
On Protecting Integrity and Confidentiality of
Cryptographic File System for Outsourced Storage

Aaram Yun
University of Minnesota
Minneapolis, MN 55455
aaram@cs.umn.edu

Chunhui Shi
University of Minnesota
Minneapolis, MN 55455
cshi@cs.umn.edu

Yongdae Kim
University of Minnesota
Minneapolis, MN 55455
kyd@cs.umn.edu

ABSTRACT
A cryptographic network file system has to guarantee confi-
dentiality and integrity of its files, and also it has to support
random access. For this purpose, existing designs mainly
rely on (often ad-hoc) combination of Merkle hash tree with
a block cipher mode of encryption. In this paper, we propose
a new design based on a MAC tree construction which uses a
universal-hash based stateful MAC. This new design enables
standard model security proof and also better performance
compared with Merkle hash tree. We formally define the se-
curity notions for file encryption and prove that our scheme
provides both confidentiality and integrity. We implement
our scheme in coreFS, a user-level network file system, and
evaluate the performance in comparison with the standard
design. Experimental results confirm that our construction
provides integrity protection at a smaller cost.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
security and protection; H.3.2 [Information Storage and
Retrieval]: Information Storage

General Terms
Algorithms, security

Keywords
File encryption scheme, cryptographic file system, MAC tree,
Merkle hash tree, universal-hash based MAC, provable se-
curity

1. INTRODUCTION

1.1 Background
Cryptographic file system is a convenient solution for pro-

tecting data at rest. It offers automatic and transparent
encryption, and in contrast to block-device level encryption,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’09, November 13, 2009, Chicago, Illinois, USA.
Copyright 2009 ACM 978-1-60558-784-4/09/11 ...$10.00.

it provides more flexible key and user management. Such a
system has to guarantee both confidentiality and integrity
of its files, that is, it should give protection against infor-
mation leakage, and also against unauthorized alteration of
data.

Although it is possible to use cryptographic file systems
for encrypting data locally, more care is needed if one wants
to build a cryptographic network file system on top of out-
sourced cloud storage services. For example, a cryptographic
file system on a laptop may need only protection from one-
time data loss (theft, or missing laptop), but when the en-
crypted data is stored in a third-party storage such as Ama-
zon S3 [2], the attacker may potentially observe many (en-
crypted) modifications to the stored data and also be able
to adaptively modify the data.

Therefore, we consider the scenario where the attacker
has adversarial control over the data storage. For example,
a malicious storage provider might delete an update of a
file and instead ‘roll-back’ the file’s content to an outdated
previous version.

A conventional solution to protect against such cases is
to use a block cipher mode of encryption for confidentiality,
and combine that with a Merkle hash tree construction for
integrity; a file is divided into small blocks, and the tree of
hash values of the blocks is built, and the root of the tree
is authenticated. This provides logarithmic-time random
access of file content. Figure 1 illustrates a ternary Merkle
hash tree.

D1 D2 D3 D4 D5 D6 D7 D8

H1
(1) H2

(1) H3
(1) H4

(1) H5
(1) H6

(1) H7
(1) H8

(1)

H1
(2) H2

(2) H3
(2)

H1
(3)

Figure 1: Merkle hash tree construction

1.2 Objectives
In this paper, we have two goals in mind:

1. Security: to provide a provably secure design of a cryp-

67

tographic file system along with rigorous security def-
inition

2. Efficiency: to optimize performance in comparison with
previous solutions.

We want our construction to provide provable security of
confidentiality and integrity. We define the notions of se-
curity, and prove that our scheme meets the security goals.
We firmly believe that security proofs are important: not
because unproven schemes necessarily have critical flaws,
but because rigorous definition and proof ensure us what
security do we have. Even such an ‘obviously secure’ con-
struction like Merkle hash tree can be sometimes misused
if not careful: for example, some proposed schemes build
the Merkle tree out of the plaintext of the file content, and
protect the content by storing the encrypted content. This
leaks information about the file content, for the simple rea-
son that the Merkle tree is a deterministic function of its
input: by looking at the Merkle tree, the attacker may com-
pare various versions of a file and see whether some of the
versions are identical in certain blocks or not, i.e., such a
scheme is not semantically secure.

For efficiency, our goal is to obtain much smaller compu-
tational overhead of cryptographic operations in comparison
with Merkle hash tree based solutions, at the same time with
comparable or better communication overhead. In crypto-
graphic network file systems, typically communication is the
bottleneck and computational overhead for cryptographic
operations takes shorter time in comparison. But saving the
computational overhead for cryptography is still meaningful
for practical systems, for the saved computational cycles can
contribute to responsiveness of the whole system or can be
used for computations other than cryptographic operations.

Again, with encryption, there is a natural limit for op-
timization given a fixed amount of data to be processed,
unless parallelization or pipelining via multi-core or GPU is
used.

However, authentication of data can be optimized quite a
bit, especially in comparison with Merkle hash tree. Also,
computational cost for authentication is typically smaller
than that of encryption, but not too much smaller. For
example, if we look at the benchmark data made available by
eBACS [5], except few unusual cases, in most environments
SHA-1 is at best only about 1.5–1.6 times faster than AES-
128 as a rule of thumb, and often slower than that. And
SHA-256 is typically slower than AES-128. This means that,
in order to build a Merkle hash tree to protect integrity, one
has to spend comparable, or sometimes more computational
resources than encryption. Judicious choices of the shape,
serialization, and caching of the tree would help reducing
the cost, but at the minimum, each block has to be hashed
and that cannot be reduced any further.

