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Exploring In-Situ Sensing Irregularity
in Wireless Sensor Networks

Joengmin Hwang, Tian He, Member, IEEE, and Yongdae Kim, Member, IEEE

Abstract—The circular sensing model has been widely used to estimate performance of sensing applications in existing analyses

and simulations. While this model provides valuable high-level guidelines, the quantitative results obtained may not reflect the true

performance of these applications, due to the sensing irregularity introduced by existence of obstacles in real deployment areas

and insufficient hardware calibration. In this project, we design and implement two Sensing Area Modeling (SAM) techniques useful

in the real world. They complement each other in the design space. Physical Sensing Area Modeling (P-SAM) provides accurate

physical sensing area for individual nodes using controlled or monitored events, while Virtual Sensing Area Modeling (V-SAM)

provides continuous sensing similarity between nodes using natural events in an environment. With these two models, we pioneer

an investigation of the impact of sensing irregularity on application performance, such as coverage scheduling. We evaluate SAM

extensively in real-world settings, using testbeds consisting of 14 XSM motes. To study the performance at scale, we also provide

an extensive 1,400-node simulation. Evaluation results reveal several serious issues concerning circular models, and demonstrate

significant improvements in several applications when SAM is used instead.

Index Terms—Model, Irregularity, Event, Sensing, Coverage, Scheduling, Similarity
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1 INTRODUCTION

Wireless sensor networks are envisioned to support vari-
ety of applications such as military surveillance [3], [23],
habitat monitoring [5], [29], infrastructure protection [33]
and scientific exploration [31]. As a bridge to the physical
world, sensing is an indispensable element of many
sensor network systems. Compared to the diversified
solutions produced for communication among sensor
nodes, research on sensing coverage still has consider-
able room for improvement. One well-known but largely
ignored issue is sensing irregularity. It has been known
for years that sensing patterns are not regular [7], [11],
[12], [20], but researchers still continue to develop, sim-
ulate, and analyze sensor network protocols that utilize
a simplified theoretical sensing coverage model [1], [4],
[13], [16], [21], [28], [30], [34], in which the sensing
boundary is represented by a circle (a sphere in 3D)
centered by a sensor. We acknowledge that the results
based on this simplifying assumption could reveal high-
level insights, but that such assumptions often lead to
the all-too-common problem that solutions developed by
simulation and analysis do not work as expected in the
real world. Our work is motivated by the fact that it is
difficult to accurately characterize in-situ sensing areas
with theoretical models. For example, environmental
impacts (e.g., obstacles) can severely affect sensing char-
acteristics, causing irregular and non-uniform sensing
patterns at different sensor nodes. Since irregularity is
a common issue in sensor networks, it is unwise for
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developers to continue to ignore this reality. Our answer
to this issue is a sensing area modeling technique called
SAM, which consists of two complementary methods for
sensor area modeling.

• The first method, Physical Sensing Area Modeling
(P-SAM for short), features a novel way to use
training events in a controlled manner. The main
objective of P-SAM is to identify accurate non-
parametric sensing patterns (areas), that are close
to the on-the-ground truth. This is achieved by
capturing the time-space relationships of controlled
or monitored events and matching event positions
with event detection results of individual sensor
nodes. The resulting sensing area can be used to
optimize the performance of many applications such
as sensing coverage and event tracking.

• The second method, Virtual Sensing Area Modeling
(V-SAM for short), features a lightweight way to
model sensing relationship among sensors, using
only observations of natural events in the envi-
ronment. The main idea of V-SAM is to construct
and evolve over time a series of similarity graphs
among sensor nodes. These similarity graphs rep-
resent virtual sensing relationship among sensor
nodes, which can be used to improve the application
performance.

The main objective of this work is to develop two
complementary in-situ modeling technologies for appli-
cation designers to choose from. One can choose P-SAM
to obtain sensing areas for applications that demand
high-fidelity. A key challenge of P-SAM is to reconcile
the conflict between the in-situ modeling accuracy and
the related training cost. On the other hand, one can
choose V-SAM for applications that require continuously
remodeling with very low cost. The key challenge of V-
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SAM is how to efficiently utilize the limited information
available. In summary, our contributions in this work lie
in the following:

• Measurement: We investigate the realistic sensing
patterns in existing embedded devices under vari-
ous environmental settings, accessing the discrep-
ancy between theoretical assumptions and in-situ
measurements, revealing interesting observations.

• Modeling and Validation: We design and imple-
ment two event-driven sensing area modeling tech-
niques. In P-SAM, we can obtain the shape of a real
sensing area. In V-SAM, based on observation simi-
larity between nodes, we develop efficient coverage
scheduling algorithms to achieve desired sensing
quality under realistic settings. The performance
of V-SAM is examined using accurate information
obtained by P-SAM. We validate the accuracy of our
modeling approaches with 14 XSM motes, and an
extensive simulation with 1,400 nodes.

• Impact Analysis: Our results serve two research
purposes. First, SAM can be used to enhance the
accuracy of simulation, evaluating protocols in more
realistic settings. Second, SAM bridges the gap be-
tween theory and practice, integrating logical anal-
ysis with physical inputs. To our knowledge, this
work is the first to study the impact of sensing irreg-
ularity on a set of protocols, including area coverage
and point coverage. In these studies, we identify
several serious issues with the circular model, and
show improvements when SAM is used instead.

The rest of this paper is organized as follows. Section 2
describes the motivation behind our work from appli-
cation perspectives. We propose P-SAM and V-SAM in
Sections 3 and 4, respectively. Section 5 describes system
evaluations, and Section 6 concludes the paper.

2 RELATED WORKS

Several sensing area models are used to characterize
the sensing areas of individual nodes. One of the most
commonly used models is 0/1 disk model, which regards
a sensing area as a disk with a certain radius centered
on a sensor node. A sensor detects an event if it occurs
within the disk, and it does not detect an event if it
occurs outside of the disk. An enhanced disk model [2],
[22], [25], [26] is based on the assumption that an event
is more likely to be detected as it is closer to the sensor
node. Due to the simplicity of these models, they are
widely used for theoretical analysis and algorithm de-
sign. For example, many coverage scheduling algorithms
[1], [4], [13], [16], [21], [28], [30], [34] are based on 0/1
disk model.

The common feature of these earlier works is to rely
on a theoretical model to estimate sensing quality in
ideal environments and develop applications to meet the
required sensing quality. The assumption and its dis-
crepancy from the real environment are largely specified
as two parts. First, they do not consider such elements

in the realistic environment as obstacles. Second, they
often assume that they can obtain the key parameters
required for the model, i.e., a disk size of coverage. Sev-
eral projects [6], [10], [32] tried to calibrate real sensing
patterns to the standardized units. For example, sensor
array calibration based on constant target tracking was
proposed in [6]. The concept of macro-calibration for
localization was introduced in [32]. Auto-calibration for
acoustic sensor network was designed and implemented
in [10]. Overall, the objective of calibration is to obtain
mapping parameters to represent real world. However,
calibration in large-scale sensor network still has lots of
issues. In addition, it does not provide a general solution
to the performance degradation caused by obstacles, an
important factor in sensing irregularity.

