planet.urv.es/planetsim.

[34] G. Riley and M. Ammar. Simulating large networks:
How big is big enough? In Conference on Grand
Challenges for Modeling and Simulation (ICGCMS),
2002.

[35] G. Riley, R. M. Fujimoto, and M. Ammar. A generic
framework for parallelization of network simulations.
In IEEE International Symposium on Modeling,
Analysis, and Simulation of Computer and
Telecommunication Systems, 1999.

[36] G. F. Riley, R. M. Fujimoto, and M. H. Ammar.
Network aware time management and event
distribution. In Workshop on Parallel and Distributed
Simulation (PADS), 2000.

[37] A. Rodriguez, C. Killian, S. Bhat, D. Kostić, and
A. Vahdat. Macedon: Methodology for automatically
creating, evaluating, and designing overlay networks.
In NSDI’04: Proceedings of the 1st conference on

Symposium on Networked Systems Design and
Implementation, 2004.

[38] M. T. Schlosser and S. D. Kamvar. Simulating a file
sharing p2p network. Technical report, Stanford Univ.,
2002.

[39] G. Shu, D. Chen, Z. Liu, N. Li, L. Sang, and D. Lee.
VCSTC: Virtual Cyber Security Testing
Capability–An Application Oriented Paradigm for
Network Infrastructure Protection. Testing of Software
and Communicating Systems, pages 119–134, 2008.

[40] M. Steiner, T. En-Najjary, and E. W. Biersack. A
global view of kad. In ACM SIGCOMM conference on
Internet measurement, pages 117–122, New York, NY,
USA, 2007. ACM.

[41] D. Stutzbach and R. Rejaie. Improving lookup
performance over a widely-deployed DHT. In
INFOCOM, 2006.

[42] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan,
D. Kostić, J. Chase, and D. Becker. Scalability and
accuracy in a large-scale network emulator. SIGOPS
Oper. Syst. Rev., 36(SI), 2002.

[43] W. Yang and N. Abu-Ghazaleh. GPS: A General
Peer-to-Peer Simulator and its Use for Modeling
BitTorrent. In IEEE International Symposium on
Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems, 2005.