1.3 Universal-hash based MAC tree
Instead, we propose using a universal-hash based state-

ful MAC [8, 23]. Although in our implementation we use
Poly1305-AES [3], in general any universal-hash based MAC
can be used. A universal hash function is a keyed, non-
cryptographic hash function which guarantees only collision
resistance or related properties. Since it does not mix and
scramble the input as thoroughly as a cryptographic hash
function does, usually it is much simpler and faster. In order
to be used as a cryptographic data authenticator, a nonce

is encrypted by a block cipher and that output is XORed
to the output of the universal hash function. Because the
costly block cipher operation is used only once, irrespective
of the data size, a universal-hash based MAC performs bet-
ter with longer amount of data, relatively. This performance
characteristic fits well with integrity protection for storage
security: we propose a new n-ary MAC tree construction
out of a universal-hash based MAC algorithm, with n much
larger than 2 so that all children of a node fit in a disk
block. Also, in contrast to a hash tree or a stateless MAC
tree, where lower authentication tags themselves should be
authenticated in a higher node, we need only to authen-
ticate counters in the higher nodes, not the authentication
tags. Since we may use a counter much smaller than a secure
authentication tag (in our case, we use 4-byte counters and
16-byte tags), this gives further performance enhancement.

We implement our scheme on coreFS [9], a user-level net-
work file system, and compare the performance of our scheme
with that of a Merkle hash tree based scheme. The ex-
perimental results confirm that our construction provides
integrity protection at a smaller cost than the case of the
Merkle hash tree.

The following is the organization of this paper. In Section
2, we discuss related work. In Section 3, we give definition
of file encryption schemes, and also define the notions of se-
curity. In Section 4, we present our file encryption scheme.
In Section 5, we give implementation details, and in Section
6, we show the performance analysis. In Section 7, we con-
clude the paper. Additionally, we sketch the security proofs
in Appendix A.

2. RELATED WORK
There are many examples of cryptographic file systems

that use the Merkle hash tree or MAC tree (built from state-
less MAC and similar to the Merkle tree) to protect integrity;
a few examples include [1], [10], [11], [14], [16], [17], [20].

Oprea and Reiter [19] propose three file encryption schemes
for cryptographic file systems. Their main goal is to re-
duce the amount of extra space for integrity protection, and
for this they suggest schemes which take advantage of non-
randomness of some file blocks: in one scheme, they use a
wide-block cipher and explicitly protect the integrity only
for blocks with random contents, and in another scheme,
they compress non-random file blocks and store the authen-
tication tag in the space saved by the compression. We
point out that their schemes are not semantically secure:
as a default authentication mechanism they use the Merkle
tree with plaintext blocks, and this leaks information as ex-
plained in the introduction, and also because they treat ran-
dom blocks and non-random blocks differently, this leaks yet
another information about the file blocks, that is, whether
they are random or not.

Gjøsteen [13] defines and compares various notions of se-
curity for disk encryption. His work is for disk volume en-
cryption schemes, but many of the definitions are also ap-
plicable to file encryption schemes as well.

We assume the existence of a fixed-size per file, public,
trusted storage. This is necessary for protection from ‘roll-
back’ of content to previous versions. Even if each party who
has legitimate access to the file maintains a private state for
the file, still the storage provider may ‘hide’ someone’s up-
date to the file from others, while showing consistent view
to each individual. Mazières and Shasha defined the no-

68

tion of ‘fork consistency’ [18], which is weaker, but probably
the strongest possible guarantee of integrity when there’s
no public trusted storage. Li, Krohn, Mazières and Shasha
developed SUNDR file system [16] which satisfies fork con-
sistency.

Carter and Wegman proposed the notion of universal hash-
ing in [8]. Universal hashing has numerous uses throughout
computer science. The application of universal hashing to
message authentication was suggested first by Wegman and
Carter [23]. Originally they suggested using one-time pad
to produce the authentication tag, but soon Brassard sug-
gested using a block cipher and a nonce [7]. There are many
examples of MAC algorithms following this paradigm, and,
in fact, some of the fastest authentication algorithms are of
this type. Some modern examples include Poly1305-AES
[3], UMAC, and VMAC [15].

3. PRELIMINARIES

3.1 File encryption schemes
In order to provide efficient random access of data, we

cannot simply treat the content of a file as a single, con-
secutive data and encrypt and authenticate it accordingly.
Therefore, we model a file Φ to store and maintain its con-
tents in ‘chunks’. Let D = D1 · · ·Dn be the content of Φ,
where Di ∈ {0,1}d for some d. We call Di the ith file block
of the file Φ. For simplicity, we do not consider files with
data smaller than a file block: this can be handled by fixing
some padding scheme, and all of our results can be applied
to such cases. From now on, we call n the length of the file
content D1 · · ·Dn.

We also use a block cipher for our construction. So, we
have two kinds of ‘blocks’. In case of possible confusion,
we’ll use the term ‘file block’ to distinguish the former from
the latter. Let b be the block size of the block cipher in bits.
Concretely, we may choose d = 32768, which is 4 KB, and
we may choose AES as our block cipher, and this will fix
b = 128.

We model a file Φ as a quintuple of algorithms (Read,
Length, Update, Delete, Append). All of these operations
implicitly involve a symmetric key, called the file encryption
key of the file. The problem of generation and distribu-
tion of the file encryption key is out of the scope of this
paper: we simply assume that there is a secure mechanism
for distributing the file encryption key to anyone who are
authorized to access the file.

We assume that the (encrypted) file content will be stored
in an untrusted storage, which we denote by S. In addition
to that, we assume that there is a separate, fixed-size, public,
trusted storage space T for each file. Therefore, the state
of a file is completely described by (t, s) ∈ T × S, and,
in addition to explicit input arguments, each file operation
interacts with the state information of the storage spaces,
and may read and update the state (t, s). Each algorithm
can output ⊥, indicating failure, and halt. In that case, if
the state at the beginning of the algorithm was (t, s) ∈ T ×S,
then at the end of failure, it is (t, s′) ∈ T ×S, where t is the
same as at the beginning, but s′ is some state which may
or may not be same as s. We also assume that there is a
fixed state (t0, s0), and the state of Φ is initialized to (t0, s0)
when the file is initialized as an empty file.