Having observed the limitations of these simplifying
models, several pioneering projects have been proposed
to design algorithms and protocols [18], [19], [27] with-
out any prior assumptions on the sensing coverage.
Koushanfar et al. [18] proposed an energy efficient sleep-
ing coordination for environmental monitoring (temper-
ature sensor, humidity sensor, etc). Using the correlation
between sensor nodes, a model is constructed to predict
the values of some sensors from the values of other
sensors. Krause et al.[19] dealt with sensor placement
problems assuming no knowledge about sensing pattern.
Based on the data of sensing values, their algorithm
selects near-optimal locations of sensor nodes so that
the number of sensor nodes and the cost are reduced.
While both works show their effectiveness in dealing
with sensing irregularity, they are specific solutions on
a case-by-case basis. Instead, the objective of our work
is to provide a generic solution for sensing irregularity
that is directly comparable to the widely used circular
0/1 sensing model in the literature [1], [4], [13], [16], [21],
[28], [30], [34]. This work is an extended version of our
earlier paper [17]. In this extended version, we provide
new sensing coverage abstraction method, analyze P-
SAM overhead, and add another application related to
sensing coverage.

3 PHYSICAL SENSING AREA MODELING (P-
SAM)

In this section, we introduce the design of P-SAM. We
focus on static sensor networks (i.e., with no mobility),
which are the case for most existing deployed sensor sys-
tems [29], [31]. We first describe our design and analysis
as conceptually independent of the type of events used.
Later on, we use Passive InfraRed (PIR) motion sensors
as specific examples in P-SAM implementation.

3.1 Main Idea

The main idea of physical sensing area modeling is
to relate the location of events to the event detection
results of individual sensors. Events can be intentionally
generated in the space where the sensor nodes are
deployed, or we can monitor natural events and collect
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Fig. 1. P-SAM Architecture Fig. 2. Regular Training Fig. 3. Hierarchical Partition

Algorithm 1 Regular G(t) Process

Output: Pi: The sensing area of ni.
1: T = ∅ //an empty set of timestamps
2: repeat
3: An event e(t, p) is created at time t and location p(x, y)

according to G(t)
4: if node ni detects event e(t, p), i.e. Si(t, p) = 1 then
5: it stores the timestamp t into set T
6: end if
7: until G stops generating events
8: Event generator G disseminates the description of G(t) to

all nodes
9: Node ni obtains a set of locations Pi by correlating G(t)

with Ti = {ti
1, t

i
2, . . . , t

i
n}

10: Pi is a set of positions p where Si(t, p) = 1

information on their locations. We call both controlled
and monitored events training events. An event could be,
for example, the presence of an object in an area or a light
spot projected on a set of sensors. The obtained sensing
area can be input to an existing coverage scheduling
algorithm [34] to improve sensing quality.

Formally, an event can be defined as a detectable
phenomenon e(t, p) that occurs at time t and at location
p ∈ A ⊂ R

k (k = 1, 2, 3). Without loss of generality,
we use k = 2 (2-dimensional plane) in the rest of the
paper. To identify sensing area, we need to match a
relationship between the time t and location p. In other
words, a set of training events can be described as the
event locations over the discrete time: G : R→ R

2, where
G(t) = pt = (xt, yt) and t ∈ {t1, t2, ..., tn}. In case of
continuous events, discrete events can be obtained by
sampling a continuous event with a certain interval.

Fig. 1 shows the system architecture of P-SAM, which
consists of two major parts: an event generator G and
a set of sensor nodes ni(i ∈ N). The event generator
G is a function to assign a physical point to a discrete
time according to which a sequence of events e(t, p) are
generated, (Step 1 in Fig. 1). We define Si(t, p) as the
detection function of node ni, if node ni can detect event
e(t, p), Si(t, p) = 1; otherwise Si(t, p) = 0. In case of
detection, sensor nodes store the timestamp t locally. By
the end of training, G can either collect the time-stamps
from sensors (Step 2) or disseminate the description of
G(t) to whole network (Step 3). By inputting the time

Fig. 4. Level of Details Fig. 5. Hierarchical Training

stamps into G(t), a set of timestamps Ti = {ti1, ti2, . . . , tin}
from node ni can be converted to a set of locations
Pi = {pi

1, p
i
2, . . . , p

i
n}. The location set Pi can be used

to directly describe the sensing area of node ni, or it can
be transformed to a polygon.

3.2 Design of Event Generator G(t)

Since the overhead and accuracy of the sensing modeling
is largely determined by G(t), it is important to consider
several solutions to optimize G(t) under different system
configurations.

3.2.1 Regular G(t)

To illustrate the basic functionality of an event generator,
we start with a simple sensor system in which the
sensing area of a node is a line segment as shown in
Fig. 2a. We intend to find out the portion of the line
included in the sensing ranges of sensor node n1 and
n2. To achieve this, the event generator creates discrete
point events along this line [0, L] with constant speed
v with an interval D. Formally, G(t) = t · v, where
t = kD/v and 0 ≤ k ≤ L/D. A large k is requred for the
detailed coverage shape with high accuracy (the trade-
off between the accuracy and training cost is described
in [17]). In the example in Fig. 2, a sensor node n1 collects
a set of six timestamps T1 = {t1, t2, . . . , t6} at which the
events are detected. Using function G, the timestamps
are converted to a set of locations P1 = {t1v, t2v, . . . , t6v}.
The sensing coverage of sensor n1 is defined as the line
segment that covers P1.

The regular training can be generalized to the case
when the events occur in a plane. Fig. 2b shows this
approach. In this case, training area A is divided into
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Algorithm 2 Hierarchical G(t) process

Output: Pi: The sensing area of ni.
1: G(t) starts with level-1 events e(t, p) (The number of level-

1 events is decided by the minimum sensing area)
2: Node ni reports Si(t, p) for all level-1 events
3: repeat
4: for all level-k adjacent pairs e(tm, pm) and e(tn, pn) do
5: if any node detects only one event && no event is

generated at position pm+pn

2
before then

6: Generate a level-(k + 1) event at position pm+pn

2
7: end if
8: end for
9: k = k + 1

10: until (k = Maximum Level)
11: Pi is a set of positions p where Si(t, p) = 1

several lines α1, α2, . . ., and the events are generated fol-
lowing the lines. In addition to the progressive scanning,
G(t) function of the regular training can use an arbitrary
sequence of natural events as long as the position of
the natural events can be acquired along with detec-
tion results S(t, p). The detailed operations to identify
the sensing area of a single node ni are described in
Algorithm 1.

3.2.2 Hierarchical G(t)

Hierarchical G(t) is motivated by the observation that
the boundary of a sensing area requires more detail than
the area in the middle of coverage. With hierarchical
G(t), we can reduce the number of events required to
obtain the same accuracy as regular G(t).

