
Attacking the Kad Network

Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune,
Nicholas Hopper, Yongdae Kim
University of Minnesota - Twin Cities

200 Union Street SE
Minneapolis, MN 55455

{pwang,tyra,dchantin,malchow,foo,hopper,kyd}@cs.umn.edu

ABSTRACT
The Kad network, an implementation of the Kademlia DHT pro-
tocol, supports the popular eDonkey peer-to-peer file sharing net-
work and has over 1 million concurrent nodes. We describe several
attacks that exploit critical design weaknesses in Kad to allow an
attacker with modest resources to cause a significant fraction of all
searches to fail. We measure the cost and effectiveness of these
attacks against a set of 16,000 nodes connected to the operational
Kad network. We also measure the cost of previously proposed,
generic DHT attacks against the Kad network and find that our at-
tacks are much more cost effective. Finally, we introduce and eval-
uate simple mechanisms to significantly increase the cost of these
attacks.

Categories and Subject Descriptors
C.2.0 [Computer Networks]: General—Security and protection

General Terms
Security

Keywords
P2P, Security, Attack, Kad

1. INTRODUCTION
The Kad network is a peer-to-peer distributed hash table (DHT)
based on Kademlia [20]. It supports the growing user population
of the eDonkey [10] 1 file sharing network by providing efficient
distributed keyword indexing. The Kad DHT 2 is very popular, sup-
porting several million concurrent users [31, 27], and as the largest
deployed DHT, its dynamics has been the subject of several recent
studies [32, 30, 29, 28].
1eDonkey is a server-based network where clients perform file
searches. Kad is a decentralized P2P network. aMule/eMule are
the two most popular clients which can connect to both the eDon-
key and the Kad network.
2There are several Kademlia-based networks such as the Azureus
BitTorrent DHT, but we will refer to the aMule/eMule DHT as Kad.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SecureComm 2008, September 22 – 25, 2008, Istanbul, Turkey
Copyright c©2008 ACM ISBN # 978-1-60558-241-2 ...$5.00.

DHT Security in general – the problem of ensuring efficient and
correct peer discovery despite adversarial interference – is an im-
portant problem which has been addressed in a number of works [9,
26, 4, 17, 12, 23, 15, 24, 13]. However, the majority of these works
assume a DHT with ring topology and recursive routing; Kademlia
uses a fundamentally different, “multi-path” iterative routing algo-
rithm as well as a different topology. To our knowledge, no specific,
applicable analysis of the security properties of the Kademlia DHT
or the deployed Kad network has appeared in the literature, despite
the potential impact of an attack on this network.
In this paper, we describe an attack on the Kad network that

would allow a few malicious nodes with only modest bandwidth
to effectively deny service to nearly all of the Kad network. Our at-
tack has two phases – the first phase is to “collect routing table en-
tries”, which we call the preparation phase, and the second phase is
to attack queries on the Kad network, which we call the execution
phase. Having collected routing table entries 3, it is not obvious
how to use them to halt Kad lookups: since Kademlia is specifi-
cally designed to tolerate faulty routing-table entries by employing
parallel lookup, the simple attacks discussed in the literature (such
as dropping or misrouting queries [26, 4]) will not impede the ma-
jority of lookups: an attacker who owns 50% of all routing table
entries would halt at most 34% of all Kad queries using these tech-
niques.
We describe a new attack on the general Kademlia search algo-

rithm that successfully prevents an intercepted query from complet-
ing, and show how to exploit design weaknesses in Kad to further
reduce the cost of the attack. We experimentally evaluate the two
phases of our attack by connecting roughly 16,000 victim nodes
to the live Kad network and attacking them directly. Extrapolating
from these results, we estimate that an attacker using a single work-
station with a 100 Mbps link can collect 40% of the routing table
entries in the Kad network in less than one hour, and prevent 75%
of all Kad keyword lookups.
A secondary contribution of this paper is an experimental mea-

surement of the cost of two generic DHT attacks against the Kad
network. We find that the Sybil attack [9], which works by cre-
ating enough long-lived identities that the attacker owns a signifi-
cant fraction of routing table entries, is significantly more expen-
sive than our hijacking attack, both in terms of bandwidth and in
terms of wall-clock time. We also evaluate the cost of index poi-
soning [16] against Kad to ensure that 75% of all search results are
incorrect (notice that this is a weaker goal than ensuring that 75%
of lookups fail). We find that the bandwidth cost of this attack is
higher than the cost of our attack on Kademlia lookups.
Our attack is different from the Sybil attack because we do not

introduce any new identities in the DHT. It is also different from
the Eclipse attack [25] because we actively acquire entries rather
than passively promoting compromised nodes.

3obtaining the routing table of other nodes in the network

Finally, we present several potential mitigation mechanisms for
increasing the cost of our attack on Kad lookup while keeping the
design choices made by the designers of the Kad protocol. We
evaluate these mechanisms in terms of their effectiveness and in-
cremental deployability. We find that a very lightweight solution
can effectively eliminate hijacking and greatly increase the cost of
lookup attacks, while having minimal impact on the current users
of Kad.
New versions of the two most popular Kad clients have recently

been released – aMule 2.2.1 on June 11, 2008 and eMule 0.49a
on May 11, 2008. We show that although they have new features
intended to improve security, our attacks still work with the same
resource requirements.
Contributions: The contributions of this paper are as follows:
• We are the first to show that a large-scale attack on a widely-
deployed P2P network can easily be performed, with experimen-
tal measurements.

• Our attack is much more efficient and effective than previously
known attacks – the costs to perform our preparation phase is
less than the costs of launching a Sybil attack and the costs for
our execution phase is less than the costs of launching an index
poisoning attack – comparison is made in Section 6. Moreover,
our execution phase can disrupt control plane operation (build-
ing and maintaining routing tables) instead of just attacking the
data plane and thus, is stronger than an index poisoning attack.

• An attacker with moderately low resources can easily cripple the
Kad network and we hope that this paper will help developers
and users to fix the vulnerabilities in the eMule/aMule Kad.

The remainder of this paper is organized as follows. Section 2 gives
an overview of the design and vulnerabilities of Kad. Section 3
gives further details of our primary attack on Kad, and Section 4
gives analytical and experimental results on the cost-effectiveness
of this attack. Section 5 reports on a related attack with lower band-
width costs in the second phase. Section 6 compares our attack to
general DHT attacks, while Section 7 discusses mitigation strate-
gies for Kad. Section 8 outlines the recent changes in the Kad
clients and how they affect our attacks. Finally, Section 9 discusses
related work on Kad and DHT security, and Section 10 presents our
conclusions and directions for future work.

2. BACKGROUND
In this section, we first present some background on the Kademlia
algorithm and Kad’s design. We then highlight the primary design
flaw in Kad that enables our attack. We finally discuss our attack
model.

