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ABSTRACT
The rapid increase of sensitive data and the growing num-
ber of government regulations that require longterm data
retention and protection have forced enterprises to pay seri-
ous attention to storage security. In this paper, we discuss
important security issues related to storage and present a
comprehensive survey of the security services provided by
the existing storage systems. We cover a broad range of the
storage security literature, present a critical review of the
existing solutions, compare them, and highlight potential
research issues.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection -
Access controls, Authentication, Information flow controls;
D.4.3 [Operating Systems]: File Systems Management -
Access methods, Distributed file systems; D.4.2 [Operating
Systems]: Storage Management - Secondary storage; E.3
[Data]: Public key cryptosystems; H.3.0 [Information Stor-
age and Retrieval]: General

General Terms
Security, Management

Keywords
Authorization, Privacy, Confidentiality, Integrity, Intrusion
detection

1. INTRODUCTION
Storage networks have become critical components of cor-

porate computing environments and are evolving into com-
plex, networked and distributed storage models. With the
ever increasing growth in the number of organizations re-
sorting to electronic data and online access, as well as in the
number of data intensive applications, the sheer volume of
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data generated by these organizations is humongous. Fur-
ther, this data has to be shared, replicated, and kept online
in order to satisfy various performance, availability, and re-
covery requirements. As a result storage systems are becom-
ing more vulnerable to security breaches, which can result
in damaging losses.

There is a rapid increase in sensitive data, such as health-
care records, customer records or financial data. Protecting
such data while in transit as well as while at rest is crucial.
During its life-cycle, the data travels from various users,
through various networks and storage systems, and ends up
in online or offline data archives. Therefore, there exists
a lot of potential attack points. Hence, data needs to re-
liably stored and protected at every stage of it’s life-cycle.
Recent regulatory requirements, such as Sarbanes-Oxley [6],
HIPAA [3], DOD 5015.2-STD [5], and the European Data
Privacy Directive [2], require data to be retained and se-
cured for a longer period of time. At the same time, recent
trends in data outsourcing have raised many new privacy
issues making security a crucial requirement for storage sys-
tems.

In order to bolster the existing and future storage sys-
tems, one crucial step is to look back and understand what
has been done in the past two decades in terms of storage
security. From this we can learn the evolution of storage
security, the current status, and the loop holes and missing
points that one needs to address. Satyanarayan had pre-
sented a survey of distributed file systems [72] in the year
1990; however, there have been a lot of advances since then.
Riedel et al. [69] presented a nice framework for evaluat-
ing security of storage systems. However, a comprehensive
survey, critical review and comparison of current research is
still missing. This paper presents a comprehensive survey
of the security services provided by the existing storage sys-
tems. In particular, we answer the following questions: 1)
what are the security services that should be provided by a
storage system? 2) what kind of security services have been
provided by the current storage systems and how? 3) what
problems do the current solutions face? 4) what are the dif-
ferences among existing solutions? 5) what new practical
issues need to be resolved?

To answer the above questions, in section 1.1 we introduce
various security services a secure storage system should con-
sider. In order to depict the evolution of security in storage
systems, distinguish existing systems using their inherent
characteristics, and facilitate comprehension of this docu-
ment we present a classification of the current storage sys-
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tems in section 1.2. Sections 2–4 present case studies and
critical review of the existing systems attempting to secure
storage. We then compare these systems and raise a few
practical questions in section 5. Finally, section 6 concludes
this paper.

1.1 Security Services

Authentication and Authorization Data should be se-
cured during its entire life-cycle. Authentication and au-
thorization are the the most basic security services that
any storage system should support. Authentication is de-
fined as the process of corroborating the identity of an en-
tity (called entity authentication or identification) or the
source of a message (also called message authentication).
The storage servers should verify the identity of the produc-
ers, consumers, and the administrators before granting them
appropriate access (e.g., read or write) to the data. The act
of granting appropriate privileges to the users is called au-
thorization. Authentication can be mutual; that is, the pro-
ducers and consumers of the data may want to authenticate
the storage servers to establish a reciprocal trust relation-
ship. Message authentication is performed by an entity to
authenticate the origin of messages (or data) sent by another
entity, for example, RPC messages (and data) transferred
between a file server and a client. Authentication can be
performed using various techniques such as passwords, digi-
tal signatures or message authentication codes (MAC) [50].
Authorization can be performed by maintaining access con-
trol list (ACL) on the storage server (e.g., UNIX ACL or
Logical Unit Number masks) or by using capability certifi-
cates (or credentials) that list the access rights bestowed to
the holder of the certificate.

Availability Most of the businesses require continuous data
availability. System failures and denial of service attacks
(DoS) are very difficult to prevent. A system that embeds
strong cryptographic techniques, but does not ensure avail-
ability, backup, and recovery are of little use. Typically,
systems are made fault tolerant by replicating data or enti-
ties that are considered as central point of failure. However,
replication incurs a high cost of maintaining the consistency
between replicas.

Confidentiality and Integrity As the data gets produced,
transferred, and stored at one or more remote storage servers,
it becomes vulnerable to unauthorized disclosures, unautho-
rized modifications, and replay attacks. An attacker can
change or modify the data while traveling through the net-
work or when the data is stored on disks or tapes. Further,
a malicious server can replace current files with valid old
versions [46]. Therefore, securing data while in transit as
well as when it resides on physical media is crucial. Confi-
dentiality of data from unauthorized users can be achieved
by using encryption, while data integrity (which addresses
the unauthorized alteration of data) can be achieved using
digital signatures and message authentication codes. Re-
play attacks, where an adversary replays old sessions, can
be prevented by ensuring freshness of data by making each
instance of the data unique. This can be achieved by mark-
ing each session with timestamps or random numbers. Data
can be secured while in transit by using protocols such as
SSL [25] and IPsec [42]. In this case, the data is secured dur-
ing transit, but the server decrypts the data before storing
it on the disks.

As demonstrated by the recent incidences of data theft,
confidentiality and integrity of the data and the meta-data
must be ensured not only while the data is in transit, but
also while the data is stored on the physical medium. Con-
fidentiality and integrity of data at rest, as well as while in
transit, can be achieved by performing cryptographic oper-
ations on the users’ side. This is called end-to-end security
where the writers encrypt (and sign) before sending the data
to the storage servers and the readers decrypt (and verify
the integrity of) the data on their machines. Encryption and
decryption is not done on the server side. If the writers are
required to sign their modifications, then the signatures also
ensure non-repudiation, since the writers cannot deny their
modifications. End-to-end security places minimal trust on
the storage servers and the data is accessible only to the
users with appropriate keys. Therefore, securing these keys
is of paramount importance for the systems that provide
end-to-end data security. Further, the keys have to be se-
cured as long as the data is not deleted.

Key Sharing and Key Management In multi-user net-
centric applications file sharing is quite common. If the files
are encrypted, then in order to share files one has to also
share keys. Efficient and scalable management of these keys
is important, as revoking a user from a group (of users shar-
ing files) or merging two groups can require re-encryption
of shared files and re-distribution of new keys. Another im-
portant aspect of key management is key recovery, which
is a technique for recovering lost keys. A key recovery sys-
tem (see [20, 19] for details) is an encryption system with a
backup decryption capability that allows authorized persons
(users, officers of an organization, or government officials),
under certain prescribed conditions, to decrypt ciphertext
with the help of information supplied by one or more trusted
parties who hold special data recovery keys. Further, special
care has to be taken while storing, archiving, and deleting
these keys.

Auditing and Intrusion Detection Storage systems must
maintain audit logs of important activities. Audit logs are
important for system recovery, intrusion detection, and com-
puter forensics. Extensive research has been done in the field
of intrusion detection [8]. Intrusion detection systems (IDS)
use various logs (e.g., network logs and data access logs) and
network streams (e.g., RPCs, network flows) for detecting
and reporting attacks. Deploying IDS at various levels and
correlating these events is important.

Usability, Manageability and Performance Finally, a
storage system should have acceptable usability, manageabil-
ity, and performance even while employing cryptographic
primitives. Strong security with poor usability and/or per-
formance will not make the system practical. As illustrated
by [79, 39], secure systems and cryptographic softwares are
used less than we would expect due to their lack of consid-
eration for usability of their products. In other words, a
secure storage system with complex management and poor
usability will not be used (or will be used incorrectly) in
practice.

1.2 Classification
In this paper, we survey various storage systems and the

security services provided by these systems. We cover a
broad range of storage systems, discuss the security services
they provide (with reference to section 1.1), and discuss

10



advantages and disadvantages of each. A subset of services
discussed in section 1.1 are studied and compared. In par-
ticular, we do not consider availability, Byzantine failures,
and performance (which will require real-time analysis) in
this paper. The systems are classified based on their secu-
rity services. The storage systems surveyed in this paper
can be categorized as follows.

Networked File Systems In systems belonging to this cat-
egory, the storage server authenticates each user and checks
whether the user has appropriate privileges before grant-
ing any access to the data. Most of the systems belonging
to this category also encrypt the network traffic. However,
these systems do not provide end-to-end data security, that
is they do not ensure integrity and confidentiality of the data
stored by these servers. Instead, they assume that the file
servers and the system administrators are trusted.

Traditionally, authentication was performed using pass-
words and access control was performed using simple UNIX-
style access control (user and group identifiers). For exam-
ple, earlier versions of the Network File System (NFS) [76]
used a centralized server to authenticate clients and passed
the user and group information to the clients. This informa-
tion was then passed to the file server (during file requests),
which then passed this information to the server’s operat-
ing system who actually made the access control decisions.
Thus, security was extremely primitive. File systems that
paid more attention to security used better authentication
mechanisms (such as Kerberos [57] or Public Key Infrastruc-
ture) and also encrypted the network traffic. For example
the Andrew File System (AFS) [36, 70, 71] used a central-
ized Kerberos server for authentication and also encrypted
the traffic between the client machines and the file servers.
More recent file systems [49, 54] enable distributed authen-
tication and cross-domain decentralized file sharing using
Public Key Infrastructure (PKI).

