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Abstract

Data mining is frequently obstructed by privacy con-
cerns. In many cases data is distributed, and bringing the
data together in one place for analysis is not possible due to
privacy laws (e.g. HIPAA) or policies. Privacy preserving
data mining techniques have been developed to address this
issue by providing mechanisms to mine the data while giv-
ing certain privacy guarantees. In this work we address the
issue of privacy preserving nearest neighbor search, which
forms the kernel of many data mining applications. To this
end, we present a novel algorithm based on secure multi-
party computation primitives to compute the nearest neigh-
bors of records in horizontally distributed data. We show
how this algorithm can be used in three important data min-
ing algorithms, namely LOF outlier detection, SNN cluster-
ing, and kNN classification.

1 Introduction

Privacy advocates and data miners are frequently at odds
with each other. In many cases data is distributed, and
bringing the data together in one place for analysis is not
possible due to privacy laws (e.g. HIPAA) or policies. Pri-
vacy preserving data mining techniques have been devel-
oped to address this issue by providing mechanisms to mine
the data while giving certain privacy guarantees. Research
in this field typically falls into one of two categories: data
transformation to mask the private data, and secure multi-
party computation to enable the parties to compute the data
mining result without disclosing their respective inputs.

In this work we address the problem of privacy preserv-
ing Nearest Neighbor Searchusing the cryptographic ap-
proach. Many data mining algorithms use nearest neigh-
bor search as a major computational component [17]. To
this end, we show how to incorporate our search algo-
rithm into three major data mining algorithms, namelyLo-
cal Outlier Factor(LOF) outlier detection [2],Shared Near-

est Neighbor(SNN) clustering [6, 10], andk Nearest Neigh-
bor (kNN) classification [4]. These are an important set of
data mining algorithms. For example, kNN classification is
highly useful in medical research where the best diagnosis
of a patient is likely the most common diagnosis of patients
with the most similar symptoms [15]. SNN clustering pro-
vides good results in the presence of noise, works well for
high-dimensional data, and can handle clusters of varying
sizes, shapes, and densities [6, 17]. LOF outlier detection
provides a quantitative measure of the degree to which a
point is an outlier and also provides high quality results in
the presence of regions of differing densities [2, 17].

To the best of our knowledge, this is the first work that
directly deals with the issue of privacy preserving nearest
neighbor search in a general way. Privacy preserving ap-
proaches for kNN classification [3, 12] also require find-
ing nearest neighbors. However in these works, thequery
point is assumed to be publicly known, which prevents them
from being applied to algorithms such as SNN clustering
and LOF outlier detection. Previous work on privacy pre-
serving outlier detection [20] required finding the number
of neighbors closer than a threshold. Although this is re-
lated to the finding of nearest neighbors, it also cannot be
directly adopted to compute SNN clusters or LOF outliers
as it is limited in the amount of information it can compute
about the points. Since our approach directly deals with
the problem of finding nearest neighbors, it can be used by
any data mining algorithm that requires the computation of
nearest neighbors, and thus is more broadly applicable than
the previous related works.

This paper makes the following contributions: we design
a novel cryptographic algorithm based on secure multiparty
computation techniques to compute the nearest neighbors
of points in horizontally distributed data sets, a problem
which, to the best of our knowledge, has never been dealt
with previously. This algorithm is composed of two main
parts. The first computes a superset of the nearest neigh-
borhood called the Extended Nearest Neighbor set (which
is done using techniques similar to [20]). The second part
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reduces this set to the exact nearest neighbor set. We show
how to extend this algorithm to work in the case of more
than two parties, and we prove the security of this algo-
rithm. In addition, we show how this search algorithm can
be used to compute the LOF outlier scores of all points in
the data set, to find SNN clusters in the data, and to per-
form kNN classification with the given data sets taken as
the training data, thus showing how the nearest neighbor
search can be practically applied. We show how all of these
can be done while giving guarantees on the privacy of the
data. We also analyze the complexity of the algorithms and
describe measures that can be taken to increase the perfor-
mance. However, due to space constraints we omitted the
extensions to the multiparty case, security proofs, the SNN
clustering and kNN classification applications, and the com-
plexity analysis and refer the reader to the full paper [16] for
these results.