As shown in Fig. 3, level-1 events divide the area into
4 sub-areas, and level-2 events divide the area into 16
sub-areas. In general, level-i events divide an area into
4i sub-areas. Interval D at level-i is the distance between
adjacent sub-areas’ centers. If an event is a level-i event,
it is also a level-j event (j ≥ i). Two events are said to
be adjacent (or a pair) if they are neighboring each other
vertically, horizontally or diagonally (e.g., an event could
have a maximum of 8 adjacent events). Two adjacent
events are said to be boundary pair if only one of two
adjacent events is within a sensing range of some node.
(e.g., e1 and e5 in Fig. 4 form a boundary pair). The event
in a boundary pair is called a boundary event.

The main idea of hierarchical G(t) is to recursively
generate new events in the middle of boundary pairs. It works
in a way similar to the binary search within a two-
dimensional space. We describe detailed operation of
hierarchical G(t) in Algorithm 2.

3.2.3 A Walkthrough of Hierarchical G(t)

We illustrate the main idea for finding the sensing area of
one sensor using hierarchical training. Fig. 4 shows four
level-1 events e1, e2, e3 and e4 that are generated coarsely
at time T = {t1, t2, t3, t4}. By definition, these events are
adjacent to each other. In the example, the sensing area of
a node covers about half of the area; therefore, the event
generator G obtains the detection results S(t1, p1) =
S(t3, p3) = 0 and S(t2, p2) = S(t4, p4) = 1. According

to lines 4 - 8 in Algorithm 2, we compare the value
S(t, p) for each pair of adjacent events. In the example,
since S(t1, p1) = S(t3, p3) and S(t2, p2) = S(t4, p4), no
event is generated in the middle of e2 and e4, nor in
the middle of e1 and e3. These skipped locations are
assumed to have the same value as S(t2, p2) = S(t4, p4)
and S(t1, p1) = S(t3, p3), respectively. However, since
S(t1, p1) 6= S(t2, p2), S(t1, p1) 6= S(t4, p4), S(t3, p3) 6=
S(t4, p4), we need to provide an additional level of detail
by generating three new events, e5, e6 and e7. These
events are at the middle of selected pairs of adjacent
events at times t5, t6, and t7, as shown in Fig. 4.

Hierarchical G(t) works recursively. After new events
are added, new adjacent pairs can be created. For exam-
ple, after we add e5, e6, and e7, the event e5 has new
adjacent pairs e5 ↔ e1, and e5 ↔ e2, and e5 ↔ e6. Such
new pairs are checked with the same procedure detailed
in lines 4-8 in Algorithm 2 until we reach the maximum
level of detail we defined. For a sensor ni, all values in
a set S collected at all levels of detail are used for the
calculation of its sensing coverage.

Hierarchical G(t) can be generalized for any number
of sensors involved where a certain area can be covered
by more than one sensor. We need to check whether
two adjacent events, ei and ej , have the same value of
S(ti, pi) and S(tj , pj) for all neighboring sensors. In other
words, two adjacent events are said to be a boundary
pair as long as there exists a sensor that detects only
one event. Fig. 5 gives an example. The area is covered
by two sensor nodes, n1 and n2. After level-1 event
generation, the detection results of two adjacent events
are compared. Although node n1 detects both events,
ei and ej , node n2 detects only ei. Therefore, ei and ej

form a boundary pair (of n2), and a new event should
be generated in the middle of the two events.

3.3 Analysis of P-SAM Overhead

In this section, we analyze the cost for the regular train-
ing and hierarchical training. We focus on the number of
events generated. The key purpose of this analysis is to
identify the method that minimized total cost for each
given number of nodes. Without loss of generality, we
assume that the N sensor nodes are randomly deployed
in area A, which is X by X meters. To facilitate compar-
ison, we set the minimum event interval D = X

2I , where
I is the highest level for hierarchical G(t).

3.3.1 Overhead in the Regular Training

One of nice features of the regular training is that event
overhead is independent of the number of nodes within
the network. To cover area A, event generator G divide
area into (X

D
)2 sub-areas, so the total number of events

generated, denoted as Oreqular , is:

Oreqular = (
X

D
− 1)2 = (2I − 1)2. (1)

Suppose G can generate K events per second. It takes
(2I−1)2

K
seconds to finish.



5

Fig. 6. Probability two adjacent events are
detected by same set of sensors

Fig. 7. Preferable regions for regular and
hierarchical G(t)

Fig. 8. Polygon abstraction

3.3.2 Overhead in the Hierarchical Training

For the hierarchical training, the number of events is
closely related to the number of sensor nodes and its
sensing coverage range. Before estimating the event
overhead, we calculate the probability Ppair(d) that a
pair of adjacent events e1 and e2 with distance d is a
boundary pair. By definition, if two adjacent events are
detected by different sets of sensor nodes, they form a
boundary pair. Fig. 6 visualizes the proof. In Fig. 6, area
A is partitioned into four subareas A1, A2, A3 and A4
by two irregular circles. Obviously, if any sensor node
is located within either the A3 or A4 area, the event e1

and e2 will be detected by different sets of nodes. Since
a node is randomly deployed in area A, the probability
that a node falls in to A3 and A4 is A3+A4

A
. For N nodes,

the probability of at least one of them falling in A3 and
A4 is

1−
[

1− A3 + A4

A

]N

(2)

This probability is essentially Ppair(d). If we assume
further the detectable area of e1 and e2 can be approx-
imated by two circles with sensing radius R, we can
obtain the worst-case event overhead for hierarchical
G(t). Given an X by X area, R and d, following a simple
geometric derivation, we can refine the Ppair(d) value as:

Ppair(d) = 1 −
"

1 −
2πR2 − 4R2 cos−1

`

d
2R

´

+ d
√

4R2 − d2

X · X

#N

(3)

Given Ppair(d), we can now calculate the probability
Pnode(d) that an event e is a boundary event within the
distance d. Obviously, if e forms a boundary pair with
any adjacent event, it is a boundary event. Without edge
effect, each event has 2 horizontal(with distance d), 2
vertical (with distance d) and 4 diagonal neighboring
events (with distance

√
2d). Therefore, Pnode(d) is:

Pnode(d) = 1− (1 − Ppair(d))4(1− Ppair(
√

2d))4 (4)

Now we are ready to estimate the event cost in hierar-
chical G(t). In general, at level-i, there are (2i−1)2 events
(note one event belongs to its level and above). To ensure
accuracy, all level-I boundary events (I is the highest
level) must be generated. This gives a lower-bound of
event cost, denoted as Omin:

Omin = Pnode(D)(2
I − 1)2 (5)

Fig. 9. Polygon simplification

d1

d2
d3

Detected

UnDetected

Fig. 10. Inscribed polygon

where D = X
2I is the minimum event interval. We note

Omin is a tight lower-bound. When lim
N→∞

Pnode(d) = 1,

Omin equals the number of events generated in the
regular training.