Cryptographic File Systems The goal of these systems
is to provide end-to-end security, where cryptographic oper-
ations are performed on the client side to keep data secure
from the server as well as other unauthorized users (includ-
ing administrators). These systems embed cryptographic
operations (encryption/decryption and signing/verification)
into the file system itself. The file server is minimally trusted
and never sees the data in clear-text as it is not involved in
the encryption or decryption process.1

These file systems can be further categorized into shared
and non-shared file systems. Shared cryptographic file sys-
tems (e.g., [32], [40]) share files among a group of users.
Therefore, these systems should complement the basic cryp-
tographic services with more sophisticated key management
techniques that efficiently handle key sharing and key re-
vocation. On the other hand, cryptographic file systems
that do not assume shared access to files do not include key
sharing and key revocation mechanisms. In these systems
(e.g., CFS [12]), in order to share files with other users the
owner has to give away his/her private keys to other users,
which gives them the same privileges as the owner. Some
of the cryptographic shared file systems provide integrity of
data and meta-data either by using MAC or by using digital
signatures (which also provides non-repudiation).

1See [4] for recent standardization efforts by IEEE SISWG
regarding cryptographic algorithms and methods for secur-
ing data at rest.

Storage-based IDS: A storage-based intrusion detection
system is an intrusion detection system (IDS) embedded in
a storage device or a file server. It analyzes data access pat-
terns and data modification characteristics, looking for man-
ifestation of an attack. The main advantage of a storage-
based intrusion detection system running directly on the
storage servers is that compromise of a host operating sys-
tem does not result in compromise of the storage-based IDS;
therefore, a storage-based IDS can still perform in the pres-
ence of host compromise. Further, the storage servers can
perform inline detection by analyzing every request from the
client.

In the following sections we examine the various storage
systems. We briefly present the overview of these systems
and focus on the security services provided by these systems.
Some systems from each category are summarized in one
section (titled Other Systems) due to page restrictions.

2. NETWORKED FILE SYSTEMS

2.1 Network-file System

Overview The Network File System (NFS) [76, 60, 74]
is the most widely used network-attached file system. It
enables heterogeneous clients to transparently share files
stored on remote file servers without having to worry about
the location of the files. An authorized client on a legitimate
machine can mount the file system stored on the server. Het-
erogeneity and portability were the driving principles in the
design of NFS. NFS has two basic components: the client
program installed on the client machine and a server pro-
gram (number of daemons) installed on the server machine.
NFS client communicates with the NFS server using Remote
Procedure Calls (RPC) [52], which allows one host to call
functions on another host.

A system administrator can give access to the desired file
systems by listing the exported directories in a file called
/etc/exports. During the export operations, the adminis-
trator can specify a list of hosts that will be allowed to ac-
cess the exported directories and the security flavors that a
client can use to access the exported file systems. The client
mounts the exported file systems by contacting the mountd

daemon located on the server, which checks the export list
and allows or disallows access to the client depending on
the client’s credentials. After mounting a file system, it is
integrated into the client’s directory tree and the client can
access the mounted file system as if it is a local file system.
NFS version 4 (NFSv4) [74] is the most recent version of
NFS. It mandates many new changes to the previous ver-
sions. For example, all of the earlier versions were stateless
and used different protocols to handle file mount and file
locking operations. The NFSv4 protocol is a stateful proto-
col that integrates all the different protocols into one stan-
dard protocol. Further, unlike earlier versions, the NFSv4
protocols mandates the use of strong security mechanisms.
An excellent overview of differences between NFSv4 and it’s
previous versions can be found in [60]. Below we give a brief
overview of security services of the NFSv4 protocol.

Security Security was an afterthought in NFS. Most of the
earlier NFS servers relied on the underlying operating sys-
tem to perform access control and implemented weak au-
thentication mechanisms. A variety of authentication fla-
vors were defined for NFS version 2 [78] such as UNIX-
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style authentication (user ID and group ID), Diffie-Hellman
based authentication, and Kerberos version 4 based authen-
tication. However, even though the RPC mechanism al-
lowed multiple authentication mechanisms, the UNIX-style
authentication mechanism using UID and GID was most
commonly implemented. This mechanism is insecure since
an attacker can easily spoof (or replay) a user’s credentials.

Therefore, NFSv4 mandates the use of the RPCSEC GSS
flavor [24]. RPCSEC GSS provides authentication, confi-
dentiality and integrity of the RPC requests and responses.
Further, it can use security tokens from security mechanisms
(such as Kerberos) that conform to the Generic Security Ap-
plication Programming Interface (GSS-API) [47]. Conform-
ing NFSv4 protocol implementations must implement Ker-
beros version 5 [48] and LIPKEY (A Lower Infrastructure
Public Key Mechanism) [23]. Kerberos (briefly explained
in section 2.2) can provide strong authentication within an
Intranet. Thus, conforming NFSv4 protocol implementa-
tions will support strong authentication as well as network
security (with some performance penalty). The LIPKEY
protocol is intended to be used over the Internet. Every file
server has a public key certificate and the associated pri-
vate key. A user can setup a secure channel with the server
by encrypting his login information with the server’s public
key and sending the information to the server. The user can
also authenticate the server by verifying the server’s certifi-
cate. During the authentication phase a symmetric key is
established which will be used to secure the communications
between the user and the file server. Thus, using LIPKEY
a user will be able to access his files across the Internet.

Traditionally, NFS supported the POSIX [63] access con-
trol model. However, NFSv4 includes ACL support based
on the Windows NT model and not the POSIX model, since
the Windows NT model is richer than the POSIX model.
An access control entry in Windows NT model are of four
types with obvious meaning: ALLOW, DENY, AUDIT, and
ALARM. Thus, NFSv4 provides strong security and flexible
file sharing.

2.2 Andrew File System

Overview The Andrew File System [36, 70, 71, 58] was
originally developed to provide a scalable campus-wide file
system for home directories, which would run effectively us-
ing a limited bandwidth campus backbone network. The
main services of AFS include scalability, caching, and sim-
plicity of addressing.

AFS evolved further into a scalable distributed file system
that enables co-operating hosts (clients and servers) to effi-
ciently share file system resources across both local area and
wide area networks. AFS supports completely autonomous
cells, which represents an independent administered AFS
site, for example, cs.cmu.edu is one AFS cell owned by the
computer science department at CMU. A cell has its own
protection domain, authentication servers, file servers, vol-
ume location servers, and system administrators. The local
administrator can publish his own cell and make other cells
visible to his local cell by listing all the necessary remote
cells in the local cell’s database server machines. AFS cells
co-operate to support seamless cross-domain file sharing. A
client can access a file stored at another cell by including
the destination AFS cellname into the pathname as follows:
/afs/$cellname/filename.

Security Authentication in AFS is performed using Ker-
beros [57] (a slight variation of Kerberos version 4). In order
to access files stored in a cell, the client should have an ac-
count in that cell. The Kerberos authentication server main-
tains a database of users’ passwords, which is encrypted us-
ing a key known only to the server (and the administrator).
A user’s password is never sent over the network, rather
it is used to send encrypted authentication requests to the
authentication server, which uses the user’s password to ver-
ify and authenticate the user’s request. After authenticating
the user, the authentication server issues a ticket to the user,
which is used by the user to authenticate herself with the
file servers and vice-versa (mutual authentication). A ses-
sion key is established during this mutual authentication,
which is used to encrypt the traffic between user machine
and the file server machine. AFS encrypts all the traffic be-
tween the user and the authentication server, and optionally
encrypts all the traffic between the client and the file server.
It is important to note that Kerberos is not effective against
password guessing attacks.

Access control decisions are based on the protection do-
main, which is composed of Users and Groups. A group has
a owner and set of users and other groups. If a user is a mem-
ber of a group that is a member of another group, then the
user inherits membership from both the groups. A user can
create his own groups, the names of which are prefixed by
the name of the creator of the groups. For example, a user
andrew can create a group andrew:friends for his friends.
The advantage of supporting group memberships and group
inheritance is simplicity of management and revocation, and
ease of administration of protection domains. Access con-
trol is achieved by using Access Lists associated with each
directory, which can list users and groups, and their associ-
ated privileges. There are two types of access lists, namely,
a list of Positive Rights and a list of Negative Rights. The
negative access list always takes precedence over the posi-
tive access list. The access lists in AFS (read, write, lock,
execute, delete, lookup, administer and insert) are quite so-
phisticated as compared to the standard UNIX-style ACL
(read, write, execute) and it allows users to create their own
groups and inherit group memberships.

The protection domain information has to be replicated
to all file servers. Hence, if a user is removed from an ac-
cess list by one server, the user can still send requests to
other severs. In the case of a widely distributed network,
discovering all groups that a user should be removed from
and propagating this information to all the servers can incur
significant overhead. Therefore, AFS first propagates nega-
tive access rights for that user on sensitive objects, which is
faster. The user can then be removed gradually. Thus, there
can be a small (potentially large due to network problems)
window of time for which the protection domain on different
file servers can remain inconsistent.

2.3 Self-certifying File System

Overview Most of the file systems (including NFS and
AFS) have a notion of administrative realms and rely on
central administration for configuration, management, and
security purposes. However, the presence of a central entity
hinders global file sharing and prevents easy addition of new
file servers. AFS went one step ahead of NFS by enabling
cross-cell file sharing. However, a user is required to have an
account on the remote file server and has access to the files
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if and only if the user’s cell is listed in the file server’s local
database. SFS aims to provide a secure global file systems
with completely decentralized control. Anyone can set up
an SFS server and any user can access any server from any
client (if the user has right privileges).