2.1 Overview of Kademlia and Kad
Kademlia. In Kademlia, every node has a unique ID uniformly
distributed in the ID space. The distance between two nodes is the
bitwise XOR of the two node IDs, the “XOR metric”. Every data
item (i.e., a [key, value] binding) stored by the Kademlia network
has a key. Keys are also uniformly distributed in the same ID space
as node IDs. Each data item is stored by several replica roots —
nodes with IDs close to the key according to the XOR metric.
To route query messages, every node maintains a routing table

with O(log(N)) entries, called k-buckets, where N is the size of
the network. Figure 1 (a) shows a Kademlia routing table. A k-
bucket on level i contains the contact information of up to k nodes
that share at least an i-bit prefix with the node ID of the owner.
Kademlia biases routing tables toward long-lived contacts by plac-
ing a node in a k-bucket only if the bucket is not full or an existing
contact is offline.
Kademlia nodes use these routing tables to route query messages

in O(log(N)) steps. When node Q queries key x, it consults its
routing table and finds α contacts from the bucket closest to x. Q

(a) Kademlia (b) Kad

Figure 1: Routing Table Structures of Kademlia and Kad. Leaves
depict k-buckets

Figure 2: Kad keyword search

consults these contacts in parallel, which each return k of their con-
tacts. Next, Q picks the α closest contacts from this set, repeating
this procedure until it cannot find nodes closer tox than its k closest
contacts, which become the replica roots.
Kad. Kad uses random 128-bit IDs. Unlike some other DHT
networks, in which nodes must generate their IDs by applying a
cryptographic hash function to their IP and/or public key, Kad does
not have any restriction on nodes’ IDs. Unlike Kademlia, the Kad
replica roots of a data item 〈x, v〉 are nodes with an ID r such that
r⊕x < δ where δ is a search tolerance hard-coded in the software;
so different data items may have different numbers of replica roots.
The routing table structure of Kad, shown in Figure 1(b) is slightly

different from Kademlia. Starting from level 4, k-buckets with an
index ∈ [0, 4] can be split if a new contact is inserted in a full k-
bucket, whereas in Kademlia, only the k-buckets with index 0 can
be split. Kad implementations use k-buckets of size k = 10. The
wide routing tables of Kad result in short routing paths. Stutzbach
and Rejaie [31] show that the average routing path length is 2.7
assuming perfect routing tables, given the size of the current Kad
network.
Suppose A and B are Kad nodes, where B is in a k-bucket at

level i of A’s routing table. Then we say that B is an ith level
contact ofA, and thatA has an ith level back-pointer toB. In Kad,
any node can be a contact of another node. Due to the symmetry
of the XOR metric, if both A and B are in the other’s routing table
then they are most likely at the same level. Also, from the routing
table owner’s point of view, a k-bucket on the ith level covers a

1
2i fraction of the ID space. For example, the 11 k-buckets on the
4t h level cover 11

16 of the ID space. Hence, on average,
11
16 of the

owner’s queries will use contacts in these k-buckets as the first hop.
A Kad node learns about new nodes either by asking nodes it al-

ready knows while searching, or by receiving messages from nodes.
New nodes are inserted into its routing table if the corresponding
k-bucket is not full or can be split. A node tests the liveness of its
contacts opportunistically while searching, or (if necessary) period-
ically with HELLO_REQ messages to check if they are still alive.
The testing period for a contact is typically 2 hours.
A Kad node Q looking for a particular keyword first computes

the MD4 hash of that keyword as the key and starts a keyword
search following steps shown in Figure 2. Starting from its rout-

ing table, at each step Q picks its three contacts closest to the key
and sends them a KADEMLIA_REQ message; these contacts send
KADEMLIA_RES messages with additional contacts, and the pro-
cess repeats until a replica root is located. While this query pro-
cedure is similar to that of Kademlia, the major difference is the
termination condition. After finding a live replica root, Q sends
a SEARCH_REQ message including the keyword to the replica
root, which returns many “matches” to the keyword. Q stops send-
ing both KADEMLIA_REQ (for finding more replica roots) and
SEARCH_REQ (for finding more matches) messages when it re-
ceives more than 300 matches, even if all of the matches are re-
turned by a single replica root.
If all three nodes that Q contacts in a given step are offline or

simply slow, Q attempts to recover the search as follows. For each
keyword query, Q maintains a long list of backup contacts, con-
sisting of 50 contacts from Q’s routing table plus unused contacts
returned by intermediate hops. Until a query terminates, Q will
wake up once every second and check whether the query has re-
ceived any new replies in the last three seconds; if not, it picks
the closest backup node, removes it from the list, and sends it a
KADEMLIA_REQ message. After 25 seconds,Q prepares to stop
and will not send more requests to intermediate hops. For example,
if all nodes in the list are offline, then Q sends 22 (25 − 3 = 22)
messages to backup contacts, before it eventually times out.

2.2 Design Vulnerabilities in Kad
Our attacks are all primarily enabled by Kad’s weak notion of

node identity and authentication. Since, as in most file sharing net-
works, there is no admission control, nor any cost of creating an
identity, the Sybil attack is straightforward to implement, although
we will show that by itself this is a somewhat ineffective attack. Of
more concern is that, while IDs are persistent, there is no verifiable
binding between a host and its ID. The design decision to support
persistent IDs allows a user to significantly reduce her startup time
– recall that a node’s routing table depends on its ID. The wall-
clock time to construct a reasonably complete routing table is well
above the median Kad session time of 7 minutes reported in [32],
and keeping a persistent ID and routing table for each node makes it
possible to avoid this penalty. This design also avoids complication
from NAT traversal. Furthermore, it seems that the designers chose
to avoid tying a node’s ID to its IP address to support node mobility,
e.g. users who move from wired to wireless connections or con-
nect via a modem pool with (consequently) varying IP addresses.
A further optimization with this approach is that a node that goes
offline at one (IP, port) location and comes online at another can
essentially “repair” the routing table entries it affects by doing so.
Unfortunately, the decision to create no verifiable binding between
a node and its ID make it possible for anyone to exploit the “repair”
operation and collect more routing table entries. In essence, the ID
of a node serves as its authentication as well; since node IDs are
public information, this predictably leads to several attacks.

2.3 Attack Model
Our attack is designed under the assumption that the attacker con-
trols only end-systems and does not require corruption or misrout-
ing of IP-layer packets between honest nodes. We describe our
attack under the assumption that the attacker’s goal is to degrade
the service of the Kad network, by causing a significant fraction
of all keyword searches to fail. However, the same techniques can
be applied with little modification to cause failure of a significant
fraction of searches either for a specific set of keywords or initiated
by a specific set of nodes.
We also assume an attacker’s primary cost is in bandwidth, and

the attacker has enough computational and storage resources to pro-
cess messages and store states. This is a realistic assumption since,
as shown in Section 3, processing Kad messages does not involve

expensive computations and the total amount of state in the network
is under 20GB.

3. ATTACKING THE KAD NETWORK
Since we assume an attacker does not corrupt IP communication
between honest nodes, to effectively attack keyword queries the at-
tacker must first cause honest nodes to send keyword queries to its
malicious nodes. Then it must make these queries fail. Thus, con-
ceptually, our attack has a preparation phase, where the attacker
poisons as many routing table entries as it can manage, and an ex-
ecution phase, where the attacker causes queries routed through its
malicious nodes to fail. In practice, however, the execution phase
can begin in parallel with the preparation phase.

3.1 Preparation Phase
Crawling. Suppose an attacker controls n hosts with index i, i ∈
[0, n−1]. For simplicity, we assume each host has an equal amount
of bandwidth. The attacker creates a table with tuples 〈i,IPi , porti〉.
This table is distributed to the n hosts. Then a malicious node is
started on each computer. Each node generates an IDMi = 2128

×i
n

so that the n IDs partition the ID space into n pieces. Next they
join the Kad network and find their neighbors in the ID space.
Starting from its neighbors, each Mi discovers nodes with IDs in
the range [Mi , Mi + 1), by picking a previously discovered node,
and “polling” its routing table by making appropriate KADEM-
LIA_REQ queries. This process continues until Mi either fails
to discover additional nodes or finds its available bandwidth ex-
hausted.
Back-pointer hijacking. In addition to polling the nodes that it
discovers, after Mi learns the routing table of node A, it also hi-
jacks a certain fraction of the pointers in A’s routing table as fol-
lows. SupposeA has honest nodeB in its routing table. By sending
a HELLO_REQ message to A claiming to be from IDB , Mi can
hijack this back-pointer. This hijacking is attributable to three fac-
tors. First, Kad does not have ID authentication and allows nodes
to pick their own IDs. Second, Kad node IDs are not specific to
a node’s network location; a node that changes its IP address will
retain its ID and update its address with HELLO_REQ messages.
Third, when receiving such a HELLO_REQ, A does not verify
whether B is still running at the current IP address and port.
After creating a false contact by hijacking a back-pointer, it is

possible that the false contact could later be corrected by one of
three methods: 4
1. IfA is also inB’s routing table, andB sends a KADEMLIA_REQ
or HELLO_REQ toA,Awill update the pointer. To prevent this,
Mi will also hijack B’s pointer to A.