The input and output format of each algorithm is as fol-
lows:

• Read(k), for k = 1, . . . , 2L (where L is some fixed
large number which depends on Φ), either returns some

D ∈ {0,1}d, or ⊥.

• Length() either returns an integer n ≥ 0, or ⊥.

• Update(k,D), for k = 1, . . . , 2L and D ∈ {0,1}d, either
returns >, indicating success, or ⊥.

• Append(D), for D ∈ {0,1}d, either returns >, indicat-
ing success, or ⊥.

• Delete() either returns >, indicating success, or ⊥.

3.2 File contents and soundness
Actually, the content of the file has to be defined opera-

tionally from the file operation requests. Let (q1, . . . , qr) be
a sequence of file operation requests. We define the content
C(q1, . . . , qr) of the file with respect to the sequence recur-
sively as follows:

• C() def
= ε; the content for null sequence of operations is

defined as the empty data.

• If C(q1, . . . , qr−1) = D1 · · ·Dn, where Di ∈ {0,1}d,
then C(q1, . . . , qr) is defined by

– Read, Length, and any failed requests do not mod-
ify the content.

– C(q1, . . . , qr)
def
= D1 · · ·Di−1D̂Di+1 · · ·Dn, if qr =

Update(i, D̂) and i ≤ n and the request qr is suc-
cessful.

– C(q1, . . . , qr)
def
= D1 · · ·DnD̂, if qr = Append(D̂),

and the request qr is successful.

– C(q1, . . . , qr)
def
= D1 · · ·Dn−1, if qr = Delete() and

n ≥ 1, and the request qr is successful.

Intuitively, this means that the content of a file at any time
is defined by previous sequence of successful file operation
requests.

We require that the file Φ is sound, that is, under no alter-
ation of S by an attacker, Φ faithfully stores and maintains
its content. That is, if (q1, . . . , qr) was the sequence of re-
quests made so far, and if C(q1, . . . , qr) = D1 · · ·Dn, then,
after that,

• If Read(i) request is made, then it will return Di if
1 ≤ i ≤ n, and it will return ⊥ otherwise.

• If Length() request is made, then it will return n.

• If Update(i, D̂) request is made, then it will fail if and
only if i > n.

• If Append(D̂) request is made, then it will succeed.

• If Delete() request is made, then it will fail if and only
if n = 0.

69

3.3 Security goals

Integrity.
We define the integrity of a file as infeasibility of alteration

of the file content, under chosen message attack. More con-
cretely, after Φ is initialized, we let an attacker A to freely
interact with Φ, making any file operation requests, and we
also allow the attacker to feed arbitrary state information
s′ ∈ S, which may be different from the state output of the
last successful request.

We say that the attacker A succeeds violating the integrity
of Φ, if A ever makes a successful read request Read(i), and

obtain D̂ 6= Di, where Di is the ith data block of the content
of Φ when A makes that Read request.

(Technically, we may consider that the integrity is vio-
lated also when the attacker may alter the length of the file
content. But, in our construction, we’ll store and update
the length information in the trusted storage, therefore we
do not have to consider this case.)

Let Advint
Φ (A) be the probability that A may violate the

integrity of Φ. This probability is over the internal coin
tosses of A, coin tosses of Φ (although in our construction,
Φ consists of deterministic algorithms), and over the ran-
domness of key materials used by Φ.

Informally, we say that Φ provides secure integrity, if
Advint

Φ (A) is negligible for all efficient attackers A.

Confidentiality.
We define the confidentiality of a file as infeasibility of an

attacker to learn any information about any file block, other
than by explicitly reading the file block; even if the attacker
can eavesdrop or coerce a party with legitimate access of the
file to read some portions of the file, at least other, unread
portions are safe.

In order to define the confidentiality, let’s define ‘left-or-

right’ oracle by LR(b,M0,M1)
def
= Mb, for b = 0 or 1. For the

definition of integrity, assume that at the initializition of the
file, b is randomly chosen from {0,1}, and assume that the
attacker can make the same type of file operation requests,
except that, now the format of Update and Append requests
are altered: the attacker requests Update(i, D̂0, D̂1), and

this is translated as Update(i,LR(b, D̂0, D̂1)) and given to
the file encryption scheme. Similarly, the attacker’s request
Append(D̂0, D̂1) is translated as Append(LR(b, D̂0, D̂1)). (Be-

cause Update(i, D̂, D̂) = Update(i, D̂), this new game is gen-
eralization of the previous.)

With respect to these new types of queries, we can simi-
larly define the content C(q1, . . . , qr) as (D1 · · ·Dn, D

′
1 · · ·D′n),

where D1 · · ·Dn is the ‘left’ content, i.e., the content should
be D1 · · ·Dn, if b = 0, and D′1 · · ·D′n is the ‘right’ content.
We can use similar recursive definition as before: for exam-
ple,

C(q1, . . . , qr)
def
=(D1 · · ·Di−1D̂Di+1 · · ·Dn,

D′1 · · ·D′i−1D̂
′D′i+1 · · ·D′n),

if C(q1, . . . , qr−1) = (D1 · · ·Dn, D
′
1 · · ·D′n),

qr = Update(i, D̂, D̂′), i ≤ n, and the request qr is successful.
We reject any attacker A, if he ever makes a query Read(i),

when the content is C = (D1 · · ·Dn, D
′
1 · · ·D′n) with Di 6=

D′i. At the end of the session with the file Φ, the attacker A
outputs 0 or 1. Let p be the probability that the output of A

is equal to b, which was chosen at the initialization of the file.

Let’s define the advantage of A as Advconf
Φ (A)

def
= |p− 1/2|.