SFS separates key management from the file system en-
tirely by introducing self-certifying pathnames. A self-certi-
fying pathname is a file name that effectively contains the
appropriate remote server’s public key. During file access,
using the public key embedded in the pathname the SFS
client can verify the authenticity of the SFS file server. SFS
does not bind users to any particular key management tech-
nique and the users are free to choose any suitable technique
to determine the authenticity of the public keys used by SFS
(user and server public keys). The SFS architecture consists
of three entities: the SFS file server, the SFS client, and the
SFS authentication server that stores users’ group member-
ship and public key information.

Security Every SFS user and server has a public-private
key pair. The SFS file system is accessible under /sfs/

Location/Hostid. Location is the location of the file server,
which can can be either a DNS hostname or an IP address.
HostID is a cryptographic hash of the server’s public key
and the server’s Location. The SFS client assumes that
the pathname provided by the user is trusted and leaves
the process of acquiring certified pathnames to the user.
Trust in pathname implies trust in the server’s public key.
A HostID lets SFS clients ask a server for it’s public key
and verify the authenticity of the public key by verifying
the hash of the server’s public key with the HostID. SFS
symbolic links maps human-readable names to self-certifying
pathnames.

When a user requests for a file stored on a remote server,
the SFS authentication agent located on the client’s ma-
chine initiates an authentication protocol. As the first step
of the authentication protocol, the client machine generates
a public-private key pair. The client machine then acquires
the public key of the SFS server and checks whether the
hash of the key matches the HostID of the pathname. If
yes, it establishes shared session keys, and achieves mutual
authentication (with the server) using a protocol based on
public key encryption. These session keys are used to es-
tablish a secure channel (encrypted and authenticated) be-
tween the client machine and the file server. After this, the
authentication agent sends a signed request using the user’s
private key to the file server over the already established se-
cure channel. The information sent to the server during the
user authentication process is tied to the session; therefore,
even if an attacker compromises the current session he can-
not use the users’ authentication information to setup new
sessions. To ensure forward secrecy, SFS frequently changes
the client machine’s public key. After receiving the authenti-
cation request, the file server forwards the signed request to
the authentication server, which verifies the signature and (if
verified) passes the users’ credentials (group memberships)
to the file server. The file server caches these credentials and
uses them to authenticate the user’s future requests and to
perform access control.

Management of public keys is not a part of SFS. This
keeps the file system simple and scalable. Further, users
have the flexibility of using any key management procedure
of their choice, which is important for a global file system
where different users may prefer different policies. SFS also

supports some server key management schemes such as se-
cure symbolic link and manual key distribution, certifica-
tion authorities, and password authentication. Thus, SFS
is flexible, scalable, ensures mutual authentication between
the client machine and the file server, and secures all com-
munication between them.

Decentralized Access Control Using SFS SFS is fur-
ther extended to provide a decentralized access control mech-
anism [41]. This system allows users to grant access to spe-
cific users and groups belonging to local as well as remote
administrative domains, without assuming any pre-existing
administrative relationship. If a user Alice in University of
Minnesota (UMN) wants to share files with some users from
University of California Santa Barbara (UCSB), Alice first
creates a group, adds local and UCSB users (or groups) to
this group and places that group along with the ACL of
the shared objects. Alice thus explicitly trusts the users or
groups listed in the ACLs. The information regarding local
and remote users and groups is used by the SFS authenti-
cation server local to UMN. In the case of remote users, the
UMN authentication server fetches authentication related
information (remote users public keys) from the remote au-
thentication server of UCSB. The authentication servers are
SFS servers with self-certifying pathnames. When a user ac-
cesses the shared files, the SFS authentication server hands
over the credentials (group memberships) for that user to the
file server using the the local information that was obtained
from the remote SFS authentication server. Every authenti-
cation server periodically fetches the information regarding
remote users from the remote authentication server by set-
ting up a (long lived) secure connection with them using the
self-certifying names.

This approach bestows the users with a privilege to grant
access to any user trusted by them. Therefore, it is user-
centric and trusts the insiders to grant access only to ap-
propriate users. Further, since the authentication servers
download the group membership lists periodically, updates
to group memberships (addition or deletion) on remote sites
may not reflect immediately in local authentication servers.

SFS-based Read-only File System SFS is extended to
provide a fast and secure distributed read only file sys-
tem [27]. The goal of this system is to securely distribute
public, read-only data such as executable binaries or soft-
ware distributions. The read-only file system is a SFS file
system, which contains the server’s public key as a part of
the pathname (self-certifying). The SFS read only file sys-
tem assures the client that the data retrieved from the server
is authentic and is consistent with the current distribution,
that is, the data is not older than the file system consistency
period. It does not guarantee the confidentiality of the data
stored on the server.

The read-only file system contains three programs, namely
a database generator program, a client daemon, and a server
daemon. The publisher of the read-only database runs the
database generator program. This program hashes each
data block of a file, inserts the hashed value of the data
blocks in to the file inode, then hashes each inode and inserts
the hashed value of the file inode into its parent directory
and continues the hashing process until the root of the di-
rectory is hashed. In this manner, it creates a hashed tree.
After hashing the root directory, database generator pro-
gram signs the hashed value of the root directory (which is
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also the root of the hashed tree) using the private key of the
publisher. The database is then replicated to various servers
without requiring any further modifications. The client dae-
mon handles the file system functionality on the client side.
On receiving some data blocks from the server, the client
can walk up the tree and verify the signature on the hash
value of the root directory. In order to accomplish this, the
client has to recursively request and check the validity of the
parent blocks from the server.

2.4 Network Attached Storage Devices

Overview Most of the distributed file systems (including all
of the systems discussed above) are implemented through
one or more file servers that retrieve data from a storage
network and deliver this data to the user. Every request
goes through the file server, which can impose heavy load
on the file server, thus affecting the scalability and perfor-
mance of the system. Further, the devices attached to the
storage network pay little attention to security and assume
that security is handled by the file server. The NASD [7,
30, 31] project attempts to solve these problems by attaching
the storage device directly to the network and removing the
file server from the data path. Users can directly interact
with the storage device, which gives improved performance
to the end users. Since the storage devices are attached
to the network and no longer protected by the file server,
the storage devices are now responsible for authentication
and access control operations. The NASD drives export an
object-based interface as compared to the classical block-
based interface.

NASD is a cryptographic capability system. A capability
is a token that grants the bearer the access rights speci-
fied in that token. It has three main players: untrusted
users, trusted filemanager that makes access control deci-
sions, and trusted storage devices that authenticates users
and implements the filemanager’s access control decisions.
It is assumed that the communication link between the file-
manager and the users is secure and the filemanager has
enough information to authenticate each user. The filem-
anager retains the responsibility for administering the name
space and the access control policy of the file system, but
the filemanager is bypassed in the common case operations,
such as data transfer. The filemanager stores an access con-
trol list and shares a (set of) unique symmetric key with
every storage device.

Security When a user wants to access a file, on the first ac-
cess, the user sends a request for a particular object to the
filemanager. On the receipt of the user’s request, the filem-
anager authenticates the user and generates a capability key
for that user. The capability key is derived by generating a
MAC of the user’s public credentials using the key shared
between the filemanager and the storage device that stores
the requested object. Apart from other entries, the user’s
public credentials contain the object-ID, the access rights of
that user for the requested object and the expiry time of the
capability key.

The filemanager transmits the capability key (on a secure
channel) and the associated public credentials to the user.
The user then sends the request (e.g., read) for the object
(or collection of objects) along with the user’s public cre-
dentials for that object, and a MAC of the request, which is
generated using the capability key. After receiving the user’s

request the device can generate the capability key and verify
the MAC of the request. The device can generate the user’s
capability key using the key shared with the file manager
and the user’s public credentials. If the MAC is verified,
the device is assured that the capability key is generated
by the filemanager. The device grants access to the user if
the public credentials include the required privileges. Mu-
tual authentication can be achieved by asking the device to
compute a MAC of the responses using the capability key.
Freshness of messages between the client and the storage de-
vice is ensured using timestamps. Therefore, NASD requires
time synchronization between the client machines and the
storage devices. In addition, the user can also choose to en-
crypt the data transmitted between the user and the storage
device. Thus, along with authentication and access control,
NASD can provide integrity, freshness, and privacy of data
as well as user commands to the storage device.

The capability keys are typically short lived. If immedi-
ate revocation is required, the filemanager has to change the
version number (which is also included in the public creden-
tial of the capability key) stored with the object or change
the keys used to generate the capability keys. Changing
the version number will revoke all the capability keys for
that object generated using that version, whereas changing
the shared key revokes all the capability keys generated us-
ing that shared key. Therefore, NASD does not allow fine
grained revocation. For example, it is difficult to revoke all
the capabilities (before they expire) generated for one par-
ticular user. Finally, since a user has to acquire a capability
for every object, the filemanager has to remain online and
can be a central point of failure.

The NASD project laid the foundation for network at-
tached storage devices and gave birth to the Object-based
storage technology (OSD). Work is currently underway to
standardize the OSD command sets [59]. A number of ex-
tensions to NASD [66, 67, 9, 43] have also been proposed.

2.5 Other Systems
OceanStore [45, 68], a storage infrastructure developed at

University of California, Berkeley, is designed to span the
globe and provide scalable, continuous access to persistent
information. Files (referred to as objects) are never deleted
in OceanStore and an update to a file causes creation of a
new file block. In order to ensure availability, scalability, and
fault-tolerance, objects are replicated to multiple locations.
Each object has an unique global identifier and location, and
routing of replicas is done using the Tapestry [35] overlay
network. Further, to keep the replicated copies consistent,
OceanStore uses a combination of Byzantine update com-
mitment amongst a subset of replicas of an object (called
primary ring) and push-based update of other copies of that
object (called secondary copies) using an overlay multicast
network. While the initial OceanStore design includes end-
to-end data security, Pond [68], the OceanStore prototype
includes only authenticated Byzantine messages, but does
not include end-to-end data security. In addition, the servers
taking part in the Byzantine agreement (primary ring) em-
ploy threshold signature schemes [65] so that the users will
have to verify only one signature and addition of new server
to the ring will not require changing the ring’s public key.