2. If node C is one of A’s contacts, and has B as a contact, C
could include B in a KADEMLIA_RES message. This can be
prevented by hijacking C’s pointer toB as well.

3. If node C is not one of A’s contacts, but has B as a contact,
there is a small probability that when C is discovered as an in-
termediate hop, it returns B in a KADEMLIA_RES message.
This scenario is unlikely, since A already has a pointer to B’s
ID, and the intermediate hops of a keyword search increase the
prefix match length unless a timeout occurs.

In our attack, Mi attempts to prevent cases (1) and (2) above. Our
experiments produced no instances of case (3).

3.2 Execution Phase
The execution phase of our attack exploits weaknesses in Kad’s
routing algorithm to cause queries to fail when a malicious node is
used as a contact. In other DHTs, malicious nodes can fail queries
4In eMule, only the first scenario will result in correction of the
back-pointer.

by query dropping, misrouting queries, and/or replica root imper-
sonation. The Kademlia parallel routing algorithm is designed to
resist dropping, and in particular it would be counterproductive for
an attacker to fail to respond to a KADEMLIA_REQ, because this
would cause the querier to drop the malicious node from its rout-
ing table. We note, however, that Kad inherits a generic weakness
from Kademlia: at each intermediate step, the closest contacts are
used to discover the next hops, so that an attacker who knows or
can impersonate arbitrary nodes in the ID space can “hijack” the
query by returning at least α nodes that are closer to the key than
those returned by other intermediate hops. The details of how to
fail a query after this point depend on the termination conditions of
the DHT. We tested two methods of failing a Kad query using this
idea.
Fake Matches. This attack exploits the fact that a keyword query
terminates when the querier Q receives more than 300 keyword
matches in response to SEARCH_REQ messages. Thus, when a
malicious node receives a SEARCH_REQ for a keyword, it can
send a list of 300 bogus matches in response. Since the response list
is long enough, the querier will stop sending KADEMLIA_REQ
or SEARCH_REQ messages even though it hasn’t reached a live
honest replica root yet, causing the query to fail.
We found that this attack works with aMule and early versions

of eMule clients 5. However, eMule clients version 0.47a and later
will not halt unless the matches all correspond to the specific key-
word the user used to generate the query. Thus, to defeat this client,
the attacker must be able to “reverse” the hashed key and find the
corresponding keyword. For many popular searches, this can be
done in advance by dictionary search; however, we did not attempt
to measure the dictionary size necessary to ensure a high probabil-
ity of success with this approach.
In either case, this attack depends on malicious nodes receiv-

ing SEARCH_REQ requests before honest replica roots can re-
spond to a search. Our attack achieves this goal as follows. Each
KADEMLIA_REQ for a keyword query carries the key. Node N
is a replica root for key K if IDN ⊕ K < δ where δ is the search
tolerance. Thus for each KADEMLIA_REQ received, a malicious
node can generate a contact whose ID is a replica root. The IP
and port fields are set to point to the malicious node Mi , where
i = K mod n. Upon receiving this reply, the querier will send
a KADEMLIA_REQ to the malicious colluder Mi to find more
replica roots and to confirm that it is alive. The colluder Mi re-
ceives the KADEMLIA_REQ and finds i = K mod n, i.e., it
is responsible for sending false matches to the keyword. Hence it
replies to show it is alive without introducing other colluders. Re-
ceiving this reply, the querier sends a SEARCH_REQ message to
Mi , who proceeds as described above.
“Stale” contacts. Amore efficient attack that works with all clients
we tested exploits Kad’s timeout conditions. Recall that if all three
of the closest nodes at a given step timeout, a Kad client will find
its closest backup contact, and try to contact that node; this process
repeats every second until more live contacts are found or 25 sec-
onds have elapsed. Thus, when M receives a KADEMLIA_REQ,
it generates a KADEMLIA_RES with 30 contacts. For the ith con-
tact, the ID is set as key − i, and the IP and port can be set to
anything not running a Kad node. For example, they can be set
to an unroutable address or a machine targeted for a DDoS attack.
Receiving the reply from M , with high probability Q inserts the
contacts at the beginning of its list of possible contacts since these
contacts are very close to the key. Three of them will be tried byQ
immediately. Since they don’t reply, after three seconds, Q will try
one more every second. Finally, after another 22 seconds, Q will
stop trying more contacts. The attack may fail ifQ finds an honest
replica root before it receives the reply fromM .

5At the time of writing, we used aMule 2.1.3 and eMule 0.48a

This attack is simple, works with high probability against any
keyword, and has a very low bandwidth overhead - it takes one
KADEMLIA_RES to attack one keyword query. After compress-
ing, the message contains about 128 bytes of data. Thus our at-
tacker simply attacks every keyword query it sees in this manner.

4. ATTACK EVALUATION
To evaluate the effectiveness and bandwidth cost of our attack,

we launched the attack on a large number of simulated victim nodes
connected to the Kad network. The victim nodes use a modified
aMule client to save resources. We also validated the attack tech-
niques at a smaller scale using the latest eMule release at the time
of writing (0.48a).

4.1 Validation of Attack Techniques
We validate the effectiveness of our attack techniques against

eMule with the following experiment. We used one victim nodeQ
– running version 0.48a of the eMule client – and one malicious
node M . In one run of the experiment, Q joins the Kad network
and populates its routing table. After an hour, we start the malicious
node, which tries to hijack fraction p of Q’s routing table. 6 Fig-
ure 3 (a) shows the experiment result where p is set to 10%, 20%,
and 30%. The measured percentage is computed as f = h

c , where
h is the number of contacts hijacked by M and c is the number
of contacts polled by M . The measured percentage is larger than
the planned percentage because the hijack code was configured to
hijack a routing table with 860 contacts. At the time of hijacking,
however, Q has only about 750 contacts and some of the contacts
are stale, so they are neither returned by Q nor used in keyword
queries.
To test the effectiveness of our attack on keyword queries, we

measured the percentage of failed keyword queries given different
percentages of contacts hijacked. With f fraction of contacts hi-
jacked, with probability at least 1−f 3 , at least one hijacked contact
should be used in a query. In the experiment, we input a list of 50
keywords 7 to Q and count the number of failed queries. Figure 3
(b) shows that the result is close to our expectation.