The upper-bound of event cost Omax can be obtained
by adding up the numbers of boundary events at all
levels. Because a level-i events is also level-j as long
as j ≥ i, we might introduce duplicated counts by
summing the cost at all levels, hence Omax can only
serve as an upper-bound. Since during the training,
hierarchical G(t) records the previously generated events
(to eliminate duplicates), in the worst case, hierarchical
G(t) introduces the same event overhead as regular G(t).
Therefore Omax can be formulated as follows:

Omax = min(

I
∑

i=1

Pnode(2
I−iD)(2i − 1)2, (2I − 1)2) (6)

We note that both Omax and Omin increase when
the number of nodes N increases. Especially according
Equations 3 and 4, when N → ∞, Pnode(d) → 1.
Therefore both Omax and Omin converge to (2I − 1)2,
which is the cost of regular training. This indicates that
the hierarchical training is more efficient when the node
density is low.

3.3.3 Overhead Comparison of two G(t)

There are two factors affecting the overhead of G(t):
First, the overhead in terms of the number of events
generated. Second, the overhead in terms of the number
of S(t, p) messages reported to event generator G. As
for event overhead, we have proven that the hierarchical
training always has a lower or equal event overhead than
the regular training, especially when the node density is
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low. As for the message overhead, the nodes in regular
training do not need to report the detection results to the
generators, while the hierarchical training uses detection
reports S(t, p) about the level-i events to adjust the
generation of the level-(i+1) events. By taking both types
of overhead into account, we can identify the preferrable
region for hierarchical and regular G(t).

Total overhead can be calculated by assigning different
weights to the event and message overhead. Without loss
of generality, Fig. 7 shows the total overhead under an
equal weight. Based on Equation(1), the cost of regular
G(t) is a flat line at value of (2I − 1)2. The cost of
hierarchical G(t) lies in the gray area, enclosed by two
bounds, which are calculated by Equations 5 and 6.
Comparing two bounds of the hierarchical G(t) with
the regular G(t), we can obtain two critical values Nhigh

and Nlow, respectively. When the number of nodes N is
below Nlow, hierarchical G(t) is a better choice. When the
number of node N is above Nhigh, the regular training
G(t) is the right choice. When the number of the nodes
falls between Nlow and Nhigh, the total cost is affected
by the distribution of sensor nodes. A high dispersion
leads to more cost in the hierarchical training. The worst
case for hierarchical G(t) is when sensing areas of sensor
nodes do not overlap.

3.4 Sensor Area Abstraction

In the basic SAM design, we use a set of locations,
Pi to represent the sensing area of node ni. Evidently,
this representation based on raw sampling data requires
excessive memory, especially when the sensing area is
large. It also introduces unnecessary message overhead,
when neighboring nodes share the sensing area infor-
mation. To address this issue, we propose a set of model
abstraction techniques. Essentially, the goal is to reduce
the complexity of a model sufficiently, without suffering
a noticeable loss in accuracy. Specifically, we abstract
a set of discrete sampled locations as a polygon. In
addition, we study how to further simplify the poly-
gon when the abstracted polygon is still too large to
store/transmit. We design and implement three polygon
abstraction methods, in which the first method is a base
for the second and third methods.

1) Polygon Abstraction through Wrapping: For a
sensor node ni, given a set of event locations P ′

(associated with S = 1) and a set of event locations
P ′′(associated with S = 0) in training process,
generate a polygon H that covers P ′ but not P ′′.
(Fig. 8)

2) Polygon Simplification using Douglas-Peucker
(DP) Algorithm [8]: Given a polygon H with n
vertices, find a polygon H ′ with n′ vertices, where
the shape of H ′ is close to H and n′ < n. DP
algorithm generates an accurate approximation in
O(n2) [8], O(n log n) [15], where n is the number
of vertices. Besides the DP algorithm, the vertex
reduction algorithm is a fast O(n) algorithm where

Algorithm 3 P-SAM Coverage scheduling [34] for event
detection implemented on node ni

Input: a set of locations of interest, {li1, l
i
2, . . . , l

i
m} covered by

node ni

1: Exchange information {li1, l
i
2, . . . , l

i
m} with neighbors.

2: Select a random time Ri and exchange with neighbors.
3: tstart ← Ri, tend ← Ri

4: for each lik, k = 1, . . . , m do
5: Find every neighbor covering lik, and sort Ri and every

neighbor’s random time in increasing order.
6: [tstart, tend]← [tstart, tend] ∪ [Ri+Pred(Ri)

2
,

Succ(Ri)+Ri

2
]

7: end for
8: Schedule node ni to wake up at tstart and sleep at tend.

vertices close to each other are reduced to a single
vertex. (Fig. 9)

3) Inscribed Polygon Simplification: Given a poly-
gon H with n vertices, find an inscribed polygon
H ′ with n′ vertices, where n′ < n and subtracted
area of H ′ from H is minimized. (Fig. 10)

3.5 Application: P-SAM Guided Coverage

We can use the output of P-SAM to improve the
performance of many sensing-driven applications. As a
specific example in this work, we apply P-SAM to the
coverage scheduling algorithm proposed by [34] to show
its effectiveness.

Algorithm 3 describes how the coverage scheduling al-
gorithm in [34] can be built on top of P-SAM. The sensing
phase is divided into rounds with equal duration. Within
each round, each node needs to decide when to sleep
and when to work (in order to save/balance energy).
To do that, each node ni keeps its sensing area as a set
of locations (points) it covers, {li1, li2, . . . , lim} [Line 1 of
Algorithm 3]. It selects a random time Ri in range of
round starting time and ending time, and disseminates
it to its neighboring nodes [Line 2]. For each location
lik in the location list, it finds its neighbors that cover
the location. Let Pred(Ri) be the largest random time of
neighbors smaller than Ri. The node ni’s wake-up time
is the middle of Pred(Ri) and Ri. Similarly, Succ(Ri)
is the smallest random time of neighbors larger than
Ri. Then, the node ni’s sleep time is the middle of Ri

and Succ(Ri). For each location lik, node ni’s wake-up
and sleep time is determined [Line 4-5] in this way. The
minimum wake-up time over all locations is chosen as
the final wake-up time, and the maximum sleep time
over all locations is chosen as final sleep time [Line 6].