Distributed Credential FileSystem (DisCFS) [54] aims to
allow a local user Alice (within a domain) to share files with
an external user Bob that does not have an account on Al-
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ice’s local file servers. The goal of DisCFS is to enable file
sharing without administrative interference. In order to fa-
cilitate such file sharing, Alice’s system administrator gives
to Alice a credential for each file that Alice is allowed to
access, which contains Alice’s public key, file-id, Alice’s ac-
cess rights, administrators signature and some constraints.
Alice’s local file server only trusts the Administrator’s sig-
nature. When Alice wants to access a file, Alice authenti-
cates with the file server by sending a signed request and
her credential. The server verifies Alice’s signature, the Ad-
ministrator’s signature on Alice’s credential, and if all the
verifications are successful, grants Alice access to the file
depending upon the access rights stored in the credential.
Alice can delegate access rights to Bob by creating a similar
credential for Bob and signing Bob’s credential. When Bob
sends a request for a file to Alice’s local file server along with
his and Alice’s credential, the server will verify the chain of
certificates by verifying Bob’s signature, Alice’s signature
on Bob’s credential, and the Administrator’s signature on
Alice’s credential. Inodes are used as file IDs in the current
implementation, which is subject to change as inodes are
not suitable for unique global ID and can be reused. The
DisCFS server has to verify a chain of certificates before
granting access to a single file. This is likely to impose a
lot of cryptographic overhead on the file server. Further,
credentials are per-file; therefore, a user has to get multi-
ple credentials from the administrator to access a file stored
under a hierarchical directory (one per file and directory)
structure.

3. CRYPTOGRAPHIC FILE SYSTEMS

3.1 Non-shared Cryptographic File Systems

3.1.1 Cryptographic File System for UNIX

Overview CFS [12, 13] designed by Matt Blaze is one of
the first file system to perform file encryption. This sys-
tem pushes the file encryption services into the file system.
CFS is a virtual file system that runs at user level on the
client machine. In particular, it mainly performs the file en-
cryption and key management functions and leaves the rest
of the functions to the underlying file systems. The main
goal of CFS is to present the user with a secure file service
that works in a seamless manner, without considering the
encrypted files as special components of the system.

CFS is typically mounted in /crypt. Users can associate
a key with a directory. All the files in this directory as well
as their pathnames are encrypted using this key. The en-
crypted files can reside on a file server and the underlying file
system could be any available file system including remote
file servers, such as NFS. The user creates an encrypted di-
rectory using the cmkdir command. This command requires
the user to enter an ASCII passphrase. CFS then creates a
key using this passphrase. To use the directory created us-
ing the cmkdir command the user uses cattach command.
This commands maps the encrypted directory to a virtual
directory, which can be viewed under /crypt.

Security CFS uses a combination of OFB (output feedback
mode) and ECB (electronic code book) [50] for encryption.
The DES ECB mode is preferred because it is suitable for
random data access. However, in this mode a given plain-

text block always encrypts to the same ciphertext block.
Therefore, a combination of ECB and OFB mode is used.

CFS requires the user to enter a passphrase (length usu-
ally greater than 16 characters). This passphrase is used to
generate two keys, K1 and K2. K1 is used to pre-compute a
long pseudo-random bit mask (usually half a megabyte) us-
ing OFB mode. Encryption of a file is done block by block.
Before encrypting, each block is first exclusive-or’d with a
bit mask. To avoid identical blocks of a file encrypt to iden-
tical ciphertext, the bit mask chosen corresponds to the byte
offset of the block modulo the mask length. However, using
this scheme identical blocks at the byte offset present in dif-
ferent files will result in identical ciphertext. To avoid this,
CFS XORs each cipher block of a file, with the correspond-
ing inode. Since decryption requires the inode number used
during encryption (which can change), CFS stores the inode
number in the gid field of each file’s inode. Decryption is
the exact reverse of encryption. Pathnames and symbolic
links are also encrypted in CFS. Access to the directories
under /crypt is controlled by using UNIX file protection
mechanisms. CFS also considers key recovery and secure
key storage [13].

CFS is one of the first file system to provide a strong en-
cryption scheme supporting block by block encryption and
it instigated further research on cryptographic file systems.
However, CFS is not completely transparent to the user.
The granularity of encryption is a directory and the user
should remember a key for all the encrypted directories. In
addition, using a user-level NFS server reduces the perfor-
mance of the system. CFS does not ensure integrity of the
data and meta-data, and is cumbersome to use for group
sharing as it does not include any key distribution tech-
niques. Further, since all keys are dependent on passphrases
that are associated with directories, in the case of emergency
(password compromise) changing a passphrase for a direc-
tory should result in re-encryption of all the file located in
that directory. However, to the best of our knowledge, CFS
does not provide any such mechanism.

3.1.2 Other Systems
Numerous solutions exist that allow users to create se-

cure partitions on their local disks and transparently encrypt
data stored on the local disk [21, 34, 77, 80, 38, 62]. The
main idea behind these systems is to create partitions (some-
times virtual) on the local disk and use passwords or pass
phrases selected by users to generate a key for each parti-
tion. This key is then used to encrypt the data stored in the
secure partitions. Gutmann’s Secure FileSystem (GSFS 2)
for DOS [34] and Swank’s SecureDrive [77] were one of the
earliest of disk encrypting systems. GSFS provided encryp-
tion services for DOS and Windows. It allows users to create
volumes on local disk that can be encrypted. Each volume
appears as a normal DOS drive, but all of the data stored on
it is encrypted at the individual-sector level. Volumes can be
easily mounted or unmounted either manually or automati-
cally after a certain time period. GSFS also provides other
interesting services, such as threshold sharing to recover lost
keys and using smart cards to store keys. SecureDrive is an-
other device driver providing encryption services on DOS
and Windows with somewhat lesser functionalities as com-
pared to GSFS. The CryptoGraphic disk driver [21] provides

2Authors abbreviated it as SFS, but here it is called GSFS
to avoid conflicts with other Secure File Systems (SFS).

15



encryption services on NetBSD. It consists of a kernel-level
virtual disk driver that accesses the raw disk and performs
block-level encryption and decryption. In addition, it con-
sists of a user-level process that handles key generation. It
supports four different key generation methods and the en-
cryption algorithms can be selected by the user. The goal of
disk encryption systems is to protect data stored on the local
disk in order to reduce the risks of laptop thefts. Therefore,
they are not designed for multi-user systems and typically
the weakest link in the system is the password that is used
to generate the keys.

Most of the systems use virtual memory; therefore, the
data can still appear as plaintext in the unprotected virtual
memory backing store. This problem was addressed by pro-
viding swap device encryption [64]. In order to protect data
stored on the swap space (such as keys), it encrypts the
swap device by randomly choosing keys. Keys are short-
lived and are changed frequently. The data is automatically
encrypted before it is stored on the swap space and it is au-
tomatically decrypted before the OS reads it from the swap
space. However, this imposes a high performance penalty.

3.2 Shared Cryptographic File Systems

3.2.1 Transparent Cryptographic File System for UNIX

Overview TCFS [29] is an kernel-level file system that pro-
vides cryptographic services to the users. Similar to CFS,
TCFS provides end-to-end security (encryption and decryp-
tion is performed at the client side). Compared to CFS,
TCFS makes file encryption transparent to users, provides
data integrity, and enables file sharing between a group
(UNIX group) of users. File encryption is made transpar-
ent to the users by maintaining one bit information with
each file that indicates whether the file is encrypted or not.
Users have to maintain only one password that is used to en-
crypt all file-keys (rather than one password per encrypted
directory as in the case of CFS). Users can select encryption
algorithms that will be used by TCFS to encrypt file blocks
in cipher-block chaining (CBC) mode.

Security Each user is associated with a master-key (created
by the user), which is encrypted with the user’s login pass-
word and stored at a central database. This database can
be located on the client’s machine or in a database located
on a remote kerberized key server. Associated with every
file is a randomly chosen file-key. The file-key is encrypted
with the master-key and stored in the file-key field of the
file header that is stored along with each file. A block-key is
created per block of a file by hashing the result of the con-
catenation of the file-key and the block number. The block
is then encrypted using the block key in the CBC mode. In
addition to block encryption, an authentication tag, which
is computed by hashing the concatenation of block data and
block key is stored with the block. The readers can verify
the integrity of the blocks by verifying the authentication
code.

TCFS provides threshold sharing [73] to share files within
a UNIX group. In this case, in order to acquire a group-key,
a threshold number of share holders should be available on
the same machine. A group-key is used to encrypt all the
file-keys of the files belonging to that group. UNIX group is
a special case of secret sharing where the number of secret
shares is equal to one. To share files within a group, the sys-

tem administrator should supply the threshold information,
and the list of members of the group to the TCFS group
creation utility. This program then generates a random key
and encrypts each user’s share with the user’s password. To
decrypt the group key, at least threshold number of users
should login into the same machine and present their share
to the kernel. This is inconvenient form of group sharing;
however, this feature should be extended further for key re-
covery purposes (rather than key sharing). Since the utility
that generates secret shares for the group members should
have the users’ password in clear, this becomes a serious vul-
nerability of the system. Further, the system administrator
can acquire users’ shares and use these shares to decrypt the
group key. Therefore, in this case, TCFS does not protect
data from the system administrators.