4.2 Bandwidth Usage
In our attack, bandwidth is used for three tasks: hijacking back-
pointers, maintaining hijacked back-pointers, and attacking key-
word queries. Assuming the worst case for the attacker, every node
is stable and its routing table is fully populated. The Kad network
has approximately one million nodes, so a fully populated rout-
ing table has 86 k-buckets – 11 k-buckets on the 4th level and 5
k-buckets for each of the log(1, 000, 000) − 5 ≈ 15 additional
levels.
Hijacking Back-Pointers. Suppose an attacker wants to stop frac-
tion g of the queries of a victim, then it should hijack p = 3

√
1 − g

of the victim’s routing table. The attacker can send one KADEM-
LIA_REQ message to poll a k-bucket, so it takes 86 KADEM-
LIA_REQmessages to poll a routing table. Then the attacker sends
one HELLO_REQ message per hijacked back-pointer. So it takes
86×10×p = 860×p HELLO_REQmessages to hijack p fraction
of backpointers in a routing table. 8 Therefore, in the preparation
6To simplify the discussion, p fraction of contacts in each of Q’s
k-buckets are hijacked.
7The list includes popular movies, songs, singers, softwares, file-
name extensions, etc.
8To simplify the discussion, we assume the attacker hijacks the
same percent of contacts in every k-bucket of a victim. To opti-
mize the attack, an attacker should prefer to hijack high level back-
pointers, since high level contacts are used more often in queries.
As a special example, on average, 11

16 = 68.75% of a node’s queries
use the top (4th) level contacts. In this case, the number of mes-
sages (of all four types) and bandwidth costs are less.

10 20 300

10

20

30

40

Planned Percentage of Hijacked Contacts

M
ea

su
re

d
Pe

rc
en

ta
ge

15

29

39.8

15 29 39.80

20

40

60

80

Percentage of Hijacked Contacts

Pe
rc

en
ta

ge
 o

f F
ai

le
d

Q
ue

rie
s

Expected
Measured

(a) Hijacking back-pointers (b) Attacking keyword queries

Figure 3: Attack Technique Validation

phase, the number of messages and the bandwidth cost to attack g
fraction of queries sent by n Kad nodes are:

Number of messages = 86 × n + 860 × 3
p

1 − g × n (1)

Bytes in = 86 × n × 322 + 860 × 3
p

1 − g × n × 55 (2)

Bytes out = 86 × n × 63 + 860 × 3
p

1 − g × n × 55 (3)

Maintaining Hijacked Back-Pointers. Kad nodes ping their con-
tacts periodically. To maintain hijacked back-pointers, malicious
nodes must reply to these HELLO_REQ messages. The period of
pinging a contact increases and will be fixed at two hours if the
contact is in the routing table for more than two hours. For mainte-
nance, every hour, a node also sends a KADEMLIA_REQmessage
to fix a k-bucket, but only if the k-bucket has eight or more empty
slots. We ignore the cost of handling these KADEMLIA_REQ
messages since they are less frequent. It is very unlikely that a
high level k-bucket has eight or more empty slots, especially when
an attacker hijacks high level back-pointers. Hence the number of
messages and the bandwidth cost are:

Number of messages per second =
860 × 3

√
1 − g × n

2 × 3600
(4)

Bytes in (out) per second =
860 × 3

√
1 − g × n × 55

2 × 3600
(5)

Attacking Keyword Queries. The uplink cost to attack one key-
word query is a single 128-byte KADEMLIA_RES message, while
the downlink cost is a single 63-byte KADEMLIA_REQ message.
Suppose the users of the Kad network issue w keyword queries per
second, on average. The total bandwidth cost of attacking g frac-
tion of keyword queries is w × g KADEMLIA_RES messages per
second. Hence we estimate that the number of messages and the
bandwidth cost to attack g fraction of queries sent by n Kad nodes
are:

Number of messages per second = w × g × n (6)
Bytes in per second = w × g × n × 63 (7)

Bytes out per second = w × g × n × 128 (8)

To estimate w, we joined 216 nodes with random IDs to the
Kad network, each through a different bootstrapping node scattered
throughout the Kad network. Every node counted the number of
keyword-search KADEMLIA_REQ messages it received in each
one-hour period and the average was computed. This experiment
ran for 24 hours. The one-hour period with the highest average
number of queries resulted in 405 queries per host. 9 Hence we
9Although the average number of query messages was measured
during a short period, we believe this is sufficient to show the order
of magnitude of the bandwidth required for our attack.

estimate that, to attack all keyword queries of the whole Kad net-
work, the download bandwidth required is 7.09 megabytes per sec-
ond (MBps), and upload bandwidth required is about 14.4 MBps.

4.3 Large Scale Experiment
In this experiment, we use about 500 PlanetLab [5] machines to

run a large number of Kad nodes as victims, and a server in our
lab to run the attackers. The victim nodes for this experiment ran a
slightly modified aMule client: as with eMule and aMule, the vic-
tim client has two layers – the DHT layer provides lookup services
(for keyword search, for example) to the application layer, which
handles functions like file publishing and retrieval. The DHT layer
was largely unmodified. It follows the same protocols for main-
taining routing tables and parallel iterative routing as eMule and
aMule, and uses the same system parameters, e.g, time interval be-
tween HELLO_REQ messages. In the application layer, the mod-
ified client issues random keyword queries periodically. To save
bandwidth and storage of the PlanetLab nodes, however, it does not
support PUBLISH_REQ and SEARCH_REQmessages from other
Kad nodes. In other words, the victims provided routing service to
the Kad network, but not binding services.
During the experiment, about 25,000 victim nodes bootstrapped

from 2000 different normal Kad nodes. If it fails to bootstrap, a
victim node exits without issuing any keyword queries. In our
experiments, 11, 303 − 16, 105 nodes bootstrapped successfully.
After a successful bootstrap, each node sends a message to the at-
tacker registering as a victim. In the next two hours, the victims
build their routing tables and help other normal Kad nodes route
KADEMLIA_REQ messages. After that, each victim sends 200
queries, one every 9 seconds, and exits five minutes after sending
the last query. The attacker starts at the same time as the victims.
It listens for registration messages, and starts to hijack the routing
tables of victims after 1.5 hours, then attacks every keyword query.
The attack run for one hour (half hour for hijacking, half hour for
attacking queries). To avoid attacking normal Kad nodes, the vic-
tims do not provide the attacker as a contact to normal Kad nodes.
Figure 4 (a) shows the comparison between expected and mea-

sured keyword query failures, where we say a query fails if the
victim does not find any normal Kad nodes within the search toler-
ance of the target ID. In the 10%, 20%, and 30% cases, the mea-
sured frequency is higher than the expected number. However, the
difference between the measured numbers and expected numbers
decreases as the percentage of hijacked contacts increases. In the
40% case, the measured frequency is slightly lower than the ex-
pected figure.
Figure 4 (b) and (c) show the attacker’s message and bandwidth

costs. The attack cost was slightly less than expected. To find
the reason, the messages collected are categorized into three cat-
egories: (i) hijacking, (ii) maintenance, and (iii) routing attack, as

10 20 30 40
0

10

20

30

40

50

60

70

80

90

Percentage of Hijacked Contacts

Pe
rc

en
ta

ge
 o

f F
ai

le
d

Q
ue

rie
s

Expected
Measured

10 20 30 40
0

100

200

300

400

500

600

700

800

Percentage of Hijacked Contacts

Nu
m

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Expected Send
Measured Send
Expected Received
Measured Received

10 20 30 40
0

10

20

30

40

50

60

70

Percentage of Hijacked Contacts

Ba
nd

w
id

th
 U

sa
ge

 (K
B)

 p
er

 V
ic

tim

Expected Send
Measured Send
Expected Received
Measured Received

(a) Query Fail Rate (b) Number of Messages (c) Bandwidth

Figure 4: Large Scale Attack Simulation: 11, 303 16, 105 victims and 50 attackers. In (b) and (c) the numbers of messages and bandwidth costs
are normalized based on the number of victims in each experiment.