Informally, we say that Φ provides secure confidentiality,
if Advconf

Φ (A) is negligible for all efficient attackers A.

3.4 Universal-hash based MAC schemes
The main component of our file encryption scheme is a

universal-hash based MAC.
An ε-almost XOR-universal (AXU for short) hash func-

tion is a keyed function family HK : D → {0,1}r which
satisfies the following: for any distinct X, Y ∈ D and any
C ∈ {0,1}r, the probability that HK(X)⊕HK(Y) = C is at
most ε with respect to randomly chosen K. There are many
such constructions, and one canonical example is ‘polyno-
mial hashing’: to compute HK(M), interpret the message
M as coefficients of a polynomial, and evaluate the poly-
nomial at the value K given as the random key. This is a
very lightweight construction, and some of modern univer-
sal hash functions are more than 10 times faster than most
cryptographic hash functions or block ciphers, for example.

But an AXU hash function is not a cryptographically se-
cure MAC, and it cannot be directly used for data authen-
tication; once an attacker sees a few message-hash pairs
(M,HK(M)), it is easy to forge a new message-hash pair
(M∗, HK(M∗)), even when the attacker has no knowledge
of K.

One way of using an AXU hash function for the purpose of
authentication is to ‘blind’ the hash values by pseudorandom
numbers produced by a block cipher. Let EK(·) be a block
cipher, for example AES. Pick keys K and K′ randomly, for
E and h, respectively. In order to authenticate a message
M , then we pick a nonce N , and compute the authentication
tag T as

T ←MK,K′(N,M)
def
= EK(N)⊕HK′(M).

When verifying the authenticity of (M,N, T), the verifier

again checks if T
?
=MK,K′(N,M) holds.

Note that, however large M is, only one block cipher oper-
ation is used during the calculation of M(N,M), while the
universal hashing is very lightweight. This is the main rea-
son for the extreme efficiency of this type of constructions.

It is proven [22, 4] that, if the block cipher E is secure as a
pseudorandom function, then, as long as no nonce is re-used
during the generation of tags, forging a new valid (M,N, T)
tuple is infeasible, even after the attacker has seen many such
tuples before, either by eavesdropping or by active manipu-
lation of tag generation. Also, nonce repetition is allowed for
the verification: the scheme is secure even when an attacker
tries many different M and T with one N .

4. DESIGN

4.1 A new MAC tree construction
Our file encryption scheme is based on a new MAC tree

construction, using a stateful, universal-hash based MAC
scheme described in the previous section. In Figure 2, we
illustrate one such 3-ary MAC tree, where M denotes the
MAC algorithm used and a dashed line denotes the nonce
used in the authentication. Let a be the arity of the tree.

The N
(j)
i are all counters, and a of the jth level counters

N
(j)

(i−1)a+1, . . . , N
(j)
ia are concatenated and authenticated us-

70

N1
(0) N2

(0) N3
(0)

N1
(1) N2

(1) N3
(1)

N4
(0) N5

(0) N6
(0) N7

(0) N8
(0)

T1
(1) T2

(1) T3
(1)

T1
(2)

N1
(2)

MMM

M

Figure 2: MAC tree construction

ing the (j+ 1)th level parent counter N
(j+1)
i to produce the

authentication tag T
(j+1)
i :

T
(j+1)
i ←MK(N

(j+1)
i , N

(j)

(i−1)a+1‖ · · · ‖N
(j)
ia).

The ‘root counter’ N
(l)
1 , where l is the depth of the tree, is

stored in a trusted storage, along with the depth l and the
total number m of leaf counters. The rest of the tree, both

N
(j)
i and T

(j)
i , can be stored in an untrusted storage.

When we need to increase one of the leaf counters N
(0)
i , we

first follow the path leading up to the root counter, and fetch

all the relevant counters (the ancestors of N
(0)
i and their

direct siblings) and tags to check that the counters and the
tags ‘match’. After that, we increase the leaf counter and its
ancestor counters, re-compute all the affected authentication
tags, and store the result accordingly: again the root counter
is stored in the trusted storage, and the rest of the tree in
the untrusted storage. Appending a new leaf counter can be
handled similarly.

The goal of this MAC tree construction is, whenever all
the verifications are passed, we may regard the leaf counters
as if they are stored in a trusted storage. The main intuition
is the transfer of trust from the root counter to the lower
level counters; since we trust the root counter (stored in a
trusted storage), when the tag verification for the root level
is successful, we can trust the children counters of the root
counter. Repeating this process, we pass the trust down to
the leaf counters. Even though the underlying MAC scheme
is secure only when the nonce is never repeated, in this way,
we can show that the probability of nonce re-use during the
MAC tree computation is negligible, if the underlying MAC
scheme itself is secure.

In short, by this MAC tree construction, we can maintain
arbitrary number of ‘trusted’ leaf counters, using a fixed size
per file, public trusted storage, and an untrusted storage.

4.2 Authenticated encryption scheme for files
Now, using the MAC tree construction we can build a file

encryption scheme. Let D = D1 · · ·Dn where Di ∈ {0,1}d
the content of the file. We apply a nonce-based authenti-
cated encryption scheme to each file block Di, using the leaf

counter N
(0)
i :

(Ci, Ti)← EK(N
(0)
i , Di),

and store the ciphertext Ci and the authentication tag Ti to
the untrusted storage, along with the MAC tree for main-

taining the leaf counters N
(0)
i .

In fact, since we already need an efficient MAC scheme
for the purpose of building the MAC tree, we can construct
a simple authenticated encryption scheme as composition
of the CTR encryption mode of operation and the MAC
scheme. Figure 3 illustrates the composite scheme: using

the counter N
(0)
i , we generate a pseudorandom sequence by

the CTR mode, the file block Di is XORed to this sequence
to produce the ciphertext block Ci, and we again use the

counter N
(0)
i to authenticate Ci, producing the authentica-

tion tag Ti.