The master-key in TCFS is encrypted using the user’s
password. This becomes the weakest link of the system
as users typically choose passwords from small domain. In
the case of a password change, TCFS simply decrypts the
master-key with the old password and re-encrypts with the
new password. Therefore, if the user’s password is revealed
to the attacker, simply changing the master-key is not enough
as the attacker could have downloaded all the keys using the
compromised password. In this case, all the files (at least
the ones that were updated) should be automatically de-
crypted using the old key and should be re-encrypted with
fresh keys. Further, in the case of group sharing, the system
administrator has to regenerate a new group key and redis-
tribute the shares. It is not clear how TCFS handles these
issues. In TCFS, the authentication tag is generated by
hashing the concatenation of data and the block key. This
is known to be insecure [50] and other secure constructions
such as HMAC [11] should be used.

3.2.2 NCryptfs

Overview The NCryptfs [15] file system is a stackable file
system designed to provide kernel-level encryption services.
The main goal of NcryptFS is to provide transparent file
encryption service that is easily portable without incurring
significant performance overhead. The system administra-
tor has to mount NCryptfs on /mnt/ncryptfs. The system
administrator can attach one or more authorization entries
with the NCryptfs mount point. An authorization entry
specifies a salted hash of a password and associates some
privileges to this hash. A user that can enter the password
that matches a password in the authorization entry will be
given the associated privileges (e.g., access permissions or
delegation permissions).

Security NCryptfs grants access rights to an entity accord-
ing to the authorization entry for that entity. Similar to
CFS, in NCryptfs a user can attach a directory for encryp-
tion, which creates a directory entry in the NCryptfs mount
point. The user is asked to enter a passphrase on every
attach command, which is used to derive an encryption
key. This encryption key is “pinned” in memory and is used
for encrypting the files and file names stored under the cor-
responding attached directory. This key is used to encrypt
page by page and supports multiple ciphers in CFB mode,
where the initialization vector (IV) is a combination of inode
number and page number. To share an attached directory
with other users, the owner has to associate with the at-
tached directory an authorization entry for each user. The
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users have to provide the owner with the salted hash of their
password, which is stored by the owner in a configuration
file. When the newly added user attempts to access a file
stored in the specified attachment, NCryptfs uses the salted
hash to authenticate the user. After successful authentica-
tion (by providing the password), NCryptfs uses the key gen-
erated during the attach process for encryption/decryption
purposes. This key is provided during the attach operation;
therefore, the owner has to be available (to attach the direc-
tory) before the user tries to access the shared files. Besides,
since the key is stored in the kernel memory, the user and
the owner have to access files from the same machine. Fur-
ther, a user has to (remember and) supply to the owner a
hash of his password for every directory he wishes to ac-
cess. Therefore, NCryptfs is quite inconvenient to use for
distributed file sharing.

Using the authorization entries, a owner can add arbi-
trary users and create his own adhoc group. Since these
groups and their associated access rights can be different
from those specified in the UNIX ACL of the file, NCryptFS
allows users to bypass the VFS permissions. NCryptfs is
quite efficient and portable due to its stackable kernel-level
implementation. It does not ensure integrity of data and
meta-data (inode information) and its key management for
file sharing is very primitive. Since keys are passphrases,
key recovery is left to the user. However, since keys are
known only to the owners (as compared to TCFS), the sys-
tem administrators cannot decrypt users’ data (unless the
passphrases are weak). Further, since the encryption keys
are always stored in the kernel’s memory, it is never revealed
to other users (assuming that the kernel is secure). There-
fore, revocation of users does not require re-encryption.

3.2.3 Encrypting File System (EFS) for Windows

Overview EFS [17, 18] provides cryptographic support to
store Windows NT file system (NTFS) files encrypted on
disk and on remote web shares. The goal of EFS is to provide
transparent end-to-end file encryption service so that only
legitimate clients can encrypt/decrypt these files. A variety
of encryption algorithms can be used. In addition, EFS
also enables file sharing between a small group of users and
provides mechanisms to retrieve lost keys. However, EFS is
not designed to ensure integrity of data and meta-data.

Security EFS automatically creates a public-private key
pair for each user and acquires a certificate on the public
key from the Certification Authority (CA) configured by
the administrator. If a CA is not present, EFS self signs the
public keys. File/directory encryption in EFS is performed
using symmetric keys. If a user chooses to encrypt a file (or
directory), EFS generates a file encryption key (FEK) for
each file and encrypts the file using the encryption key. The
FEK for that file is then encrypted using the user’s public
key and stored along with the encrypted file in a special
EFS attribute called Data Decryption Field (DDF). If the
file is shared by multiple users, the FEK will be encrypted
by each user’s (listed on the ACL) public key and the list of
encrypted FEKs will be stored in DDF. Encrypting FEK for
each individual user can incur a lot of overhead (especially
for revocation) on the client side. Therefore, EFS is suitable
for file sharing among a small number of users. The private
key of each user can be stored securely in smart cards or in
the integrated software-based protected store.

Whenever a user wants to access an encrypted file, EFS
client automatically acquires the FEK for that file by de-
crypting the FEK using the private key of that user and
then uses the FEK to decrypt/encrypt the file. These oper-
ations are transparent to the user. If remote files are stored
on web folders, then the encryption and decryption oper-
ations are performed on the client’s machine. However, if
remote files are stored on the file shares, the encryption and
decryption operations are performed on the computer on
which the files are stored. Therefore, files are transferred in
clear-text to the file share if the user is accessing files from
another machine. Therefore, EFS is secure only if remote
files are stored in a web folder.

EFS supports file recovery, that is, a user or user’s organi-
zation can recover any encrypted file stored on the file sys-
tem. A system administrator can define his recovery policy,
which can restrict the recovery privileges only to legitimate
users. A recovery policy can be configured at local, domain,
and organization level. The system administrator creates
one or more recovery agents and each recovery agent is as-
signed a public-private key pair. The file encryption key of
each encrypted file is encrypted using the public key of each
recovery agent and is stored along with the encrypted file in
the Data Recovery Field (DRF) attribute. If a user looses
his private key, he can send the encrypted file to one of the
recovery agents who can then decrypt the file and send it
back to the user.

Revocation is performed using Certificate Revocation List
(CRL). Revoking a user’s access rights to a file requires
changing the access control list as well as removing the DDF
entry for that user. EFS does not automatically change the
FEK of that file and does not re-encrypt the file. There-
fore, if the revoked user gets access physical access to the
file, he can still decrypt the file and read all the contents.
EFS does not provide this re-encryption service. EFS trans-
parently encrypts data, but it does not provide integrity of
data as well as confidentiality and integrity of meta-data.
However, EFS has convenient and simple file sharing model
as compared to TCFS and NCryptfs.

3.2.4 A Universal Access, Smart-Card-Based, Se-
cure File System

Overview The smart-card based Secure File System [37]
(SSFS 3) enables clients to store data securely on local and
remote sites using normal networking protocols. It allows
secure file-sharing between two or more groups belonging to
one organization or different organizations. In addition to
encryption and distributed access control, SSFS also pro-
vides key recovery and secure key storage. All private keys
(user and group private keys) are stored on smart-cards,
which also performs all the cryptographic operations asso-
ciated with those keys. Therefore, private keys never leave
the smart-card; thus, keeping them secure. SSFS has three
entities, namely users (producers and consumers of data),
group servers, and file servers. A group server is main-
tained per group (or per project) and is completely trusted.
Group servers make group membership and access control
decisions for their respective groups. This ability enables
project groups to define their group membership.

Security Every SSFS user and group server has a public-

3Authors abbreviated it as SFS, but here it is called SSFS
to avoid conflicts with other Secure File Systems (SFS).
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private key pair. Private keys are stored on personal smart
cards. SSFS supports XML-based access control list. A
owner can specify the users and groups that can decrypt his
files in the access control list. Each file is encrypted with
a symmetric key. To share files with individual users, the
owner encrypts the file key with those user’s public key. To
share files with a group of users, the owner encrypts the
file key with the corresponding group server’s public key.
Further, the owner can split the key between two or more
group servers (or individuals) for key recovery purposes. In
this case, the file encryption key can be recovered only if the
specified number of share holders contribute their share.

Suppose Alice wants to share her file with the members of
project Pentium. She encrypts the file key using the public
key of Pentium’s group server. Suppose Bob, a member of
project Pentium wants to access Alice’s file. Bob first ac-
quires the file from the file server. After receiving the file,
the SSFS client file system (on Bob’s machine) examines the
XML ACL to determine Bob’s group server as it needs to
acquire the file key to decrypt the file for Bob. The SSFS
client then sends the encrypted key to the Pentium’s group
server along with a signed request. The signature is gener-
ated by Bob’s smart card. After receiving the request from
Bob, the Pentium group server authenticates Bob by veri-
fying the Bob’s signature and determines whether to grant
or deny access to Bob based on the local policies. If access
is granted, the group server takes the encrypted file-key,
decrypts it, and then re-encrypts it to Bob’s smart card (us-
ing Bob’s public key). The group server then sends this
re-encrypted key back to the SSFS client. The SSFS client
sends the received encrypted key to Bob’s smart card, which
decrypts and returns the file-key. The file-key is used by the
SSFS client to decrypt the file.

SFS attempts to address practical security issues in an
organization by providing end-to-end encryption and key
recovery. It does not restrict the group server to a fixed
policy, instead the individual groups are free to use suitable
policies. However, SSFS does not provide confidentiality of
meta-data and integrity of data and meta-data. The SSFS
group server is responsible for client authorization; there-
fore, it has to be online and can present a central point of
failure. A SSFS user uses a smart-card in order to access
the files. However, this requires smart-card support on all
machines, which may not be practical for existing systems.
Further, presence of the user level file system, smart-cards,
communications with the group server, and public key oper-
ations during data path will result in high access latencies.
Finally, it is not clear how write access control is performed
by the file server (this can be complemented by capability
based systems such as NASD).