ES MS ER MR
0

50

100

150

200

250

300

350

Nu
m

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Hijacking
Maintenance
Routing

ES MS ER MR
0

100

200

300

400

500

600

Nu
m

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Hijacking
Maintenance
Routing

ES MS ER MR
0

100

200

300

400

500

600

700

800

Nu
m

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Hijacking
Maintenance
Routing

ES MS ER MR
0

100

200

300

400

500

600

700

800

900

1000

Nu
m

be
r o

f M
es

sa
ge

s
pe

r V
ic

tim

Hijacking
Maintenance
Routing

(a) 10% (b) 20% (c) 30% (d) 40%

Figure 5: Number of Messages in Detail: ES, MS, ER, MR stand for expected sent, measured sent, expected received, and measured received
respectively. The numbers of messages are normalized based on the number of victims in each experiment.

shown in Figure 5. The number of messages used for hijacking (i) is
close to the expectation. The difference is mainly due to messages
lost at the victim side: one lost KADEMLIA_RES results in several
fewer HELLO_REQmessages. The attackers received many fewer
maintenance messages (ii) than the expectation. This is due to the
short period of the attacks: most victims finished before maintain-
ing their hijacked contacts. In a longer term attack, the number of
messages for maintaining hijacked back-pointers should be close
to the expectation. The attackers receive more routing messages
(keyword queries) (iii) than expected. We analyzed the logs of the
attackers and found that a large number of keyword queries are
received more than once. A victim sends multiple copies of a key-
word query to an attacker if several hijacked contacts are used in
the query. The fact that some keyword queries are received mul-
tiple times and others are not received (hence cannot be attacked)
suggests that the hijacking algorithm can be improved. One way to
improve is to first analyze the polled routing table, then selectively
hijack contacts according to the distance between the contacts. The
number of routing messages sent is close to the expectation because
repeated queries received in a short period are dropped.

5. REFLECTION ATTACK
The major disadvantage of the the proposed attack is that it has

an ongoing cost of around 100 Mbps. However, a slight twist on
this attack involves hijacking a node’s entire routing table so that
the entries in the routing table point to the victim itself rather than
to the attacker - we call this the reflection attack 10. This greatly
reduces the ongoing cost of the attack, while leaving the victim un-
able to contact any other Kad nodes. Since a node does not perform
10It can be argued that a simple check can be performed by every
node so that their entries are not themselves, but this is a proof of
concept and UDP spoofing can easily be performed by the attacker
to have two nodes A and B’s routing table entries point to each
other

any check on an IP address and port to determine whether it is its
own, a hijacked node will continue to send messages to itself and
reply to itself, so that most of the routing table remains hijacked
indefinitely.
Although the attack will render the network nearly inoperable at

the time it is perpetrated, we expect that the Kad network would
slowly recover over time, for a number of reasons. First, there will
be some nodes offline at the time of the attack, who are in the rout-
ing tables of online nodes. When these nodes rejoin the network
and send HELLO_REQmessages to their contacts, their routing ta-
ble entries will be restored. Second, there will be a few contacts in
a node’s routing table that cannot be hijacked: each node classifies
contacts into one of five types, 0-4. Nodes with type 0-2 (which
we will call in aggregate “Type 2”) have successfully responded
to multiple KADEMLIA_REQ or HELLO_REQ messages; those
with type 3 are “new contacts” that have not yet replied to a request;
and nodes with type 4 have failed to reply to a recent request. When
responding to the requests of others, a Kad node will only send a
“Type 2” contact. Thus we can only hijack the “Type 2” contacts;
but a few type 3 or 4 contacts may later reply to the node and be
promoted. Thus it may be necessary to repeat the process periodi-
cally to limit the network’s recovery.
We deployed and tested a small scale evaluation of this type of

attack and found it to be highly successful. The experiment was set
up with 48 victim nodes deployed across 3 machines, each victim
node bootstrapping from a different node in the real Kad network.
Once bootstrapping is complete and after waiting for 5 minutes,
each victim will send a HELLO_REQ to the attacker node. After
waiting 2 hours (to allow the victim nodes to stabilize their routing
tables) the attacker starts the hijacking attack. It will poll the rout-
ing table of each victim and hijack all received contacts. To track
the rate of recovery, the victim nodes print their routing tables ev-
ery 10 minutes. Since the victim nodes are connected to the real
Kad network, and we did not hijack backpointers to the victims,

Figure 6: Average hijacked and total contacts over time

Figure 7: % Successful queries, over 20-minute windows

it should be the case that our experiment overestimates the rate of
recovery.
Figure 6 shows the average number of contacts in the routing

table for the 48 victim nodes. The number of contacts are further
divided by type and whether they were hijacked. At the begin-
ning of the experiment, the number of type 3 contacts is high since
all these contacts have just been discovered. As time progresses,
the number of type 3 contacts decreases, and the number of type
2 contacts increases. After 2 hours, the attacker starts the hijack-
ing attack. The number of hijacked contacts increases rapidly and
then decreases as the victims recover slowly. The number of type 2
contacts includes the number of hijacked contacts. We can see that
even after 8 hours, roughly 70% of the victim’s contacts still point
back to itself. These results suggest that at the full network scale,
a second round of hijacking may be sufficient to fully disconnect
Kad.
We also measured how the query success rate of the victims

changed in the course of the attack. Starting 6 minutes after boot-
strapping, each victim sent a query to a randomly chosen key once
every 3 minutes, and recorded whether it successfully located a
replica root for the key. Figure 7 shows the results of this measure-
ment. We can see that the fraction of successful queries is essen-
tially equal to the fraction of non-hijacked “Type 2” contacts. In
the full attack, the contacts of these nodes would also be useless, so
this experiment understates the impact of the attack.
Finally, we recorded the cost, in bytes sent and received, of the

attack. The total number of bytes per victim sent by the attacker
was 52,718, and the total number of bytes per victim received by
the attacker was 74,992. Thus an attacker with 166 Mbps of down-
link capacity and 117 Mbps uplink capacity could complete the
reflection attack on the entire Kad network in one hour, with very

little subsequent bandwidth usage.

6. COMPARISON TO OTHER ATTACKS
In this section, we discuss and evaluate several alternative attacks

on Kad that rely on similar weaknesses, and present techniques to
mitigate these attacks.

6.1 Sybil Attack
Because P2P file sharing systems lack any form of admission

control, they are always vulnerable to some form of Sybil attack.
A Sybil attack on a P2P routing protocol is used to collect back-
pointers, which are used to attract query messages. Therefore,
the effectiveness of a Sybil attack can be computed from the set
of back-pointers collected by the Sybil nodes. In a measurement
study, we joined 28 Sybil nodes to the Kad network. These Sybil
nodes were modified to record information about their back-pointers,
while maintaining their routing tables and responding to KADEM-
LIA_REQ messages normally. We identified back-pointers to a
Sybil node S as follows. Normal nodes find out if their contacts
are alive or not by sending HELLO_REQ or KADEMLIA_REQ
messages before their expiration time. Since the longest expiration
time of a contact is two hours, S keeps a list of the nodes that have
sent it a KADEMLIA_REQ or HELLO_REQ message in the past
two hours. At the same time, periodically, S sends a KADEM-
LIA_REQ message to every node B on this list with its nodeID
(S) as the target key. If B’s KADEMLIA_RES includes S, then it
knows that it is on B’s routing table.
In Figure 8 (a), we see that, on average, a Sybil node collects

about 500 back-pointers after 24 hours, and about 1400 back-pointers
after one week (168 hours). The fraction of queries a Sybil node
receives from a back-pointer depend on the common prefix length
(CPL) between the Sybil node’s ID and the back-pointer’s ID, be-
cause the CPL determines the Sybil node’s contact level on the
back-pointer’s routing table.
Figure 8 (b) shows that, the number of back-pointers with CPL