2 Overview

2.1 Problem Description

The objective of this work is to find thek nearest neigh-
bors of points in horizontally partitioned data. The basic
problem ofk-nearest neighbor search is as follows. Given
a set of data pointsS, and a particular pointx ∈ S,
find the set of pointsNk(x) ⊆ S of size k, such that
for every pointn ∈ Nk(x) and for every pointy ∈ S,
y /∈ Nx(x) ⇒ d(x, n) ≤ d(x, y), whered(x, y) represents
the distance between the pointsx andy. In a distributed
setting, the problem is essentially the same, but with the
points located among a set of data sets, i.e. form hori-
zontally distributed data setsSi (1 ≤ i ≤ m), and a par-
ticular point x ∈ Sj (for somej, 1 ≤ j ≤ m), the k-
nearest neighborhood ofx is the setNk(x) ⊆ S = ∪m

i=1Si

of size k, such that for everyn ∈ Nk(x) and y ∈ S,
y /∈ Nk(x) ⇒ d(x, n) ≤ d(x, y). If a distributed near-
est neighbor search algorithm is privacy preserving, then it
must compute the nearest neighbors without revealing any
information about the other parties’ inputs (aside from what
can be computed with the respective input and output of the
computation). In our case, we compute some extra informa-
tion in addition to the actual nearest neighbor sets. While
this is not the ideal solution, we argue that this work pro-
vides an important stepping stone for further work in this
area. We also provide a description of what this informa-
tion reveals in Section 3.1.1.

2.2 Definitions

Throughout the discussion in this work, the data is as-
sumed to be horizontally partitioned, that is, each data setis
a collection of records for the same set of attributes, but for

different entities. Also, all arithmetic is done using modu-
lar arithmetic, using a sufficiently large fieldF (e.g. modp
for the fieldZp). We refer to this throughout the discussion
as “modF ”. Note that in order to preserve distances, this
element should be larger than the largest pairwise distance
of the points in the set.

2.3 Secure Multiparty Computation
Primitives

In this paper we make sue of the following secure mul-
tiparty computation primitives: secure distance computa-
tions [20, 8] (resulting in random shares, the sum of which
- modulo an element in a large enough field - equals the dis-
tance between the two points), secure comparison using the
general solution [9] (resulting in shares of the comparison,
the sum of which are1 is the result is true and0 otherwise,
as is needed in [20]), and secure division [5].

2.4 Provable Security

Each of the algorithms presented below are privacy pre-
serving, which is a notion that can be proven. For an al-
gorithm to be privacy preserving, it is enough to prove that
the algorithm is secure in theSecure Multiparty Computa-
tion sense, making use of the composition theorem [9]. In
this paper we deal with the semi-honest model. This notion
of security is defined in [9], and refers to a party that fol-
lows the protocol as specified, but may use the results and
any intermediate knowledge to try to extract additional in-
formation about the other party’s data. This is a realistic
model, since in the target application scenarios all parties
would have a mutual interest in the correct data mining out-
put, while at the same time would desire guarantees that
the other parties cannot learn extra information about their
data. This also allows us to focus on more efficient compu-
tations, since protocols that are secure under malicious ad-
versaries require the use of expensive bit commitments and
zero knowledge proofs. However, it is interesting to note
that all protocols that are secure in the semi-honest model
can be converted into protocols that are secure in the mali-
cious model [9].

3 Nearest Neighbor Algorithm

3.1 Nearest Neighbor Search

In this description we will assume that we are calculating
the neighborhood of a pointx which is owned by the party
A, A has a set of pointsX = {x1, . . . , xn}, and that the
other party isB, who has a set of pointsY = {y1, . . . , yn′}.
What we intend to find is the set of pointsnn set ⊂ X ∪Y
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Figure 1. Example nearest neighbor scenario

of sizek, such that all points innn set are closer tox than
all points within(X ∪ Y ) r nn set.

This is done by first computing the ordered listlocal nn,
thek nearest neighbors in the local data set. Next the dis-
tances to all remote points are computed and stored. Then,
from the closest local neighbor to the farthest, the distance
to the remote points are compared with the distance to the
local neighbors, in order to count the number of remote and
local points that are closer than this local neighbor. This is
illustrated in Figure 1. In this figure the pointx and allni

are local points, and allyi are remote points, andk = 3.
Thus the distance fromx to each pointyi would be com-
puted and compared first ton1. The number of points in
this case would be 1. Thus, the next local neighborn2

would need to be checked. This would result in a count
of 5. Since this is larger thank, then we have found that the
Extended Nearest Neighbor Set consists of all points closer
than the pointn2 (including the pointn2), which is depicted
by the points between the dashed braces in Figure 1. Since
we know the size of the Extended Nearest Neighbor Set, we
know how many points need to be excluded to get a set of
the correct size, that isk. Thus, we just need to find the
correct number of the furthest points fromx from within
the Extended Nearest Neighbor Set and remove them. In
our example, the number of remote points to remove is 2,
and the set of furthest points would be the set{y2, y5}. If
these are removed (along with the furthest local neighbor
n2), then the Nearest Neighbor Set will be found, which is
depicted in Figure 1 by the points within the solid braces.