In the circular model, the sensing area of a sensor node
is a circle with a certain radius centered at the sensor
node. Thus, all physical points contained within a circle
are provided as an input to Algorithm 3. If we use P-
SAM, we regard a sensing area as a collection of the
locations obtained during training process. In this case,
the collected set of locations is provided as an input.
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Fig. 11. Mapping Event Detection to the Event Position Using
Image Capture at Time t = 6, 8, 10, 16, 17, 20 (sec); last map
Includes Additional Training Results by t = 40 (sec)

3.6 Implementation of P-SAM

We use ExScal XSM motes [9] to obtain empirical results
on irregular sensing patterns. Four PIR sensors, each
with 90◦ view, are attached to a XSM mote to provide a
full 360◦ view of sensing. PIR sensors detect movements
through changes in infrared radiation, which is caused
by walking persons or moving vehicles. The sensing
area would change slowly over time due to the changes
in ambient conditions and the energy condition of the
nodes. However, from our experience, we find that the
PIR sensing area is relatively stable; there is no signifi-
cant difference unless the environmental factors change
significantly. Thus, several trainings over a large time
interval would be enough. For example, we measure the
sensing area once during day and once at night, and we
also measure the sensing area in the winter and in the
summer. We trade off the model accuracy over time with
the cost to refresh the model.

We adopted the regular training approach, but instead
of training the motes using parallel lines as in Fig. 2b,
we used monitored events (i.e., natural movements of
a person). To map the event time to the event position,
we used a camcorder during training. Then the event de-
tection time is compared to the camcorder capture time
and converted to the location included in the sensing
area. For example, in Fig. 11 the camcorder captures
the positions of a person at time t = 6, 8, 10, 17, 18, 20
(sec), converts the detection time of the PIR sensor to
the corresponding position of the trainer in the picture,
and projects the position into the plan.

4 VIRTUAL SENSING AREA MODELING (V-
SAM)

Clearly, the strength of P-SAM is in its high accuracy in
sensing modeling. It is achieved, however, at the cost of
controlled training. While P-SAM is useful in scenarios
where sensing accuracy is highly desired, we need a
complementary solution that is suitable for scenarios
where cost is the paramount concern and the sensing

Fig. 12. V-SAM and Coverage Scheduling Built-Upon It

area evolves relatively quickly over time. In this section,
we propose the lightweight design of V-SAM, which
requires no controlled events. The V-SAM modeling
technique is especially useful when the events occur
frequently, and when we want to capture the coverage
without micro-control in areas with unknown obstacles.

4.1 Main Idea

Fig. 12 shows the process of V-SAM and how applica-
tions can be built upon it. We assume if two nodes are
neighbors in sensing range they are neighbors in com-
munication range. Each sensor node exchanges sensing
values for detected events and calculates similarity be-
tween neighboring nodes. The resulting similarity graph
represents virtual sensing relations among the sensor
nodes. On top of V-SAM, applications can be built.
For example, in sensing coverage, nodes can coordinate
their working schedule based on the similarity graph.
The highlight of V-SAM is the continuity of the V-
SAM modeling process, i.e., the similarity graph can be
continuously updated/refreshed with upcoming events
in the system.

4.2 Design of V-SAM

V-SAM consists of two main procedures: similarity mea-
sure and similarity graph construction.

4.2.1 Measuring Similarity

In V-SAM, an event is defined as a detectable phe-
nomenon that occurs at time t at location p, which
is unknown a priori. As shown in Fig. 13, nodes are
roughly synchronized with each other [24], and time is
divided into equal round with duration Tupdate, which is
a parameter to control how often the sensing model is
refreshed. Each round is further divided into m equal
duration intervals, each of length Tspan.

For each round, each node ni stores its observation
vector {oi

1, o
i
2, . . . , o

i
m} obtained through discrete sam-

pling at Ti = {ti1, ti2, . . . , tim}. After collecting the event
observations, at the end of round each node exchanges
the observation vector, which is used to calculate sim-
ilarity between nodes. Specifically, we use P-norm to
measure the similarity between two observation vectors
by node ni and node nj as follows:

d(i, j) = P

√

√

√

√

m
∑

k=1

|oi
k − oj

k|
P

(7)
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Fig. 13. Time Series of Event Observation Fig. 14. V-SAM Guided Coverage Scheduling

where P can be 1, 2, . . . ,∞.
Let oi

k, oj
k be in a range of [omin, omax]. Then, d(i, j)

have minimum value dmin = 0 when two motes have
the same observations, and maximum value dmax =
P

√

m× (omax − omin)
P

when they have completely dif-
ferent observations. To make the range dmin to dmax

normalized to 1 to −1, we map d(i, j) to ((−1) − 1) ×
d(i,j)−dmin

dmax−dmin
+1. This is the difference of a new range times

the proportion of d(i, j) in the old range plus the starting
value of the new range. The resulting value is closer to 1 if
two motes have similar observations, while it is closer to (−1)
if they have different observations.

To estimate the similarity over time, we use an ex-
ponential moving average method. The average simi-
larity in the nth round, d̂n(i, j) is updated differently,
depending on whether there is any event detection in
the round. When a node detects an event, new dn(i, j) is
used to update d̂n(i, j). Otherwise, we use an aging factor
β to gradually attenuate the similarity among nodes to 0. The
rationale behind the aging factor is to forget the similar-
ity observed a long time ago, which cannot accurately
reflect the current situation. The average similarity over
n rounds (n ≥ 1) is calculated by:

d̂n(i, j) =



















if event is detected

α× d̂n−1(i, j) + (1− α)× dn(i, j)

otherwise

β × d̂n−1(i, j)
(8)

We provide an example in Fig. 13. When we compute
the similarities between nodes n1 and n2, we make
the observation vector of node n1 as {1, 2, 4, 2} and
observation vector of node n2 as {0, 2, 3, 2}. Similarly,
two observation vectors of nodes n3 and n4 can be made.
Initially, the default similarity value of d0(i, j) is left to 0.

4.2.2 Building Similarity Graph

Now that we have measured similarities, we want to
represent the sensing relations in a graphical method in a
given time space. We use a graph G(V, E(t)) to represent
a set of sensor nodes and similarities among themselves
at a certain time slot t (a duration of each time slot t is
set to Tsch in Section 4.3, which will be explained in the
section). The set V is a complete set of N sensor nodes in
the network, and E(t) is a set of edges among nodes. A

graph is not static, and changes over time. For each time
slot t, an edge between nodes ni and nj is added with
probability proportional to the degree of similarity. More
specifically, after nth round, at a certain time t, an edge
e(i, j) belongs to E(t) if and only if Equations (9)-(10)
are satisfied.

Rt(i, j)← Rnd(i || j || t) (9)

Rt(i, j) < w · d̂n(i, j) (10)

where i < j, Rnd(s) is a random number generated in
range -1 and 1 using s as a seed, || is a concatenation
operation, and term w represents the weight applied
to each similarity. We concatenate i and j in increasing
order to make the random number generated in nodes
ni and nj the same. Then, an edge is added with
probability:

Pr[ Rt(i, j) ≤ w · d̂n(i, j) ] (11)

Over a set of time slots, for similarity d̂n(i, j) with a
small negative or positive value (i.e.,near zero), two
nodes ni and nj become neighbors more randomly. On
the other hand, for d̂n(i, j) with big negative value (i.e.
near -1), two nodes are less likely to be neighbors, and
for d̂n(i, j) with large positive value (i.e., near 1), two
nodes are more likely to be neighbors. The rationale
behind this design is that neighbors with similar view
are connected more frequently, while neighbors with
dissimilar view are disconnected more frequently. The
neighbors determined neither similar nor dissimilar are
randomly connected.