> = 15 quickly becomes stable at approximately 50. After 40
hours, the number of back-pointers with CPL ∈ [10, 14] is sta-
ble at approximately 200. Assuming node IDs are uniformly ran-
dom, on average, there are approximately 1000 (1

210 ×1, 000, 000)
nodes with CPL > = 10. The Sybil nodes are on 1

4 of these 1000
nodes’ routing tables. The number of back-pointers with shorter
CPL keeps increasing since there are more potential candidates.
The early hours of Figure 8 (b) also show that, initially, the num-
ber of back-pointers with CPL < = 4 increases slower than others.
This is because nodes’ high level k-buckets are usually full, so it
takes more time for Sybil nodes to become high level contacts.
We consider a Sybil node to be completely part of the Kad net-

work if it attracts as many queries as a stable, honest node 11. Thus,
both Sybil and normal nodes should have the same number of ith
level back-pointers, where i ∈ [0, log(N)) (Note that higher level
contacts are used more frequently than lower-level ones). Since on
average, the number of contacts and the number of back-pointers
of a node are the same, we say a Sybil node has successfully joined
the Kad network if it has approximately 11 × 10 4th level back-
pointers and 5 × 10 ith level back-pointers where i ∈ [5, log(N)).
Following this argument, we compute the effectiveness of a Sybil
node (how many stable nodes it is equivalent to) as follows, assum-
ing it has m back-pointers with CPLi , i ∈ [1, m]:

effectiveness =
mX

i = 1

αi , (9)

where αi =
 1

160 if CPLi = 0
1

160 × 0.8 × 1
2CP Li−1 else

11New nodes that just joined the network are not included.

0 50 100 1500

500

1000

1500

2000

2500

Time (hours)

Nu
m

be
r o

f B
ac

k
Po

in
te

rs

0 50 100 1500

100

200

300

400

500

600

700

Time (hours)

Nu
m

be
r o

f B
ac

k
Po

in
te

rs

CPL:0 ~4
CPL:5 ~9
CPL:10 ~14
CPL:15 ~

0 50 100 1500

0.5

1

1.5

2

2.5

3

3.5

Time (hours)

Ef
fe

ct
iv

en
es

s

(a)Total (b) Average, clustered by CPL (c) Effectiveness
Figure 8: Sybil Attack Measurement: 28 Sybil nodes run for one week. (a) shows the total number of back-pointers. One line represents one node.
(b) shows the average number of back-pointers clustered by the common prefix length (CPL) between the Sybil node’s ID and the back-pointer’s ID.
(c) shows the average of Sybil nodes’ effectiveness computed with formula (9)

Figure 8 (b) shows that the effectiveness of a Sybil node reaches 1
after approximately 24 hours. Then, the effectiveness increases lin-
early and reaches 3.5 after 162 hours (almost a week). A linear re-
gression with intercept 0 gives the slope of this line as 0.02 effective
nodes per Sybil node-hour, with p-value 0.014 and mean squared
error 0.12. Thus we estimate that, to control 40% of the backpoint-
ers in Kad, a naïve Sybil attack will require roughly 400, 000/0.02 =
20 million Sybil node-hours. Clearly backpointer hijacking dra-
matically reduces the wall-clock time and bandwidth expenditure
necessary to attack Kad.

6.2 Index Poisoning Attack
In the index poisoning attack [16], an adversary inserts massive

numbers of bogus bindings between targeted keywords and nonex-
istent files. The goal is that when a user searches for a file, she will
find as many or more bogus bindings as bindings to actual files.
For instance, if every legitimate binding is matched with a bogus
binding, then 50% of her search results are useless; if there are
three bogus bindings for every legitimate binding, then 75% of her
search results are useless.
This attack can also be applied to deny access to the keyword

search service provided by Kad, by targeting all existing (keyword,
file) pairs. As with our attack, this attack would involve two phases:
a preparation phase in which the attacker infiltrates the network
to learn all possible (keyword, file) pairs and an execution phase
to insert three bogus (keyword, file’) pairs for every pair in the
network. Thus the bandwidth complexity of the attack depends
on the number of bindings currently in the network and the rate at
which bindings must be refreshed.
To estimate the number of (keyword, file) bindings in the Kad

network, we joined 256 nodes with uniformly distributed IDs to
the live Kad network, and recorded all "publish" messages received
by each node for one 24-hour period. Each publish messages is
a binding between a (hashed) keyword, a (hashed) file, and some
meta-information such as the file name and size. To be conserva-
tive, we ignored the meta-information and counted only the number
of unique (keyword, file) hash pairs seen by each node. The total
number of such unique pairs seen by our 256 node sample was
2,000,000. Since the average size of publish message seen by our
sample was 163 bytes, we estimate that publishing enough strings
to cause 50% of all Kad bindings to be bogus would require 14.74
MBps; to get to 75% the required bandwidth is 44.22 MBps. Due
to the fact that bindings are removed after 24 hours, this cost is
incurred continuously throughout the attack.
Note that this attack has a cost roughly three times the cost of

our attack, and is also much weaker: on average, a determined user
can simply try four of the bindings returned by a poisoned key-

word search and one will be a legitimate entry. Furthermore, in-
dex poisoning does not interfere at all with the underlying routing
mechanism, so DHT lookups related to joins, leaves, and routing
table maintenance proceed without disruption. Attacks based on
our method affect all DHT lookups equally.

7. MITIGATION
Our attacks rely on two weaknesses in Kad: weak identity authen-
tication coupled with persistent IDs allow pointer hijacking, so that
we can intercept many queries; while overaggressive routing (al-
ways contacting the three closest contacts) allows us to hijack a
query once it has been intercepted. We will discuss measures to
mitigate each of these weaknesses, as well as the extent to which
they are incrementally deployable.
Identity authentication. Recall that the proposed attack is suc-
cessful because the malicious nodeM can hijack an arbitrary entry
inA’s routing table (say, pointing toB) by sending a HELLO_REQ
to A with the fields 〈IDB , IPM , portM 〉. The attack can be miti-
gated through a number of means. The simplest is to simply disre-
gard these messages when they would change the IP address and/or
the port of a pointer: if a node goes offline and comes back with a
different IP address and/or port, it will be dropped from any routing
tables it is on, but can retain its own routing table.
Another lightweight mitigation technique is to “trust but verify:”

When A receives a HELLO_REQ to update B’s IP and port, it
sends a HELLO_REQmessage to 〈IPB , portB 〉 to see if B is still
running with the previous IP and port. If B (or some node) replies
to the HELLO_REQ, then A will not update its routing table. This
solution allows nodes to retain their routing tables across invoca-
tions, and to stay on the routing tables of others after changing IP
addresses. On the other hand, it does not completely eliminate hi-
jacking: since Kad nodes have high churn rates, it is likely that
many entries on A’s routing table will be offline, and M can ef-
fectively hijack these entries. However, the cost of the attack now
increases asM will expend time and bandwidth looking for offline
contacts. Both this technique and the previous one are fully incre-
mentally deployable in that a client using these algorithms can fully
interoperate with current Kad nodes, and will be protected against
having its own routing table hijacked. However, these techniques
do not protect against hijacked intermediate contacts that might be
returned by older clients during a query, or against Sybil attacks
that claim an ID close to an expired routing table entry.
Limited protection from Sybil attacks can be obtained using a

semi-certified identity, for example Node B could use hash(IPB)
as its node ID.12 Here every ID is tied with the corresponding IP