Di

CiNi
(0) TiME

Figure 3: Blockwise authenticated encryption using
leaf counters

Special care is needed to never re-use a nonce throughout

our construction. Note that here the counter N
(0)
i is used

both for encryption and authentication. In fact, we do not
use the counter directly, but use different encoding schemes
to generate non-repeating nonces:

Ci ← EKe(〈i, 1, N (0)
i 〉e) · · ·EKe(〈i, d/b,N (0)

i 〉e)⊕Di,

Ti ←MKa,Kh(〈i, 0, N (0)
i 〉a, Ci)

def
= EKa(〈i, 0, N (0)

i 〉a)⊕HKh(Ci),

where the key K = (Ke,Ka,Kh) consists of the block cipher
key Ke for encryption, the block cipher key Ka for authenti-
cation, and the AXU hash function key Kh. And 〈i, j,N〉e is
a nonce encoding scheme satisfying 〈i, j,N〉e = 〈i′, j′, N ′〉e
iff i = i′, j = j′, and N = N ′. Similarly, 〈i, j,N〉a is yet
another nonce encoding scheme. It is also required that
the two nonce encoding schemes never overlap: 〈i, j,N〉e 6=
〈i′, j′, N ′〉a for all i, j, N , i′, j′, N ′. Actually, these nonce
encodings should be used also in the MAC tree construction.

Then, the following is more detailed description of our file
encryption scheme:

Let T be the trusted storage, and S be the untrusted stor-
age. A file Φ stores and maintains its contentD = D1 · · ·Dn,
where Di ∈ {0,1}d for i = 1, . . . , n. In order to support

this, we maintain the leaf counters N
(0)
1 , . . . , N

(0)
m for some

m ≥ n, along with the whole MAC tree construction consist-

ing of higher level counters N
(j)
i and tags T

(j)
i . The trusted

storage T stores (n,m, l,N
(l)
1), where n is the length of the

content D, m ≥ n is the length of the ‘active’ leaf counters, l

the depth of the MAC tree, and N
(l)
1 the root counter. The

untrusted storage S stores the rest of the MAC tree, and

71

the ciphertext blocks C1, . . . , Cn corresponding to the file
blocks D1, . . . , Dn, and also the file block tags Ti.

Initially, T is initialized to (n,m, l,N
(l)
1) = (0, 0,⊥,⊥),

and the MAC tree is initialized as a null tree: N
(j)
i = ⊥ for

all i, j.
A file Φ supports Read, Length, Update, Append, and

Delete operation requests. They can be described as:

• Read(k): in order to read the kth file block Dk, we

let i0
def
= k, and define ij+1 as the index of the parent

counter of ij . Verify if

T
(j)
ij

?
=MKa,Kh(〈ij , j,N (j)

ij
〉a, D(j)

ij
)

for j = 1, . . . , l. Here D
(j)
ij

is the concatenation of chil-

dren of the counter N
(j)
ij

. If this verification is success-

ful, then further verify the ciphertext block Ck using

the leaf counter N
(0)
k :

Tk
?
=MKa,Kh(〈k, 0, N (0)

k 〉a, Ck).

If this verification is successful, then decrypt Dk us-

ing the ciphertext block Ck and the counter N
(0)
k , and

return Dk.

• Length(): simply return the length n which was stored
in the trusted storage T .

• Update(k, D̂): Similar to the Read(k) request, verify

the counters N
(j)
ij

which are ancestors of the kth leaf

counter N
(0)
k . When the verification is successful, up-

date those counters by N
(j)
ij
← N

(j)
ij

+ 1, regenerate

the affected tags

T
(j)
ij
←MKa,Kh(〈ij , j,N (j)

ij
〉a, D(j)

ij
)

for j = 1, . . . , l, encrypt the new kth file block D̂ using

N
(0)
k to produce new ciphertext block Ck, authenticate

Ck by generating a tag

Tk ←MKa,Kh(〈k, 0, N (0)
k 〉a, Ci),

and update both T and S.

• Delete(): If n = 0, then output ⊥ and halt. Otherwise,
remove the nth ciphertext block and tag by Cn ← ⊥,
Tn ← ⊥, and update n by n ← n − 1. Update T and
S accordingly. Note that we do not reset or delete the

nth leaf counter N
(0)
n , in order to avoid nonce re-use

by later Append operations. This is where n and m
may become unequal.

• Append(D̂): If n < m, then this is essentially the same

as Update(n + 1, D̂). If n = m, then we have to ap-

pend a new leaf counter N
(0)
n+1. Again we verify all the

possible ancestor counters, and if the verification is

successful, then initialize N
(0)
n+1 ← 1 (along with other

non-initialized ancestors), and increase the existing an-
cestors by 1, and follow steps similar to the Update
request. At the end, we increase both n and m by 1,
and store them in the trusted storage T .

4.3 Security of the scheme
Intuitively, it is easy to see that, if we do not use the MAC

tree construction, and instead manage all of the leaf coun-

ters N
(0)
k in the trusted storage, then our scheme guarantees

both confidentiality and integrity of the file content: all the

block counters N
(0)
k are properly incremented, and no nonce

is repeated, and each file blocks are encrypted and authen-
ticated independent from each other. Essentially, the con-
fidentiality and the integrity of the resulting scheme comes
from the security of the composite authenticated encryp-
tion scheme, and the nonce-respecting property (since we
use trusted storage for nonces).

In our actual scheme, instead of managing the leaf coun-
ters in the trusted storage, we store them in our MAC tree
and store only the root counter in the trusted storage. Still,
from the way the MAC tree is constructed, our trust of the
root counter can be transferred to its descendants, as long as
all of the tag verifications along the path are successful. In
this way, we can ensure that our MAC tree construction can
safely replace counters stored in a trusted storage, except
negligible probability of successful attack.