4.3 Application: V-SAM Guided Coverage

Most existing coverage scheduling algorithms purely
depend on the assumption that the deployment area is
open space and the sensing area of individual sensor is
uniform (circular). Obviously, this assumption does not
hold well in the real world. Differently, our proposed
coverage scheduling algorithm does not require such
assumption. Instead we schedule nodes’ sleep and wake-
up time, based on in-situ similarity graph calculation.
This is done by turning off nodes with similar sens-
ing experience at different time slots to save energy
consumption, and by turning on nodes with dissimilar
sensing experience to work together to achieve required
sensing quality.
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Algorithm 4 Coverage scheduling for event detection
implemented on node ni

Input: New observations oi and oj for every physical neighbor
nj (neighbor within communication range).

1: for each round n do
2: if At the beginning of a round then
3: Compute the similarity d̂n(i, j) with every physical

neighbor nj .
4: for each scheduling slots t within current round do
5: if pt

i > pt
j , for every node nj such that Rt(i, j) <

w · d̂n(i, j) then
6: Assign the node ni to wake up at time slot t.
7: end if
8: end for
9: else

10: Node ni turns on and off according to the schedule
calculated at the beginning of the round.

11: If a new event is detected, node ni inform it of all
physical neighbors at their wake-up slot, and they
record/report new observations.

12: end if
13: end for

4.3.1 Basic Algorithm

In our work, we propose a distributed heuristic al-
gorithm as detailed in Algorithm 4. The key idea is
that nodes with similar observations are restrained from
waking up simultaneously, as the additional information
does not increase significantly. Specifically, our algorithm
works as follows:

As shown in Fig. 14, the time is divided into equal
length round with duration Tupdate. Each round is further
divided into multiple time slots with duration Tsch. At the
beginning of each round, similarity is calculated [Line 1-
3 in Algorithm 4] using the observation obtained in the
previous round. The similarity graph changes for each
time slot t. For each basic time slot t, a node decides
whether to add an edge and make a physical neighbor
(neighbor within communication range) as a neighbor
on similarity graph following Equations (9)-(10) [Line 4-
8]. For each node ni, we define the priority of node i at
time t as

pt
i = Rnd(i || t) || i. (12)

where Rnd(s) is a random number selected from ele-
ments of {1, 2, . . . , N}, and N is a natural number greater
than the number of deployed nodes. We concatenate
unique node ID i, in order to ensure that no two nodes
have same priority at time slot t. For each basic time
slot t, a node calculates locally its own priority as well
as the priority of its neighboring nodes (of similarity
graph). Since all nodes share the same random number
generator, the computation of priority requires no com-
munication among nodes. If the node’s own priority is
higher than all its neighbors, this node is scheduled to
be activated in the time slot t. After nodes decide their
working schedule at the beginning of the round, they
simply follow the working schedule in the rest of the
round [Line 10].

New observations can be obtained if events are de-
tected by one of active nodes [Line11]. Event detec-
tion is informed to other nodes in their wakeup time
slot, and they work together to monitor the detected
event. The observations afterward are collected at a sink,
and observation message is overheard by each physical
neighbor. If no event is detected during Tupdate period,
the similarity graph decays with the aging factor β.

As a case study, Fig. 15 illustrates the graph repre-
sentation of the similarities among sensor nodes and
coverage scheduling based on the similarities. Nodes
with similar observations are connected to each other via
an edge, which results in two clusters in two sides and
one sensor node crossing over the clusters. The priority
of sensor node n1 is p1 = 17, which is highest among
any other sensor nodes connected via an edge. Thus,
the sensor node n1 is awake at the time slot. In addition,
nodes n5, n7, n10 are selected to be awake at the time slot
by winning the highest priority.

With the immature training, the performance of V-
SAM guided coverage scheduling should not be worse
than random coverage scheduling. This is achieved by
constructing similarity graph in probabilistic sense ac-
cording to the degree of similarity as in Section 4.2.2.

4.4 Implementation of V-SAM

We have implemented and evaluated the V-SAM system
at the ground floor of one of our university libraries, as
shown in Fig. 16. The area was selected because it reflects
a realistic environment, full of bookshelves, tables, small
rooms and other obstacles. A monitoring system in such
an environment is useful, such as to automatically turn
on the lights in the bookshelves area when motion is de-
tected. In the study area, we are interested in monitoring
behaviors of students, especially disturbing movements,
in the library. We put 14 XSM motes in the area shown
in Fig. 16 with the location indicated as in Fig. 17. We
obtained 7 traces over an hour in the afternoon on three
different days. To obtain the ground truth of event, we
monitor the scene described in Section 3.6.

We determine a hit if the current detection energy is
more than 6 times greater than an adaptive threshold,
which is set to background noise. A XSM mote deter-
mines that an event occurs, if the number of hits during
the last 10 consecutive sampling windows is greater than
two. We use observation value 0 for event detection
and 1 for no event detection. Similarity is calculated
based on Equation (7) by setting p = 1 and Tspan

= Tupdate = 100(sec). During Tupdate, observations are
recorded, and at the end of round the similarity graph is
updated. We used value α = 0.98, β = 0.05 for similarity
calculation. Based on the similarity between neighbors,
a node determines its future sleeping schedule for each
Tsch following the Algorithm 4. The compiled image of
a mote implementation is 13,500 bytes of code memory
and 532 bytes of data memory. Since the basic slot Tsch is
5(sec), motes need to be only loosely time synchronized
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Fig. 15. Similarity Graph and Priority
Comparison

Fig. 16. Experiments in the Study Area
at Library

Fig. 17. Sensor Node Placement

among themselves. To achieve that, it is enough to use
a lightweight NTP-Like time synchronization protocol,
in which a mote broadcasts a message with its local
time-stamp and its neighbor calculates the difference
between the received timestamp and its local clock.
More advanced time synchronization algorithms, such
as FTSP [24], can also be used, if needed.

5 SYSTEM EVALUATION OF SAM

We have described the implementation details of both
P-SAM and V-SAM in Sections 3 and 4, respectively. In
this section, we evaluate the effectiveness of our designs
in various environments.

5.1 Evaluation on P-SAM Design

We provide implementation results in real-world settings
as well as large scale simulation results.