12Several alternatives are possible: the 64 MSBs can be derived

Table 1: Comparison of identity authentication methods
Method Secure Persistent ID Incremental deployable

Drop Hello with new IP/Port Yes No Yes
Verify liveness of old IP No Yes Yes
ID=hash(IP) Yes No No
ID=hash(Public Key) Yes Yes No

address; clients should refuse to use contacts that do not have the
proper relationship between ID and IP address. This approach pre-
vents routing table hijacking, and limits the set of IDs an attacker
can choose in a targeted attack. However, it is not incrementally
deployable, and does not support mobility: if a node changes IP ad-
dresses, it will need to rebuild its routing table and will be dropped
from the routing table of others.
Another alternative is that node B uses hash(PKB) as its ID,

wherePKB is a public key. B can then either sign its HELLO_REQ
when it changes its IP and/or port, or extra rounds (with new op-
codes) can be added to allow newer clients to authenticate node
IDs, while older clients continue to ignore the existence of this
binding. In eMule, every node already generates its own pub-
lic/private key pair, used for an incentive mechanism similar to that
of BitTorrent. This solution allows all clients to retain their exist-
ing routing tables. Newer clients will have only authenticated con-
tacts on their routing tables, while older clients will have both types
of contacts. If intermediate contacts are also authenticated, this
solution protects new clients from hijacked intermediate contacts,
but requires a critical mass of peers running authenticated clients.
It does not prevent chosen-ID attacks, although such attacks will
carry higher computational costs due to the need to generate public
keys that hash to a chosen ID prefix.
Table 7 summarizes the methods discussed above. Since a miti-

gation method must be secure and incrementally deployable, “Drop
HELLO_REQ with new IP” becomes the winner. In addition, this
method does not change the behavior of the Kad network. To sup-
port this argument, we conducted an experiment recording the fre-
quency of HELLO_REQ messages with a new IP address and/or
port. We joined 214 nodes to the Kad network and recorded every
HELLO_REQ with new IP and/or port. After 4.5 days, on average,
each node had 5284 different contacts, of which only 171 contacts
(3.23%) were updated with a new IP and/or port.
Routing Corruption. Without some defense against Sybil attacks,
routing attacks are still possible even with the above mitigation
mechanisms. Recall that routing attacks work in Kad because al-
though every node performs three parallel lookups, those lookups
are not independent. If node A wants to perform a search, it will
send out three KADEMLIA_REQ to the closest nodes ((B, C, and
malicious node M) to the target T (in the XOR metric) that A
knows about. M can “hijack” all three search threads by replying
to A with at least three contacts that are close to T . This can be
mitigated by keeping the strands of a search separate: at each stage
of the search, A should send a KADEMLIA_REQ to the closest
contact it has not yet used in each strand. Note that it is possi-
ble that a thread of the lookup might “dead-end.” In this case, A
should restart the thread from the earliest unused contact in another
thread. A should not terminate a search until it has received a reply
to a SEARCH_REQ or timed out in each thread.
This routing algorithm mitigates, but does not eliminate, the ef-

fects of routing attacks. Suppose that an attacker controls 40% of
all of the backpointers in the current Kad network; then he should
be able to prevent roughly 98% of all queries from succeeding, un-
der the current routing algorithm – he has a 78% chance of stopping
the query at each hop – but could prevent only 45% of queries made
with the “independent thread” routing algorithm. At 10% of back-

from hash(IPB) and the 64 LSBs from hash(IPB ‖portB) to
support NAT; if subnet-level attackers are a concern the 64 MSBs
can be derived from hash(IPB /24); etc.

pointers, these figures become 59.5% and 1.7%, respectively. We
thus conclude that this technique is easy to incrementally deploy
(and will immediately improve attack resistance for any client that
upgrades), and that it is critically important to implement mitiga-
tion techniques for both weaknesses.

8. RECENT CHANGES
New versions of both the aMule and eMule clients have recently
been released – aMule 2.2.1 on June 11, 2008 and eMule 0.49a
on May 11, 2008. Both clients use the same updated version of
the Kad (which we will call Kad2) algorithm.13 The main changes
which affect our attacks are described here.
Kad2 implements a flooding protection mechanism that limits

the number of messages processed from each IP address, for exam-
ple, a node can receive at most 1 KADEMLIA_REQ per IP address
every 6 seconds. While this mechanism increases the time required
to poll a single routing table, it does not increase the time required
to poll the entire network, since an attacker can contact many nodes
in parallel while not exceeding the rate of 1 request per 6 seconds
at any individual node.
Each Kad node limits entries in its routing table by IP address

and /24 subnet. Clearly, this change prevents the reflection attack
presented in Section 5. However, if backpointer hijacking is still
possible, an attacker who can spoof UDP packets can still effec-
tively partition the network into disjoint subsets of size 900 by
pointing all of the routing table entries of each partition to the other
members of the partition.
Finally, Kad2 includes code that may be used to prevent hijack-

ing. The new code contains a boolean variable which indicates
whether entries in the routing table can be updated (change in IP
address). This variable can be set to false so that the entries are
never updated and this will prevent a hijacking attack (This is our
first proposed mitigation method in Section 7 – "Drop Hello with
new IP/Port"). Since this variable is set to true currently (to re-
duce the number of dead contacts and to enable long-lived nodes to
continuously contribute to the network, although our measurements
indicate that such behavior is uncommon) it does not prevent hi-
jacking attacks; we have empirically confirmed this by running the
new client and successfully hijacking a single backpointer.
The lastest eMule and aMule clients implement Protocol Ob-

fuscation [22] by encrypting packets. A node sends different en-
cryption keys to different contacts in plaintext when the contacts
are inserted into its routing table, and it stores these keys in the
routing table along with the contacts’ protocol versions. In future
protocol versions, these encryption keys could also be used to serve
as authentication tokens to prevent hijacking attacks; note that an
attacker cannot utilize clients’ backward compatibility to bypass
the authentication step because the contacts’ protocol versions are
recorded in the routing table. In this case, although it is still possi-
ble, the hijacking attack is much harder to launch since an attacker
needs to intercept the communication between honest nodes.
In summary, the latest Kad clients implement several features

which could be used in future versions to mitigate our attack. How-
ever, the current version only slightly increases the cost of our at-
tack. We still need only 1 IP address with the same network and
storage resources to crawl the whole Kad network and collect the
routing tables of all nodes. To hijack backpointers, our attack now
requires 1 IP address per hijacked contact. For example, to hijack
30% of the top level buckets (3 out of 10 contacts in each bucket)
in each routing table (see Footnote 8) – stopping more than 60% of
queries – now requires 3∗11 (top-level buckets) = 33 IP addresses.
Note that the same 33 IP addresses can be used for all of the hi-
jacked backpointers since IP filtering is done locally for each node.
13Both clients still support the old Kad protocol for backward com-
patibility.