3.2.5 SiRiUS

Overview SiRiUS [32] is a user-level file system designed to
be layered over insecure network and peer-to-peer file sys-
tems such as NFS, CIFS, OceanStore, and Yahoo! Briefcase.
It provides its own read-write cryptographic access control
for file level sharing in small groups. The main goal was to
design and implement a security mechanism that improves
the security of a networked file system without making any
changes to the file server. In addition to confidentiality of
data, SiRiUS also ensures integrity of data, and loose in-
tegrity of meta-data.

Security SiRiUS is a user level file system implemented
on Linux over NFSv3. All files are stored on the server
in two parts, namely a data file (d − file), which contains
the encrypted data and a meta data file (md − file), which
contains the access control information. Storing access con-
trol information in a separate meta-data files allows SiRiUS
to run on top of any storage server as long as the SiRiUS
client can interact with the server according to the server’s
semantics. The d − file is encrypted using a symmetric
key and signed by the writer. Stored in each directory is
the meta-data freshness file (mdf − file), which contains
the root of the hash tree [51] of the mdf − files associated
with sub-directories. The root of the hash tree is signed
periodically by the owner to ensure freshness of the meta-
data. The SiRiUS client hides the presence of md−file and
mdf − file to the user. It assumes the presence of some ex-
isting key distribution mechanism (e.g., PGP, S/MIME) to
acquire users’ authenticated public keys. All SiRiUS users
have a public-private key pair. Associated with each file are
two keys namely, an AES [50] File Encryption Key (FEK)
and a DSA File Signing Key (FSK). FEK is used for en-
crypting the file and FSK is used for signing. Possession
of FEK gives read only access to the file while the posses-
sion of both FEK and FSK bestows both read and write
privileges to the beholder. Thus, the reader and writer sep-
aration is performed by giving appropriate keys. Files are
encrypted using AES in counter mode [22].

To share files with other users the owner of the file creates
an entry for every user in the md−file. Each entry contains
the file’s FEK encrypted with the public key of each user
with read access. If the user also has a write access, then
the entry for that user will also include the FSK of that
file. The md − file also contains the public key of FSK,
the relative filename, hash of meta-data signed by the owner,
and timestamp of last modification. The public key of FSK

allows the readers to verify the signature on d−file, the rel-
ative filename prevents file-swapping attacks, and signature
ensures integrity of meta-data.

Every directory contains a meta-data freshness file, which
contains the root of the hash tree built from all the md −

files belonging to that directory and its subdirectories. The
hash tree is built by hashing each md−file with SHA-1 [50]
and concatenating with the md−files of each subdirectory.
The owner’s SiRiUS client will periodically time stamp the
root mdf−file and sign it using his private key. Verification
can be performed by regenerating the mdf−file for that di-
rectory and comparing with the current mdf−file. In order
to perform read or writer operations on a file, a user acquires
both the md−file and the d−file, verifies signature on the
md − file (using public key of FSK), decrypts FEK and
FSK (if the user is allowed to write), and performs read or
write operations using the FEK. Key revocation is quite
similar to file creation: the owner has to create new keys for
every file that was accessible to the revoked user, encrypt
the new keys with the public key of the non-revoked users,
and sign the md − file and the mdf − files.

SiRiUS is secure and provides secure file sharing with con-
fidentiality and integrity of data. It does not consider pri-
vacy of meta-data. It ensures integrity of meta-data upto the
time when the meta-data was last signed by the owner (since
owner signs periodically). In addition, it prevents roll-back
of md−files. All this is achieved without any modifications
on the file server, a prudent design choice. Therefore, SiR-
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iUS can be used on any of the existing file servers. If a user
is revoked, all owner’s have to scan through all their files
looking for files that were accessible to the revoked user. In
addition, all writers share the file signing key (FSK); there-
fore, it is impossible to trace (provide non-repudiation) the
last person who modified a file. Further, owner has to re-
encrypt the FEK (and FSK) for all existing user’s, which
will add performance overhead. Therefore, SiRiUS is good
to use for small user groups. To reduce this performance
overhead the author’s have suggested to use the Naor-Naor-
Lotspiech [56] construction.

3.2.6 Plutus

Overview Plutus [40], provides secure file sharing while
placing minimal trust on the storage server. It enables end-
to-end data and meta-data confidentiality, and data and
meta-data integrity where all the key management and dis-
tribution is handled by the client. It provides an elegant re-
vocation mechanism and reader-writer distinction similar to
SiRiUS. In addition, it provides confidentiality and integrity
of network messages (RPCs) sent between the client and the
server. A prototype of Plutus is built on OpenAFS[58].

Security In Plutus, all files with identical sharing attributes
are grouped in the same file-group. A file-group is a group of
files with identical sharing attributes. This exploits the fact
that even though a user typically owns and accesses many
files, the number of equivalence classes of files with different
sharing attributes is small; thus, enabling grouping of mul-
tiple files with same equivalence class. A simple example
of file-group in UNIX is a group of all files owned by same
owner and group having the same permission bits. A unique
symmetric key called the lockbox − key is associated with
every file-group. A unique 3DES [50] symmetric key, called
a file − block key is used to encrypt each block of a file. A
lockbox securely holds the keys for all the blocks of the files
(file−block keys) belonging to one file-group by encrypting
all the file− block keys using the symmetric lockbox− key.
If a user wants to share his files with other users, he creates
a file-group (which contains permissions for the file-group
and a list of members) and a lockbox−key, which has to be
distributed by the creator of the file-group to the members
of the file-group.

Each file is encrypted block by block using the respec-
tive file− block key, which is automatically created during
block creation. The file − block key is also automatically
encrypted with the lockbox−key of the associated file-group
to share with other members. Plutus also encrypts each in-
dividual file name entry in the directory inode as well; thus,
ensuring confidentiality of the data as well as meta-data.
Associated with each filegroup (lockbox) is an RSA key pair
where the private part of the pair is the file− signkey and
the public part is the file − verifykey. The readers are
given the lockbox − keys whereas the writers are given the
lockbox − keys as well as the file − signkeys. Thus, sim-
ilar to SiRiUS, in Plutus possession of signing key distin-
guishes writers from readers. The file blocks are arranged
in a Merkle tree [51] and the root is signed by writers us-
ing file − signkey of that file-group, which can be verified
by writers using the corresponding file − verifykey. This
proves to the readers that the files are been modified by au-
thorized writers and also ensures integrity of data as well
as meta-data. The server authenticates the writers before

allowing writes by using the write token associated per file-
group, which is given by the owner to all writers of that
file-group. This prevents someone from simply overwriting
the entire storage space on the storage server.

Revocation in a secure file sharing system is expensive as
it requires re-distribution of keys, re-encryption of the data
accessible to the revoked user as well as re-signing of the
revoked data. Plutus exploits the concept of lazy revocation
first proposed in Cepheus [26]. Lazy revocation delays re-
encryption until a file is updated. Another elegant feature
of Plutus is key rotation. When a user is revoked, all his
filegroup keys have to be changed by creating new filegroups.
However, due to lazy revocation the existing (non-revoked)
user of the revoked filegroup should have access to keys of
both the revoked as well as the new file-group. In Plutus, the
owner of the filegroup creates a new lockbox − key for that
filegroup by encrypting the current lockbox− key using the
owner’s private key. The resulting key is the new lockbox−

key. The members of the group can get the older version
of lockbox − key for that group by decrypting recursively
using the owner’s public key. The file − signkeys and the
file − verifykeys are rotated in a similar fashion.

Plutus is a well designed secure file sharing system. Key
distribution in Plutus is performed by the owner of the data.
A user has to contact the owner to acquire keys, and, there-
fore, the owner has to be present online. To solve this prob-
lem, Plutus can be extended to use key distribution scheme
like the one presented in Cepheus [26] (discussed in sec-
tion 3.2.7). Finally, similar to SiRiUS, Plutus shares the
file− signkey with all the writers. Therefore, it is not pos-
sible to verify securely the last modifier of a file.

3.2.7 Other Shared Cryptographic File Systems
Cepheus [26] developed by Kevin Fu was one of the first

secure file sharing systems. Plutus extends some of the con-
cepts from Cepheus. The goal of Cepheus is to provide con-
fidentiality and integrity of data and (part of) meta-data.
Cepheus, introduces a group server that stores and deliv-
ers user’s public keys and a encrypted group key associated
with each UNIX group. A group key is created by the group
owner and encrypted for each individual group member us-
ing the group member’s public key. Each file block is en-
crypted with a unique symmetric key using RC5 in CBC
mode. The owner of the file creates the file key while creat-
ing the file or while changing access control list due revoca-
tion of some user’s rights. The file key is encrypted for the
group using the group key and for the owner using the own-
ers public key. These two versions of the encrypted file keys
are placed in the file inode. To ensure file integrity, a writer
also generates a keyed hash (HMAC) [50] on the root of the
hash tree of the file blocks and the meta-data (using the file
key). In order to access a file, a user first downloads the en-
crypted group key from the group server, decrypts the group
key using his private key, fetches the encrypted file key from
the inode and decrypts it using the group key, verifies the
HMAC, and decrypts the file if the HMAC can be verified
correctly. The group server authenticates the client by ver-
ifying his signature. Cepheus performs lazy encryption on
revocation, an idea which was extended in Plutus. Cepheus
does not provide reader-writer distinction, which as taken
into consideration in Plutus.