5.1.1 Outdoor P-SAM Evaluation

In the P-SAM experiment, a person moved around a
sensor sufficiently (10 times crossing straight over the
area in different directions and positions). Figs. 18 and
19 show the sensing area we obtained after training a
sensor, which is placed (1) in an open area and (2) in
an area with a obstacle. The positions belonging to the
detected events were associated to the closest grid points
indicated in the figures. Fig. 18 indicates that the sensing
area is irregular even without an obstacle. Fig. 19 shows
that the obstacle affects the sensing area significantly.
With the circle model (a disk with radius 400 cm), we
expect a point within the circle to be associated with
event detection and a point beyond the circle range not
to be associated with event detection. After repeating
the training test many times, we obtained irregularity
and training confidence as shown in Table 1. They were
calculated for all points associated with training events
as follows:

Irregularity =
n1 + n2

n3

where n1 is number of points inside the circle the events
of which are not detected, n2 is number of points outside
the circle the events of which are detected, n3 is number
of points inside the circle.

Confidence =
1

number of points

X

each point

MAX(p1, p2)
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Fig. 18. Coverage without
Any Obstacle in 1, 000 cm ×
1, 000 cm square
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Fig. 19. Coverage with Ob-
stacles in 1, 000 cm × 800 cm
rectangle

TABLE 1

Sensing Area in Outdoor Experiment

Without obstacle With obstacle
Irregularity Confidence Irregularity Confidence

0.367 0.83 0.387 0.80

where p1 is fraction of detected events, p2 is fraction of
undetected events. Higher value of confidence means the
same result is more likely to be reproduced as before.

We also performed experiments with MicaZ photo
sensors in [17] where the data for training cost is pro-
vided. Note that 100 events of binary value can be
transmitted with one small packet.

5.1.2 Simulation Setup

In the real environment, it is extremely difficult to obtain
the ground truth of real sensing coverage. To overcome
the limitation of outdoor experiments, we perform sim-
ulaions of P-SAM that incorporate knowledge of the
ground truth in Sections 5.1.3 through 5.1.5.

We use an oracle algorithm that assumes knowledge of
the sensing area of the nodes. We want to emphasize
that the oracle algorithm and generated ground truth are
used only for the purpose of evaluation. This knowledge is
not used in any part of the P-SAM algorithm. The oracle
generates a sensing pattern according to the following
irregularity model, which is an extension of the DOI
model [14].

Rθ =

{

Rmin + (Rmax −Rmin) ·Rnd θ = 0◦

Rθ−1 ±Rnd · var 0◦ < θ < 2π
(13)

where Rmin and Rmax are the minimum and maximum
coverage ranges respectively, and Rθ ∈ [Rmin, Rmax] is
the sensing range at angle θ. Rnd is a random number
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Fig. 23. Simplification
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Fig. 25. Number of ver-

tices with varying tolerance

and irregularity

between 0 and 1, and var is a variation of the ranges at
consecutive angles due to the irregularity.

We represented the deployment area with 512 by 512
square with 1400 nodes randomly placed. Starting from
Rθmin

at 0◦, the real irregular coverage was generated
for each sensor according to Equation (13) with Rmin =
10, Rmax = 30 and var = 2.0. The interval D was chosen
from 2i, where 1 ≤ i ≤ ⌊log2Rmin⌋, so that 2i < Rmin.
In the regular training, the interval is fixed. However,
in the hierarchical training starting from a certain initial
interval D = 2i at level 1, the interval decreases to 2(i−1)

at level 2, and so on, until the smallest possible interval
2j is reached at the last level i− j + 1.

5.1.3 A Case Study of P-SAM

In this case study, both the regular training and hi-
erarchical training are evaluated as shown in Figs. 20
and 21, respectively. The continuous curve shown in
these figures is the actual sensing area of a single node,
which is unknown to SAM. Without polygon abstraction,
a coverage for each sensor is represented by a set of event
locations associated with value S = 1 (the solid circles
shown in the figures are detected events). To simplify
the representation, the sensing coverage is wrapped by
boundary points on the grid. Fig. 22 shows the wrap-
ping by grid points. The wrapping can be optimized in
various ways. We use the DP algorithm for this purpose.
When the training is fine grained the representation of
sensing coverage in Fig. 22 requires upto hundreds of
points even if we use only the boundary grid points.
However, if we use the polygon simplification the rep-
resentation reduces to several points as in Fig. 23.

5.1.4 Savings through Sensor Area Abstraction

Fig. 24 is the CDF curves of fp under three settings:
circular model, P-SAM model with wrapping, and P-
SAM model with simplification. We can clearly see that
both P-SAM cases significantly outperform the circular
model. The simplification approach uses less vertices to
describe the area, thus it is slightly less accurate than the
wrapping.

Fig. 25 shows that as the tolerance increases the
number of vertices needed decreases. The variance of
sensing coverage also affects the data abstraction. With
the sensing irregularity of var = 2.0 and interval 1,
the original sensing coverage is initially represented by
raw data of 500–1500 vertices, including inner points of
coverage. Using wrapping we can reduce this to 150–
300 points, which might be still large for some memory
constrained sensing devices. We optimize it further by
polygon simplification. With tolerance tol = 4 (which is
reasonable considering the value Rmin = 10, Rmax = 30),
the sensing coverage can be simplificed as a polygon
with only 5–15 vertices, which is about 99% reduction
in data with slight decrease in accuracy.

5.1.5 Application Improvements Using P-SAM

We apply coverage scheduling based on individual sen-
sor coverage by circular 0/1 model and by P-SAM.
We vary node density from 0.958 to 6.707 following
the commonly assumed node density in the existing
works [4], [13], [21], [34]. The design goal of full coverage
scheduling is to cover every physical point within an area
with minimal energy consumption, and point coverage
scheduling is to cover every target. The radius of a disk
in circular model is denoted by Rc. Two key metrics for
coverage applications are (i) Fraction of Blind Areas and
(ii) Energy Consumption.

Fig. 26 shows the fraction of blind areas when dif-
ferent densities of nodes are scheduled by full coverage
scheduling. As we increased the number of nodes from
200 to 1, 400, the blind area by P-SAM guided coverage
scheduling significantly decreases. On the other hand,
with an optimistic circular model (a disk with radius
Rc = 30), the percentage of blind area stays at about
15%, despite the fact that over 1,400 nodes have been
deployed into the area. Fig. 27 shows the average energy
consumption per node. When a circular model is con-
servative, Rc = 10, the energy consumption remains the
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Fig. 26. Fraction of Blind
Areas with Varying Densities
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Fig. 27. Avg. Energy Con-
sumed with Varying Densities
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Fig. 28. Fraction of Uncov-
ered Targets with Varying Rc
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Fig. 29. Avg. Energy Con-
sumed with Varying Rc
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same for any density, while P-SAM has accurate sensing
area information with a smaller energy consumption.

We also apply P-SAM and a circular model to the art
gallery application where the sensor nodes are organized
by point coverage scheduling to monitor a set of important
stationary targets with known locations. Figs. 28 and 29
show the number of missing targets that are not covered
by sensor nodes and the average energy consumption
per node. The number of sensor nodes and the number
of targets generated are denoted by n and t. As shown,
the number of targets not covered in a circular model is
larger than P-SAM. For example, when n = 1, 000, t =
400, if we use P-SAM, the point coverage algorithm can
cover every target. However, if we use the circular model
with Rc = 25, it will miss about 20% of the targets.