9. RELATED WORK
Since Kademlia [20] was introduced in 2001, several variations
have been implemented, including the discontinued Overnet and
eDonkey2000 projects, and also the separate eMule [11], aMule [1]
and MLDonkey projects. Kademlia is in use by several popular
BitTorrent clients as a distributed tracker [2, 18, 3]. Because Kad
seems to be the largest deployed DHT, several studies have mea-
sured various properties of the network. Steiner et al. [27] crawl
the Kad network and report that most clients only stay for a short
period and only a small percentage stay for multiple weeks; while
Stutzbach and Rejaie measured the lookup performance [31] and
churn characteristics [32] of the deployed Kad network. None of
these works address the security of Kad.
Sit and Morris [26] present a taxonomy of attacks on DHTs and

applications built on them. They further provide design principles
to prevent them. Lynch et al. [17] propose to use a Byzantine Fault
Tolerance replication algorithm to maintain state information for
correct DHT routing. The Sybil attack has been studied by sev-
eral groups [14, 9]. Two Sybil-resistant schemes based on social
links were recently proposed in [19, 7]. Castro et al. [4] design
a framework for secure DHT routing which consists of secure ID
generation, secure routing table maintenance, and secure message
forwarding. Fiat and Saia [12, 23] give a protocol for a “content-
addressable” network that is robust to node removal. Kubiatow-
icz [15] make Pastry and Tapestry robust using wide paths, where
they add redundancy to the routing tables and use multiple nodes
for each hop. Fiat et al. [13] define a Byzantine join attack model
where an adversary can join Byzantine nodes to a DHT and put
them at chosen places. Singh et al. [25] observe that a malicious
node launching an eclipse attack has a higher in-degree than honest
nodes. They propose a method of preventing this attack by en-
forcing in-degree bounds through periodic anonymous distributed
auditing. Condie et al. [6] induce churn to mitigate eclipse attacks.
Liang et al. [16] report that substitution of “fake content” in place of
the desired values on the KaZaA P2P network is prevalent but also
detectable. Naoumov and Ross [21] proposed to exploit Overnet
as a DDoS engine with index poisoning and the generic routing ta-
ble poisoning. El Defrawy et al. [8] proposed to misuse BitTorrent
to launch DDoS attacks. While several of these works report on
DHT routing attacks, none address Kad or Kademlia specifically,
and none are tested on a widely-deployed DHT.

10. CONCLUSION
We have demonstrated that it is possible for a small number of
attackers, using approximately 100 Mbps of bandwidth, to deny
service to a large portion of the Kad network. By contrast, direct
DDoS to the same number of hosts would require roughly 1 Tbps of
bandwidth, assuming an average downstream capacity of 1 Mbps
per Kad node. Moreover, we showed that our attacks are more ef-
ficient than currently known attacks (Sybil and Index Poisoning).
These attacks highlight critical design weaknesses in Kad, which
can be partially mitigated.
Even with the recent security updates to Kad, we have shown that

our attack still works using nearly the same resources. However, an
easy change to the code can prevent hijacking attacks.

Acknowledgements. We are grateful to Hendrik Breitkreuz for
helpful discussions about the latest versions of the Kad client. This
work was funded by the NSF under grant CNS-0716025.

11. REFERENCES
[1] aMule network. http://www.amule.org.
[2] Azureus. http://azureus.sourceforge.net.
[3] BitComet. http://www.bitcomet.com.

[4] CASTRO, M., DRUSCHEL, P., GANESH, A., ROWSTRON, A., AND
WALLACH, D. S. Secure routing for structured peer-to-peer overlay
networks. In OSDI (2002).

[5] CHUN, B., CULLER, D., ROSCOE, T., BAVIER, A., PETERSON, L.,
WAWRZONIAK, M., AND BOWMAN, M. Planetlab: an overlay
testbed for broad-coverage services. Sigcomm Comput. Commun.
Rev. (2003).

[6] CONDIE, T., KACHOLIA, V., SANKARARAMAN, S.,
HELLERSTEIN, J., AND MANIATIS, P. Induced churn as shelter
from routing table poisoning. In NDSS (2006).

[7] DANEZIS, G., LESNIEWSKI-LAAS, C., KAASHOEK, M. F., AND
ANDERSON, R. Sybil resistant DHT routing. In ESORICS (2005).

[8] DEFRAWY, K. E., GJOKA, M., AND MARKOPOULOU, A.
Bottorrent: Misusing BitTorrent to Launch DDoS Attacks. InUsenix
SRUTI (June 2007).

[9] DOUCEUR, J. R. The sybil attack. In Proc. of the IPTPS02 (2002).
[10] eDonkey network. http://www.edonkey2000.com.
[11] eMule network. http://www.emule-project.net.
[12] FIAT, A., AND SAIA, J. Censorship resistant peer-to-peer content

addressable networks. In SODA (2002).
[13] FIAT, A., SAIA, J., AND YOUNG, M. Making chord robust to

byzantine attacks. In ESA (2005).
[14] FRIEDMAN, E., AND RESNICK, P. The Social Cost of Cheap

Pseudonyms. J. of Economics and Management Strategy (2001).
[15] HILDRUM, K., AND KUBIATOWICZ, J. Asymptotically efficient

approaches to fault-tolerance in peer-to-peer networks. InDISC
(2003).

[16] LIANG, J., KUMAR, R., XI, Y., AND ROSS, K. W. Pollution in P2P
file sharing systems. In INFOCOM 05 (2005).

[17] LYNCH, N., MALKHI, D., AND RATAJCZAK, D. Atomic data
access in content addressable networks. In IPTPS (2002).

[18] Mainline. http://www.bittorrent.com.
[19] MARTI, S., GANESAN, P., AND GARCIA-MOLINA, H. DHT

Routing Using Social Links. In P2PDB (2004).
[20] MAYMOUNKOV, P., AND MAZÍERES, D. Kademlia: A peer-to-peer

information system based on the xor metric. In IPTPS (2001).
[21] NAOUMOV, N., AND ROSS, K. Exploiting P2P systems for DDoS

attacks. In InfoScale ’06: Proceedings of the 1st international
conference on Scalable information systems (2006).

[22] Protocol Obfuscation.
http://www.emule-project.net/home/perl/help.
cgi?l=1&rm=show_topic&topic_id=848.

[23] SAIA, J., FIAT, A., GRIBBLE, S., KARLIN, A., AND SAROIU, S.
Dynamically fault-tolerant content addressable networks. In IPTPS
(2002).

[24] SINGH, A., CASTRO, M., DRUSCHEL, P., AND ROWSTRON, A.
Defending against eclipse attacks on overlay networks. In EW11
(2004).

[25] SINGH, A., NGAN, T.-W. J., , DRUSCHEL, P., AND WALLACH,
D. S. Eclipse attacks on overlay networks: Threats and defenses. In
Infocom (2006).

[26] SIT, E., AND MORRIS, R. Security Considerations for Peer-to-Peer
Distributed Hash Tables. In IPTPS (2002).

[27] STEINER, M., BIERSACK, E. W., AND EN-NAJJARY, T. Actively
Monitoring Peers in KAD. In IPTPS 07 (2007).

[28] STEINER, M., EFFELSBERG, W., EN NAJJARY, T., AND
BIERSACK, E. W. Load reduction in the KAD peer-to-peer system.
In DBISP2P 2007, 5th International Workshop on Databases,
Information Systems and Peer-to-Peer Computing, September, 24,
2007, Vienna, Austria (Sep 2007).

[29] STEINER, M., EN NAJJARY, T., AND BIERSACK, E. W. Analyzing
peer behavior in KAD. Tech. Rep. EURECOM+2358, Institut
Eurecom, France, Oct 2007.

[30] STEINER, M., EN-NAJJARY, T., AND BIERSACK, E. W. A global
view of kad. In IMC ’07: Proceedings of the 7th ACM SIGCOMM
conference on Internet measurement (New York, NY, USA, 2007),
ACM, pp. 117–122.

[31] STUTZBACH, D., AND REJAIE, R. Improving lookup performance
over a widely-deployed DHT. In Infocom 06 (2006).

[32] STUTZBACH, D., AND REJAIE, R. Understanding churn in
peer-to-peer networks. In IMC ’06: Proceedings of the 6th ACM
SIGCOMM conference on Internet measurement (2006).