In order to make this algorithm privacy preserving, we
need to make use of secure distance computations and se-
cure comparisons. When the distance betweenx and a re-
mote pointy is computed, the result will be shared between
the two parties, such that the sum of the shares is equal to
the distance between them (moduloF ). When the distance
from x to y is to be compared with the distance to a local
neighbor, the secure comparison algorithm must be used
(which utilizes the general solution for secure multiparty
computation). The result of this comparison will be shared
(ascA

iy andcB
iy) in the same manner as the distance shares,

with the sum of the shares equal to1 (modF ) if the pointy
is closer, and0 if it is not. Once all points have been com-
pared in this way, the sum of all these shares (cA

i =
∑

y cA
iy

andcB
i =

∑
y cB

iy) become shares of the number of remote

points which are closer than the local neighborni. This
number, plus the number of local neighborsi, can be se-
curely compared to the valuek, to see if this neighbor is
the final neighbor in the Extended Nearest Neighbor Set.
This comparison checks ifcA

i + cB
i + i > k − 1. Next

the identifiers of the remote points in the Extended Nearest
Neighbor Set are gathered, and the entire Extended Nearest
Neighbor Set is passed to the Find Furthest Points algorithm
(described in Section 3.2) with the appropriate number of
remote points which need to be removed from the Extended
Nearest Neighbor Set, which is the size of the Extended
Nearest Neighbor Set minus 1 (for the final local neighbor)
minusk. This is only necessary, of course, if the size is
greater thank+1, since if it equalsk+1 then the final local
neighbor is the only point that needs to be removed. Also, if
it equalsk, then the Nearest Neighbor Set is already found.

3.1.1 Security Analysis

In this algorithm,A learns the nearest neighbors and ex-
tended nearest neighbors of all its points, even if it includes
points from the other party’s set. Thus, for example, ifA
computes the Extended Nearest Neighborhood of its point
x, and the resulting neighborhood hasni as the furthest lo-
cal neighbor, thenA learns that the remote points in the set
are closer than the pointni. Also, A knows which points
are not in the Nearest Neighbor Set, and thus knows that
those points are further from the next closest local neigh-
bor ni−1. Thus, the points not in the Nearest Neighbor Set
(but in the Extended Nearest Neighbor Set) lie in a particu-
lar hypershell constrained by the distances fromx to ni−1

andni. This hypershell is most constrained when the dis-
tances fromx to ni−1 andni are close together, which al-
lows A to infer some information regarding the distribu-
tion of B’s points (i.e. A could discover thatB has many
points at a distance between the distances to these two lo-
cal neighbors). This ability to estimate the distribution of
B’s points decreases greatly in areas whereA’s points are
sparse, and also greatly decreases as the number of dimen-
sions increases. Thus the information that is leaked (from
the specified output) does not give an unreasonable amount
of information to the other party. Note that the information
in the Nearest Neighbor Set does not include any informa-
tion about the points themselves, just an identifier (that is,
an ID that can be used to reference a particular point in the
set). However, since these identifiers can be used to infer
some extra information about the distribution of the other
party’s data set (as described above), it would be better if
this information could be securely shared. This would al-
low futher computation to be performed without releasing
this intermediate information, and we intend to pursue this
line of research in future work.
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3.2 Find Furthest Points

In this portion of the algorithm, we start with a local
point x, and a set of pointsZ which containsn remote
points, and we need to find the setZfar ⊂ Z of size π
such that all the points inZfar are further than all the points
which are inZclose = Z r Zfar. In other words we need
to find theπ furthest remote points fromx, but without re-
vealing any extra information that cannot be derived from
the output, such as the ordering of the points. Note that
initially Z would contain both remote and local points, but
the local points can be easily filtered out byA to match the
description above, and thus we can assume without loss of
generality that all points inZ are remote.

This can be done in the following way. First we test each
point, to see if it should be placed in the setZclose or Zfar.
Since we have already computed the distances fromx to
each point inZ, we can compare the distance to a given
point inZ with the distances to all other points in the set. If
it turns out that the point is closer than enough other points,
then it can be added toZclose, otherwise is should be added
to Zfar. Since the size of the setZ is n, and we are trying
to determine whichπ points are furthest, then a given point
must be closer than at leastπ other points. All points which
pass this test will be added toZclose, and those which do
not pass are added toZfar.