In the Appendix, we discuss the security proof of our
scheme in more details.

4.4 Re-use of block cipher keys
Previously, we described our scheme as using a file en-

cryption key of form K = (Ke,Ka,Kh), where Ke is the
block cipher key for encryption, Ka is the block cipher key
for authentication, and Kh is the AXU hash function key.
Actually, it is safe to use the same random bits for both Ke

and Ka: the reason is that we use separate, non-overlapping
nonce encodings 〈·〉e and 〈·〉a for encryption and authentica-
tion. The output of the block cipher E is used as pseudoran-
dom sequence to ‘blind’ the plaintext blocks and the AXU
hash values, and since no nonce is re-used, all these pseudo-
random outputs are essentially independent from each other.

5. IMPLEMENTATION
We use coreFS [9] as our platform for implementing our

prototype cryptographic file system. CoreFS is a FUSE [12]
based network file system which provides core functionalities
of distributed file system.

Modified
coreFS

FUSE

Untrusted
storage

Poly1305,
AES

Filesystem
interface

Ciphertext,
MAC tree

Trusted
storage

Root of
MAC tree

network

network

Client

Figure 4: Architecture diagram

Fig. 4 represents basic architecture of our implementa-
tion. We modified coreFS to incorporate our scheme, using

72

Poly1305 and AES as cryptographic building blocks. File
system operations of applications are relayed by FUSE to the
modifed coreFS, and coreFS sends and receives encrypted
and authenticated data to and from storages.

In our prototype implementation, actually we made some
simplifications: we did not use a separate trusted storage
and stored the state as an extended metadata of the file.
Also, we stored the file encryption key as an extended meta-
data, because the distribution mechanism of file encryption
key is out of scope of this paper.

Both for the Merkle hash tree and for our construction, the
choices of the arity of tree, method of serialization, caching,
and other practical implementational details could affect the
performance. We choose to use a file block of 4 KB, and for
algorithms, we use the AES block cipher and the Poly1305-
AES MAC algorithm to build a 64-ary MAC tree. This
makes our tree very flat, but we need only to authenticate
the counters in the tree, the size of input which is to be pro-
cessed together is only 256 bytes, and the speed of Poly1305
compensates this larger input size.

In our file system, the client file system interacts with
the server by network. We store all the ciphertext blocks
together in a file in the server, and store the rest of data,
‘cryptographic metadata’, in a separate file. Of course, the
client file system processes two files together, and the appli-
cation programs which use the client file system do not see
two separate files, but only combined one.

In our prototype implementation, for simplicity we used
unlimited amount of cache, that is, once a counter is read
into memory and verified, then it will not be erased until
the file is closed. Also, for write operation, change of the
MAC tree data will be uploaded to the storage server only
when the file is closed or flushed. It is true that choices
of caching strategy and update schedule for cryptographic
metadata affects the performance of our scheme and also
that of Merkle hash tree based schemes, but in an actual
system these choices should depend on system requirements.
We compare the performance of our algorithm with compo-
sition schemes of AES-CTR and SHA-1 (truncated to 128
bits) based 16-ary Merkle hash tree, and we implement them
with the same policy with respect to caching and metadata
update.

6. PERFORMANCE EVALUATION
For performance evaluation, we used two machines, one

for client and one for storage server. Both are DELL Optilex
GX620 with Pentium 4 CPU of 3.0 GHz. Each machine has
1 GB RAM and 80 GB hard disk. They are connected locally
by a 1 Gb ethernet.

Bonnie++ [6] is a hard disk and file system benchmark
program. It does character and block read/write transac-
tions to a single large file. We ran Bonnie++ benchmark
to measure the performance of sequential read/write oper-
ations. We repeatedly tested this for 2 GB files, and, in
order to break down the overall time into those for I/O,
for encryption, and for authentication, we measured elapsed
CPU cycles at various points during the benchmark. We
compared the performance of our scheme with Merkle hash
tree based constructions. Overall, network overhead was
about 65–85%, in comparison with other costs. Fig. 5 shows
the computational overhead of authentication and encryp-
tion/decryption for different tests (in 106 cycles). In case of
Merkle hash tree based constructions, the cost for authen-

0

5000

10000

15000

20000

25000

30000

35000

40000

mac
tree

hash
tree

mac
tree

hash
tree

mac
tree

hash
tree

mac
tree

hash
tree

Read‐char Read‐block Write‐char Write‐block

enc/dec auth

Figure 5: Microbenchmark result, in 106 cycles

tication is always about 60–70% of encryption/decryption,
and in contrast to that, in case of our scheme, the cost for
authentication is about half of the corresponding value for
hash tree.

7. CONCLUSION
In this paper, we proposed a new file encryption scheme

for distributed cryptographic file system. Our scheme is
based on a new MAC tree construction which uses a universal-
hash based MAC scheme. We defined confidentiality and
integrity for file encryption schemes, and showed that our
scheme satisfies these security goals. We compared the per-
formance of our scheme with Merkle hash tree based schemes,
and the experiments show that our scheme provides integrity
protection at a smaller cost than Merkle hash tree based
schemes.

There are some potential performance enhancements that
we didn’t pursue in this paper. For example, our scheme
uses CTR mode for encryption, and expecting a sequential
read, the pseudorandom sequences of CTR could be precom-
puted [21]. Also, most universal hash functions, including
Poly1305 that we use, allow incremental updates. When
only a small part of a message changes, this could speed up
the MAC computation.

We believe that choices of caching strategy, MAC tree
update schedule, arity of the MAC tree, and method for
storing the tree could affect the performance of our scheme
considerably, but admittedly our choices in these matters
were not very systematic. In ongoing work we’ll explore
these possibilities more thoroughly.

Acknowledgements
This research was supported, in part, by the US National
Science Foundation (grant nos. CCF-0621462 and CNS-0448423).