The curves for the circular model shown in Figs. 28
exhibits an interesting

⋃

shape. The number of missing
targets can be reduced by decreasing Rc at the cost of
increasing energy consumption. However, the coverage
error cannot monotonically reduce forever. This is be-
cause if we reduce Rc into a small value, a node that
can physically cover a target will mistakenly assume it
cannot cover the target, and therefore turns itself off. This
also explains why the energy consumption in circular
model in Figs. 29 exhibits a

⋂

shape.
Many tracking algorithms implemented on the sensor

devices estimate the location of a sensed target by using
the centroid localization. We apply P-SAM to the centroid
localization. In centroid, if a set of sensors detects a
target, the location of target (Xest, Yest) is calculated by:

(Xest, Yest) =

 

N
X

i=1

Xi,

N
X

i=1

Yi

!

(14)

where (Xi, Yi), i = 1, . . . , N is location of anchor beacon.

The assumption behind the centroid localization is that
sensors have equal circular sensing ranges. Therefore,
the location of the target is best estimated at the centroid
of multiple sensors. With P-SAM, we know the sensing
area of each sensor node which detects the targets.
We can limit the location of target to the overlapping
portion of these sensing areas. Then we can estimate
the location of target by calculating the center of gravity
of overlapping area. Fig. 30 compares the localization
error between using circular model and using sensing
area obtained by P-SAM according to different node
densities. In Fig. 31, we change the tolerance tol used in
simplification process of training coverage model. The
coverage simplification with larger tolerance increases
the localization error, but it is still below the localization
error in circle coverage model even with large tolerance
value tol = 6.

5.2 Evaluation on V-SAM Design

In this section, we evaluate the performance of V-SAM in
the basement of university library. All experiments were
conducted in an uncontrolled setting.

5.2.1 A Case Study of V-SAM

In this section, we provide snapshots of a V-SAM pro-
cess. We ran 14 XSM motes for 4,000 seconds. During this
period, two students were studying at a table, making
small movements in the limited place, and there were
several students passing the area. Fig. 32a shows the
computed similarity between node 3 and nodes 1, 5, 7,
10, 13. As expected, the similarity between node 3 and
node 1 always has positive values, while the similarity
with other nodes has negative values. It is very interest-
ing to observe that 1) at the beginning of the experiment,
the pair-wise similarity values are about zero and that
2) with more observations over time, for the nodes with
similar view similarity values increase, converging to a
long–term positive value. Similarly for the nodes with
different view, i.e., obstacles exist between them or they
are far from each other, their similarity values decrease,
converging to a long term negative value. Both long-
term positive and negative values reflect the impact of
environment, hardware and consistent movement for
long time. And 3) the similarity fluctuates due to short-
term behavior, because during the experiment, students
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Fig. 32. The Profile of Pair-wise Similarity over 4,000 seconds

made small random gestures. Fig. 32b is the similarity
graph after 2000 seconds. We note that a mote can reside
in multiple cliques in the similarity graph.

The cost to generate the similarity graph can be es-
timated by the number of messages for each node to
generate. If each node generates a message whenever it
detects an event within Tupdate = 100 (sec), the upper-
bound on the number of messages generated by each
node over 4, 000 seconds is 40. The average number of
messages required by each node in this example is 13.1.
However, if messages are all sent after 4, 000 seconds,
each node only needs at most one message containing
at most 5 bytes of data.

5.2.2 Application Improvements Using V-SAM

We compare the performance in coverage scheduling for
four different coverage models: (i) V-SAM-guided cov-
erage scheduling, (ii) random coverage scheduling, (iii)
P-SAM-guided coverage scheduling, and (iv) circular
model-guided coverage scheduling. We use two metrics
to evaluate the coverage quality in our experiment:
(i) Fraction of Detection: the percentage of detectable
events that are actually detected, which is a metric to
indicate the sensing quality, (ii) Average Wakeup Ratio:
the average percentage of time that a node is awake,
which is a metric to indicate the energy efficiency. To
obtain the ground truth of events, we monitor the scene
with a digital camcorder. We are especially interested
in the detection of walking persons, a movement more
than 2 m is regarded as an event. To compare the
sensing coverage under the same energy consumed, the
wake-up schedule in random coverage scheduling is
generated so that its average wake-up ratio is similar to
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Coverage Models

the one in V-SAM guided coverage scheduling. For P-
SAM-guided coverage scheduling, we represent sensing
coverage with 1 m interval. For circular-model-guided
coverage scheduling, the sensing coverage is assumed
as a circle with a radius of 6 m centered around a
mote’s location. As a result, the energy consumption for
circular model-guided coverage is much lower than for
the others, as shown in Fig. 34.

The performance in sensing quality for four models
(i) – (iv) is shown in Fig. 33. V-SAM has the low-
est number of undetected movements, followed by P-
SAM. Although P-SAM provides an accurate modeling
method, it does not consider a behavioral model of
events. For example, during the experiment, students
sit next to one sensor and blocked its view temporally,
which is not reflected in the training process in P-SAM.
Even if the energy consumption in random coverage
scheduling is adjusted slightly greater than V-SAM, its
sensing quality is worse than V-SAM and P-SAM. For
example, in Fig. 33, V-SAM-guided coverage scheduling
has a greater number of events immediately detected in a
second than the random case. Even after 6 (sec) elapsed,
the fraction of undetected events does not decrease in
random coverage scheduling. In addition, as shown in
Fig. 33, coverage scheduling based on a circular model
misses more than half of detectable events. In V-SAM, we
can better understand the similarity graph with a small
Tspan, resulting performance increase. However, without
data pre-processing, i.e., dimensionality reduction, it
may adversely cause performance decrease [17].

6 DISCUSSION AND CONCLUSION

This paper addresses sensing irregularity issues known
but largely ignored by many designers. We contribute
to this area by designing and implementing two com-
plementary in-situ sensing modeling methods called P-
SAM and V-SAM, respectively. By introducing controlled
and monitored events, P-SAM provides accurate sensing
area models for individual nodes. By utilizing natural
events in the environments, V-SAM provides evolvable
sensing similarity models automatically at low cost. Both
models are generic enough to be used in many applica-
tions including sensing coverage and tracking. We have
identified the impacts of sensing irregularity on typical
applications as well as the improvements by using SAM.
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Our design has been evaluated in test-beds consisting
of 14 XSM motes in diversified environment settings
including library and outdoor court yards.

Although we provided experiment results with PIR
sensors in this paper, our solution can be applied to
other type of sensors. Experiments with photo sensors
are performend in [17]. Other sensors such as image
sensor, acoustic sensor, magenetometer sensor can be
trained with SAM without modification regardless of
directionality of sensors, with events such as image,
sound, deposits of iron – tank or airplane. Our approach
will be especially useful to sensors having large coverage
in the environment with lots of obstacles.
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