SNAD is a secure file system that provides various in-
tegrity schemes that tradeoff security for performance. In
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SNAD [53], clients encrypt every block of a file using RC5
encryption algorithm in CBC mode before sending a file to
the storage server. The owner of the file creates a data struc-
ture called key object for an encrypted file, which stores a
tuple for each user (or group) that is allowed to access that
file. A tuple consists of a user ID (or group ID), the RC5 key
encrypted with that user’s (or groups) public key, and the
permissions that should be granted to that user (or group).
The key object also includes the ID and signature on the
hash of the key object of the last writer to the key object.
Every secure block contains the actual encrypted file block,
the ID of the last writer, and either a writer’s signature on
the block or a HMAC (tradeoff of non-repudiation for per-
formance) on the block using the writer’s HMAC key. The
HMAC key is stored on the device in another data structure
called certificate object. It is not clear how the access to cer-
tificate object is controlled and how HMAC keys are added
to the certificate object. The server either verifies the signa-
tures of the user or the HMAC of the writer for every block
before storing that block. Similarly, readers verify the sig-
nature or HMAC of the writer before reading a block. The
key object can be modified by any person holding the ap-
propriate file-key. Therefore, any user can add another user
to the key object; thus, granting the new user access rights
to files encrypted using that key object. SNAD trusts the
storage server to perform access control. SNAD supports
two additional schemes that improve the performance of the
system; however, this tradeoff weakens security. In order to
revoke a user, the file owner should re-encrypt the file with
the new key and re-encrypt the key with each user’s public
key.

All of the secure file sharing approaches studied in this
section require either the owner of the files or the owner of
the group to securely share the file key or the group key
with other user’s. This is performed either by encrypting
the appropriate key by using each user’s public key or by
using each user’s passwords. While the latter approach is
less secure and inconvenient the prior approach is expensive
(especially for large groups) as the owner has to encrypt
the keys using each user’s public key. To reduce this com-
putation overhead Ateniese et al. [28] proposed an interest-
ing approach using proxy based re-encryption techniques. A
high-level description of their approach is presented below.
Suppose Alice desires to share her files with Bob. In proxy
re-encryption, Alice creates a token for Bob and stores it
with the storage server. The token is derived using Bob’s
public key and Alice’s secret information. Alice encrypts
the shared symmetric keys (e.g., file key) and stores them
on the server. The storage server cannot decrypt these keys.
The keys are encrypted by Alice in such a way that the stor-
age server can re-encrypt them using Bob’s token such that
only Bob can decrypt them using his private key. Thus, the
overhead of re-encryption is pushed to the server without re-
vealing the keys to the server. Alice assigns such tokens for
each user with whom the files are shared. While encrypting
the file keys Alice specifies the tokens of the users that are al-
lowed to decrypt the key. The storage server can transform
(re-encrypt) the key only to the user’s specified by Alice.
Further, Alice does not have to online during the transfor-
mation process. This approach is secure and the only way
a file’s confidentiality can be compromised is if a user either
publishes the symmetric key used for file encryption or the
file itself.

4. STORAGE-BASED INTRUSION DETEC-
TION

4.1 Self-Securing Storage
Self-Securing Storage System [75] is developed at CMU.

It maintains old version of data for a specified time period
so that system administrators can perform intrusion diag-
nosis and recovery using the history of old versions of the
data. Self-securing storage runs a versioning system on the
storage server side, which is independent of any client side
software, such as the client operating system, or file system.
It can also be running on the disk firmware itself. Since the
versioning system is running on the server’s hardware, it is
independent of any client side compromises and cannot be
disabled as long as the server is not compromised. S4, a pro-
totype implementation, is available on Linux 2.2.14 Kernel.

The S4 storage server maintains a history pool of old data
versions and an append-only audit log that logs informa-
tion regarding all the commands sent to the server (e.g.,
the commands, the originator of the commands etc.). In-
stead of overwriting original data on every write command,
the server creates a new version of the data and maintains
both the versions. In addition, it runs a version cleaner that
cleans (frees the space) the versions that are older than the
duration of the time window for which the version history is
to be maintained. The versions can be permanently deleted
only by the cleaner program. This prevents accidental or
on purpose deletion of the versions by a user or an attacker.
The S4 storage server uses a log structure to maintain data
an journal-based meta-data to provide efficient writes, re-
duce space utilization and reduce size of meta-data. A client
interacts with the S4 server using S4 specific RPCs and a
system administrator can interact with S4 server using the
administrative interface provided by S4.

By using S4 on firmware of a storage drive one can securely
maintain versions of object without huge tradeoff in terms
of performance as well as disk capacity. Further, it will be
very difficult to disable the versioning system running on
the storage drive.

4.2 The CMU Storage-based IDS
The storage-based intrusion detection system (SIDS) [61]

is based on the principal similar to that of the self-securing
storage described above.

SIDS is embedded in a storage device and analyzes data
access patterns and data modification characteristics, look-
ing for manifestation of an attack. The main advantage of
SIDS (running directly on the storage server or on the disk
firmware) as compared to host-based IDS is that an intruder
having full access to the host can disable a host-based IDS,
whereas a SIDS can still continue to function properly and
are independent of host (or OS) compromise. On the other
hand, SIDS have a restricted view of the world as compared
to host-based IDS and they also require some file-system
level understanding, which restricts them to a particular FS.
The CMU SIDS is a rule-based intrusion detection system
(misuse detection) and uses a set of rules to detect suspicious
modifications to data. A prototype implementation embed-
ded in NFS server is provided. The implementation is quite
efficient and proves that embedding SIDS into a storage de-
vice is quite feasible.
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SIDS supports the detection of four categories of suspicious
activities.

• Unexpected changes to important system files and bi-
naries, using a rule-set very similar to Tripwire [44].

• Patterns of changes like non-append modification (e.g.,
of system log files) and reversing of inode times. These
patterns indicate that attackers were trying to modify
system log files with an intent of erasing evidence of
their malicious activities.

• Specifically proscribed content changes to critical files
(e.g., illegal shells inserted into /etc/passwd).

• Appearance of specific file names (e.g., hidden dot
files) or content (e.g., known viruses or attack tools).

An administrative interface supplies the detection rules,
which are checked by the server during the processing of
each NFS request. Each request is analyzed to detect one
of the four suspicious activities described above. When a
detection rule triggers, the server sends the administrator
an alert containing the full pathname of the modified file,
the violated rule, and the offending NFS operation. It is
assumed that a storage device or the storage server cannot
be physically compromised and the administrative interface
is secure. All of the malicious activities detected by SIDS
can also be detected by an host-based IDS, however, host-
based IDSs can be easily disabled by an intruder in control
with the host OS. Further, the detection is performed for
each RPC request, which gives a clear information about
the files that are accessed. This can give a better result
as compared to analyzing audit logs (such as UNIX system
logs), which may not give all the necessary information.

4.3 Other Storage-based Intrusion Detection
Systems

Several existing tools are designed to aid system admin-
istrators to monitor their file systems looking for manifes-
tations of attacks. Tripwire [44] is one of the file integrity
checkers that is widely used by both UNIX and Windows
communities. It generates a signature (message digest) of
monitored files using the original uninfected files and fre-
quently checks the file stored in the system, looking for de-
viation from the recorded signatures. Several existing file in-
tegrity checks (e.g., Data Sentinel, Sentinel, Xintegrity [16])
work on a similar principle. Avfs [55] performs on-access
antivirus checks. It is a stackable file system that intercepts
filesystem reads and writes and scans for viruses, if neces-
sary. By performing on-access anti-virus checks as compared
to performing antivirus checks at open or close operations,
Avfs reduces the window of attack and detects viruses before
they are written to the disk. It extends ClamAV [1], an open
source virus detection engine to improve the performance of
pattern matching. After detecting a virus, Avfs quarantines
the infected file (by denying access) or creates a new version
of that file. The detection engine is stateful; therefore, in or-
der to receive acceptable performance one needs to tradeoff
the system’s memory.

5. COMPARISON AND DISCUSSION
In this section we begin with comparing most of the sys-

tems presented above based on the security services provided

by these systems. We have chosen a subset of the desired
security services of a secure storage system that were dis-
cussed in the section 1.1. We compare the storage systems
(listed in table 1) by taking a look at each security feature
and discussing the advantages and disadvantages (if any) of
the security mechanisms used by these systems. Further,
we also raise potential research or implementation problems
during the course of our discussion. Table 1 gives a high-
level summarization of our comparison. The comparison is
pertinent to the systems shown in the table. During com-
parison, the storage-based intrusion detection systems are
not considered, as in order to have a fair comparison one
will have to survey other IDS that are not specifically devel-
oped for storage yet can detect malicious activities on the
storage servers.

Entity and Message Authentication: We have seen var-
ious flavors of entity authentication. Some systems maintain
a separate authentication server while others leave this re-
sponsibility to the file server. Client authentication in NFS,
AFS, SFS, TCFS is performed by a central trusted authenti-
cation server (AS) (Kerberos in the case of NFS and AFS).
TCFS supports both password-based and Kerberos-based
authentication. In NASD, the filemanager authenticates
users and grants capability tokens to the users. The NASD
storage devices authenticate the users based on these tokens.
Cepheus and SSFS rely on a central group server to authen-
ticate users. SFS provides two levels of authentication. At
the first level, the SFS client machine mutually authenticates
with the SFS file server. At the second level, the SFS user
is authenticated by the SFS AS using the secure channel es-
tablished during the first mutual authentication phase (file
server forwards authentication requests to the AS). SFS uses
the SRP [81] protocol that allows users to securely download
their public-private keys from the password server without
revealing any information about the their passwords and
private keys to the server.

EFS and CFS rely on the underlying system’s authenti-
cation mechanisms for this purpose. It is the job of the file
server to verify the identity of the readers and the writers
before allowing access to stored data. In SiRiUS and Plutus,
writers sign before writing the data and readers verify the
signatures before reading the data. The signing key is given
to the writers by the owner of the data only after authen-
ticating the writers. Since readers trust the owner, writers
are implicitly trusted. In addition, in the case of Plutus,
the file server verifies a write token given to writers by the
owner before allowing writes on any data.