8. REFERENCES
[1] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R.

Chaiken, J. R. Douceur, J. Howell, J. R. Lorch, M.
Theimer, R. P. Wattenhofer, FARSITE: Federated,
available, and reliable storage for an incompletely
trusted environment. Proceedings of the 5th OSDI,
2002.

73

[2] Amazon.com, Inc., Amazon Simple Storage Service
(Amazon S3), http://aws.amazon.com/s3/

[3] D. J. Bernstein, The poly1305-AES
message-authentication code, in FSE, H. Gilbert and
H. Handschuh, eds., vol. 3557 of Lecture Notes in
Computer Science, Springer, 2005, pp. 32–49.

[4] D. J. Bernstein, Stronger security bounds for
Wegman-Carter-Shoup authenticators, in Proceedings
of EUROCRYPT, vol. 3494 of Lecture Notes in
Computer Science, Springer, 2005, pp. 164–180.

[5] D. J. Bernstein and T. Lange (eds.), eBACS:
ECRYPT Benchmarking of Cryptographic Systems.
http://bench.cr.yp.to

[6] Russell Coker, Bonnie++ File System Benchmark,
http://www.coker.com.au/bonnie++/

[7] G. Brassard, On computationally secure authentication
tags requiring short secret shared keys, In Advances in
Cryptology—CRYPTO 82 (New York, 1983), R. L.
Rivest, A. Sherman, and D. Chaum, Eds., Plenum
Press, pp. 79–86.

[8] J. L. Carter and M. N. Wegman, Universal classes of
hash functions (extended abstract), STOC ’77:
Proceedings of the ninth annual ACM symposium on
Theory of computing (New York, NY, USA), ACM
Press, 1977, pp. 106–112.

[9] CoreFS, available at
http://sourceforge.net/projects/corefs.

[10] K. Fu, Group sharing and random access in
cryptographic storage file systems, Master’s thesis,
Massachusetts Institute of Technology, 1999.

[11] K. Fu, F. Kaashoek, D. Mazieres, Fast and secure
distributed read-only file system, ACM Transactions on
Computer Systems, 20:1–24, 2002.

[12] FUSE, available at http://fuse.sourceforge.net/.

[13] K. Gjøsteen, Security notions for disk encryption,
ESORICS, Lecture Notes in Computer Science, vol.
3679, Springer, 2005, pp. 455–474.

[14] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang,
and K. Fu, Plutus: Scalable secure file sharing on
untrusted storage, in Proc. Second USENIX
Conference on File and Storage Technologies (FAST),
2003.

[15] T. Krovetz, Fast cryptography. Webpage:
http://fastcrypto.org/

[16] J. Li, M. N. Krohn, D. Mazières, and D. Shasha,
Secure untrusted data repository (SUNDR), in OSDI,
2004, pp. 121–136.

[17] D. Mazieres, M. Kaminsky, M. Kaashoek, E. Witchel,
Separating key management from file system security,
In Proc. 17th ACM Symposium on Operating Systems
Principles (SOSP), pp. 124–139, ACM Press, 1999.

[18] D. Mazières and D. Shasha, Building secure file
systems out of byzantine storage, in PODC, 2002,
pp. 108–117.

[19] A. Oprea and M. K. Reiter, Integrity checking in
cryptographic file systems with constant trusted
storage, in Proceedings of the 16th USENIX Security
Symposium, 2007, pp. 183–198.

[20] R. Pletka and C. Cachin, Cryptographic security for a
high-performance distributed file system, in
Proceedings of the 24th IEEE Conference on Mass

Storage Systems and Technologies, IEEE Computer
Society, 2007, pp. 227–232.

[21] W. Shi, H.-H. S. Lee, M. Ghosh, C. Lu, and
A. Boldyreva, High efficiency counter mode security
architecture via prediction and precomputation,
SIGARCH Comput. Archit. News, 33 (2005),
pp. 14–24.

[22] V. Shoup, On fast and provably secure message
authentication based on universal hashing, in
Proceedings of Crypto, 1996, pp. 313–328.

[23] M. N. Wegman and L. Carter, New classes and
applications of hash functions, in FOCS, IEEE, 1979,
pp. 175–182.

APPENDIX
A. SKETCH OF SECURITY PROOFS

Here we give informal description of our security theorems
and sketches of the proofs. The complete proofs will be on
the full version of the paper.

Lemma 1. Suppose that the underlying stateful MAC is
secure. Then, for any attacker A of Φ, the probability that
A ever makes the underlying MAC to repeat a nonce for two
tag generation queries is negligible. That is, the chance that
A ever makes, via its file operation requests, two tag gener-
ation queries MKa,Kh(〈i, j,N〉a, D) and MK(〈i, j,N〉a, D′)
for some distinct D and D′, is negligible.

Proof. (Sketch) First note that, if A followed the proto-
col faithfully, that is, never provided altered S with its re-
quests, then A cannot ever repeat a nonce: for any i and j,

N
(j)
i will be properly incremented so each nonce 〈i, j,N (j)

i 〉a
will be used only once.

Suppose that A succeeds repeating a nonce during an
Update or Append request (note that tag generation occurs
only for Update or Append requests). Consider the first such
successful request. Let’s assume that it was an Update re-
quest; the case of an Append request can be handled sim-
ilarly. Because it was the first request during which A re-
peats a nonce, previously A behaved as a nonce-respecting
attacker with respect to the underlying MAC. During the
process of the Update request, A first produces l tag ver-
ification queries, and then, only if all of the verification
queries are passed, A produces l+ 1 tag generation queries.

Suppose that during the verification queries of form T̄
(j)
ij

?
=

MKa,Kh(〈ij , j, N̄ (j)
ij
〉a, D̄(j)

ij
), no MAC forgery was success-

ful. (Here T̄
(j)
i , N̄

(j)
i , D̄

(j)
i represents the values from (t, s) ∈

T × S, where s ∈ S could be potentially altered by the at-
tacker A. On the other hand, we represent the ‘correct’
values from the output state of the last successful request as

T
(j)
i , N

(j)
i , D

(j)
i .)

In that case, from j = l, we see that (〈1, l, N̄ (l)
1 〉a, D̄

(l)
1) is

not forgery. Since N̄
(j)
1 is from T , we know that N̄

(j)
1 = N

(j)
1

is from the previous successful update or append query,

and used only once, in order to authenticate D
(l)
1 . Since

(〈1, l, N̄ (l)
1 〉a, D̄

(l)
1) is not forgery, it follows that D̄

(l)
1 = D

(l)
1 .

ButD
(l)
1 containsN

(l−1)
il−1

, and from this it follows that N̄
(l−1)
il−1

=

N l−1
il−1

. Again, N l−1
il−1

was used only once in order to authen-

ticate Dl−1
il−1

, and so on. Therefore we conclude that all of

N̄
(j)
ij

(j = 0, . . . , l) are so far properly incremented and

74

used only once. Since the l + 1 MAC generation queries

use nonces of form 〈ij , j, N̄ (j)
ij

+ 1〉a, it follows that during

this Update request, A failed to repeat any nonce, which is
contradiction.

Therefore, during one of the l tag verification queries, A
must have made a forgery. But, until then A was a nonce-
respecting attacker of M, therefore such probability is neg-
ligible.

Remark 1. The proof of Lemma 1 applies also for a con-
fidentiality attacker which makes requests of form
Update(i,D0, D1), and Append(D0, D1): the existence of the
left-or-right oracle affects only the leaf nodes, but nonce-
respecting is related to the update counters, which are above
the leaf nodes.

Theorem 1. For any efficient attacker A of Φ, its ad-
vantage Advint

Φ (A) is negligible, if the underlying MAC is
secure.

Proof. (Sketch) From the previous Lemma 1, we see
that except negligible probability, A behaves as a nonce-
respecting attacker of the underlying MAC M. Therefore
assume that A never repeats a nonce. Then, because M is
secure, the probability that A succeeds making a forgery is
negligible. So assume that A never succeeds a forgery.

Suppose that A makes a successful Read(k) request, and

receives D̂ which is different from Dk, the correct value from
the content of Φ at the moment he makes that Read(k) re-
quest. Consider the first such read request. Since the read

request is successful, all of the verification queries T̄
(j)
ij

?
=

MKa,Kh(〈ij , j, N̄ (j)
ij
〉a, D̄(j)

ij
) was successful for j = 1, . . . ,

l. But from the case j = l, N̄
(l)
1 is read from T , therefore

N̄
(l)
1 = N

(l)
1 , and we know that the nonce 〈1, l, N (l)

1 〉a was

used exactly once to authenticate D
(l)
1 . Since A does not

make any forgery, it follows that D̄
(l)
1 = D

(l)
1 . But since

N̄
(l−1)
il−1

is part of D̄
(l)
il

= D̄
(l)
1 , we get N̄

(l−1)
il−1

= N
(l−1)
il−1

. Re-

peating this, we get N̄
(j)
ij

= N
(j)
ij

for j = 0, . . . , l. Finally,

since T̄i0
?
=MKa,Kh(〈i0, 0, N̄ (0)

i0
〉a, C̄i0) is successful but not

a forgery, C̄i0 = Ci0 = Ck, which is the ciphertext block
of the correct kth content block Dk. But this contradicts
the assumption that D̂ 6= Dk. Therefore, we conclude that
except the negligible event of successful forgery attack of
the underlying MAC, A cannot succeed in attacking the in-
tegrity of Φ.

Theorem 2. For any efficient attacker A of Φ, its ad-
vantage Advconf

Φ (A) is negligible, if the underlying MAC is
secure.

Proof. (Sketch) Again, we may assume that A never re-
peats nonces for the underlying MAC M, and also A never
makes successful forgery ofM. Consider any Read, Update,
or Append request which failed at least one of the tag veri-
fication queries

T
(j)
ij

?
=MKa,Kh(〈ij , j,N (j)

ij
〉a, D(j)

ij
)

for j = 1, . . . , l. Note that for j > 0, the ‘message’ D
(j)
ij

consists of only counters N
(j−1)
i , and does not depend on

the kth file block Dk at all, therefore they does not give
any information about Dk. If we exclude these file opera-
tion requests, from the proof of Theorem 1, we see that the

leaf counters N
(0)
k can be ‘trusted’ and they are maintained

and updated properly. Therefore, instead of using the leaf

counters N
(0)
k managed by the MAC tree, we may replace

them with trusted and properly incremented counters N
(0)
k

with only negligible difference in distinguishing probability
of the attacker. Therefore, in this modified scenario, the
goal of the attacker is to guess the random bit b based on
the output of file operation requests, but this time ‘correct’

and untampered counters N
(0)
k are used for the authenti-

cated encryption of the kth file block Dk. Recall that the
ciphertext Ck and the authentication tag Tk are as follows:

Ck = EKe(〈k, 1, N (0)
k 〉e) · · ·EKe(〈k, d/b,N (0)

k 〉e)⊕Dk, (1)

Tk = EKa(〈k, 0, N (0)
k 〉a)⊕HKh(Ck), (2)

But here Dk and HKh(Ck) are ‘blinded’ by pseudorandom
sequences generated from fresh nonces, and the attacker is
forbidded to make Read(k) request when the ‘left’ content
and the ‘right’ content of kth block are different. So from Ck,

Tk, and N
(0)
k , the attacker cannot obtain any information

about Dk. Therefore, the attacker A cannot do much better
than pure guessing in predicting the bit b.

75