Message authentication involves authenticating the source
of messages (such as RPC). Systems using Kerberos, provide
mutual authentication between the client and the authenti-
cation server as well as between the client and the file server.
Similarly NASD secures all messages and data sent between
the client and the file server. In Plutus, both ends of the
communicating parties share a symmetric key during RPC
setup, which is used to HMAC all the RPC request and
replies between them. SFS establishes a secure channel be-
tween the client and the file server.

Access Control: In SSFS access control is performed by
the central group server. In the case of NASD, the central
file manager gives a credential to the user that contains ac-
cess rights on a particular object. The storage device simply
enforces these rights. In the case of SiRiUS, access control is
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Table 1: A comparison of security services provided by various storage systems. Auth., Cnfd., E2E, MD,
Rec. and NA stand for authentication, confidentiality, end-to-end, meta-data, recovery and not applicable
respectively. The Entity Auth. column describes how the client is authenticated by the authentication
server (AS) and file server (FS). Message security indicates authentication, integrity, freshness, and privacy
of messages (e.g., RPC) between the client and the file server. (1) These systems rely on the security
mechanisms of the underlying file system for this feature. (2) EFS is not secure if files are stored in remote
file shares. (3) Authentication is performed using digital signatures.

System
Entity Auth. Access

Control

Message

Security

E2E Cnfd. E2E Integrity E2E Key Management
Revoke

AS FS Data MD Data MD Grouping Distribution Rec.
AFS Kerberos AFS ACL Yes No No No No NA NA NA ACLs

NFSv4 Kerberos, LIPKEY NT ACL Yes No No No No NA NA NA ACLs

CFS NA No1 No1 No1 Yes Yes No No No No file-sharing Yes No1

TCFS Passwd No1 No1 No1 Yes No Yes No Threshold Admin encrypts group-
keys using user’s passwd

No Immediate
re-encrypt

EFS No1 No1 No1 No1 Yes2 No No No No Owner encrypts file-key
with each user’s public
key

Yes Immediate
re-encrypt

Cepheus PKI3 No1 No1 No1 Yes Yes Yes Yes UNIX group Group owner encrypts
group-key with each
user’s public key

No Lazy
re-encrypt

Plutus NA write
token

Read-write keys Yes Yes Yes Yes Yes File groups Users contact owner for
keys

No Lazy
re-encrypt

SiRiUS NA No1 Read-write keys No1 Yes Yes Yes Yes No File owner encrypts file-
key with each user’s pub-
lic key

No Immediate
re-encrypt

SSFS PKI3 No AS No1 Yes No No No Project File owner encrypts file-
key with each user’s/
group’s public key

Yes Immediate
re-encrypt

NASD No1 CapKey Capability Yes No No No No NA NA NA Expiry,
AV

SFS PKI 3 Credential
from AS

SFS ACL Yes No No No No NA NA NA CRL

completely based on possession of keys. If a user has the file
encryption key, then he can read the data and if a user has
file signing key, then he can modify the data. The file server
does not perform access control. In Plutus, in addition to
SiRiUS style access control mechanism, a file owner gives a
write token to every writer. The Plutus file server verifies
these tokens; therefore, the file server is partially trusted. In
the remaining systems, access control is performed by the
file server. Plutus, SiRiUS, and SSFS do not trust the file
server to perform access control (the trust is partial in the
case of Plutus), they assume that all file system data will
be encrypted. However, this may not be a reasonable as-
sumption as typically not all data is sensitive. Further, for
the sake of performance a user many not want to encrypt all
of the data. Therefore, the basic access control mechanisms
have to be in place. Besides, at the least a file server should
verify whether the user has write permissions (as done by
Plutus) to an object, otherwise a malicious user can sim-
ply erase the entire disk. Therefore, the basic file system’s
access control mechanisms cannot be replaced and the file
server has to be at least partially trusted to verify writes.

End-to-end Data and Meta-data Confidentiality: A
file system supports end-to-end data and meta-data confi-
dentiality if users of the data encrypt the data (and meta-
data) before it is sent over the network and only users of
the data (and not servers) decrypt the encrypted data. All
except AFS, NFS, NASD, and SFS support end-to-end data
confidentiality. AFS, NFS, SFS and NASD encrypt the net-
work traffic between a client machine and a server. Cepheus,
Plutus, and CFS support meta-data confidentiality.

Most of the real-world storage systems encrypt network

traffic but do not support end-to-end confidentiality. The
main reasons are reduced performance and the high amount
of complexity involved in performing key management, key
storage, backups, and revocation. Another important ques-
tion is how can one support fast pattern searching (such as
grep) on the encrypted data? Modern storage servers have
content based indexing capabilities for providing fast content
based search and retrieval. If the data is encrypted by the
user, the storage server will not have the data in clear, which
will prevent them from performing content based search and
indexing. Is it possible to allow the storage server to build
content based indexes on the encrypted data without re-
vealing any information to the server about the plaintext?
It might be possible to build some encrypted keywords on
the client side before the client writes the file to the storage
server. However, this may not give enough information to
the server. This is an active area of research [33, 14] and
hopefully we will see fast and practical pattern matching
techniques on encrypted data.

Further, what should the file system do if an encrypted file
is transferred to another file system that does not support
encryption/decryption services? EFS, for example, decrypts
a file before transferring it to a different file system. While
this makes the encrypted file accessible to the user, this also
defeats the purpose of encryption. Transferring the file en-
crypted and leaving the decryption operations to user (who
may not be aware of the underlying encrypted file system)
will cause inconvenience to the user. These issues should be
resolved to make end-to-end encryption useable in practice.

End-to-end key management: Grouping is typically used
to reduce the key management burden. In Cepheus, a group
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is same as a UNIX group whereas Plutus groups files with
same owner, group, and access rights into one file-group.
The grouping mechanism used in Plutus reduces the number
of keys as typically a UNIX system has lesser file-groups as
compared to UNIX groups. SSFS groups users according to
projects within an organization. TCFS provides threshold
group sharing where key used for encryption is split between
a group of members.

One important aspect of key management is key distribu-
tion. Key distribution is performed in-band or out-of-band.
In the case of in-band key distribution file-keys are stored
encrypted along with the files. For example, SiRiUS, EFS,
SSFS store file-keys encrypted with each user’s public key
along with the meta-data of the file. Out-of-band key dis-
tribution requires key distribution to be handled by some
other mechanism. For example, in Plutus readers and writ-
ers have to contact the group owners to acquire appropriate
keys.

Key recovery is another essential feature that should be
provided in storage systems that support encryption and
signing. Key recovery is useful for recovering lost keys and
recovering old backed-up encrypted data even in the ab-
sence of the encryptors. EFS, CFS, and SSFS provide key
recovery. Key recovery should be inherent (mandatory) to
the system (as in the case of EFS) and not discretionary
as a user can simply ignore the key recovery process. Many
key recovery systems are already been proposed. Identifying
appropriate key recovery mechanisms and integrating them
with the secure file systems (or key creation programs) is
important.

Revocation: In the case of encrypting file system, if a user
is revoked, all the files accessible to the revoked user may
need to be re-encrypted as the user can store the keys and
attempt to get physical access to the data. Cepheus and
Plutus perform lazy revocation where the owner marks the
files (accessible to the revoked user) as revoked and the file
is re-encrypted on the next update to that file. In the case of
NFS and AFS (or any non-encrypting file system) revocation
is performed by changing the file ACL. NASD uses expiry
and access control version for revocation. Systems that use
public key certificates (such as EFS, SFS, SSFS) have to
maintain servers to distribute certificates and CRLs.

Non-repudiation: It is important, in some commercial en-
vironments, to ensure non-repudiation of writes; that is, to
prevent writers from denying their modifications to the data.
While this can be easily achieved by digital signatures (albeit
with small performance overhead), except SNAD none of the
existing systems provide non-repudiation of writes/updates.

Key Storage: In addition to file encryption secure storage
of keys is also important. CFS and SSFS use smart-card
to store keys, and, therefore, the keys are stored securely
without trusting any other central entity for this purpose.
Systems such as Cepheus and TCFS encrypt users keys us-
ing user’s password. In this approach, keys are as secure as
a user’s password. However, considering user’s convenience
this is a practical approach as most of the systems today
rely on password-based authentication. A related question
is should we change keys (and hence re-encrypt all the data)
when a user changes his password? It is difficult to distin-
guish whether a user is attempting to change his password
because of a compromise or as a part of a routine password
change. Further, sometimes system administrators create

passwords for user’s. For example, if the user is a new user
to the system, or if a user forgets his password. In this case,
the system administrator can access all the files. How can
one resolve this problem?

Long Term Key Management: Keys should be securely
managed as long as the data is in existence. This will raise
many management issues as a lot of unforeseen changes can
happen during the lifetime of the data. For example, the
user who encrypted the data as well as system administra-
tors may not be available at the time when the data is re-
quired to be decrypted. How can the person who may be
unknown to the system at the time of decryption efficiently
acquire the necessary decryption keys or verification keys?
Further, keys can compromised or cryptographic algorithms
can be considered compromised (or considered weak) in the
future. As suggested in [10] re-encryption of the data on
the storage server side can solve this problem. However,
the focus of the problem described above now shifts towards
securely managing keys that were used by the server for
re-encryption. Therefore, practical and secure management
approaches should be proposed and standardized.

6. CONCLUSION
In this paper, we have presented a comprehensive survey

of existing secure storage systems. We have listed the basic
security services that should be provided by an ideal secure
storage system. However, it is evident that for all practical
purposes it is difficult to build a storage system that can sat-
isfy all the listed services. However, this list can help system
designers to quantify their requirements and evaluate other
storage systems. We have categorized the existing solutions
and presented case-study of each category. Finally, we have
presented comparison of most of the surveyed systems and
raised a few practical questions that should be addressed by
a secure storage system.
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