In order to make this algorithm privacy preserving, the
following must be done. In this case, the distances are
shared between the two parties, such that the distance to
zi from x is shared asdA

xzi
anddB

xzi
, where the sum of the

two shares equals the distance (moduloF ), and the distance
betweenx andzj is shared asdA

xzj
anddB

xzj
. Thus to see

if the distance tozi is less than the distance tozj , then we
need to computedA

xzi
+ dB

xzi
< dA

xzj
+ dB

xzj
, which can be

accomplished using the secure comparison algorithm. Note
that, without loss of generality, this algorithm assumes that
there are no two points of equal distance away fromx. The
case of equal distance can be handled by breaking ties by
means of the point identifiers.

This distance comparison is done in such a way that the
answer is randomly split between the two partiesA andB
ascA

ij andcB
ij , such thatcA

ij + cB
ij = 1 mod F if zi is closer

to x thanzj and0 otherwise. Once all the points have been
compared, each party can sum all their shares (cA

i =
∑

j cA
ij

andcB
i =

∑
j cB

ij), such that the sum of these two shares
is equal (modF ) to the number of points which are far-
ther fromx thanzi. If this number is greater thanπ then
it belongs inZclose, which can be computed by comparing
π < cA

i + cB
i . Otherwise the point is added to the setZfar.

Then this process is repeated for allzi ∈ Z. Once this loop
completes,Zfar contains theπ points which are furthest
from x, andZclose contains the rest.

4 LOF Outlier Detection

LOF outlier detection [2] is a method of outlier detection
that relies on relative densities of data points. This approach
works well in cases where there are clusters of points with
differing densities, and provides a measure of the degree to
which a point can be considered an outlier. Note that in our
algorithm we compute the simplified version of LOF de-
scribed in [17], which computes as the LOF score the ratio
of the density of a point to the average density of its neigh-
bors. The original LOF is a more complicated function that
takes the distance to allk nearest neighbors as the distance
to thek-th nearest neighbor (i.e. the reachability distance
for each point in thek-distance neighborhood is simply the
k-distance), and allows for variable sized nearest neighbor
sets (when there are multiple points whose actual distance
is equal to thek-distance). Extending our algorithm for
simplified LOF to the original LOF calculation is relatively
straightforward, but is omitted due to space constraints.

Ideally, the only information that would be revealed
would be the final outlier scores for each point. Also, since
each party does not need to know the outlier scores of the
other party’s points, only the scores for the local points
should be in the output for each party. In our solution, we
compute the final outlier scores as well as the nearest neigh-
bor sets, as described above.

4.1 Protocol

For the simplified version of LOF that were are using,
the LOF score of a pointx is

LOFk(x) =
densityk(x) · k

∑
n∈Nk(x) densityk(n)

(1)

wheredensityk(x) =
∑

n∈Nk(x) distance(x, n). Since
the distance betweenx and each of its neighbors is shared
between the partiesA and B, then shares of the density
of the pointx can be computed by simply summing the
shares of the distances. In other words,A can compute its
share of the density of the pointx asδA

x =
∑

n∈Nk(x) dA
xn.

Also, B can compute its share of the density ofx asδB
x =∑

n∈Nk(x) dB
xn. The shares of the sum of the densities of

the neighbors,∆A
Nx

and∆B
Nx

, can be computed in the same
way. In order to compute the LOF score for the pointx, we
just need to compute

LOFk(x) =
densityk(x) · k

∑
n∈Nk(x) densityk(n)

=
δA
x k + δB

x k

∆A
Nx

+ ∆B
Nx

.

This can be computed securely by means of the secure divi-
sion primitive mentioned in Section 2.3.

4



5 Related Work

Much work has been done in the field of Privacy Preserv-
ing Data Mining. There are two main approaches to this
field: the randomization approach, and the cryptographic
approach. The randomization method was initially pro-
posed by Agrawal and Srikant [1], with their work on re-
constructing approximations of distribution of the original
dataset from randomly perturbed values. The randomiza-
tion approach has also been applied to association rule min-
ing [7]. This randomization approach was shown to have
some limitations [13], where under certain circumstances,
the original data points were able to be recovered with fairly
high accuracy, thus greatly reducing the privacy guarantees
of some randomization methods.

The cryptographic approach primarily makes use of Se-
cure Multiparty Computation ideas from the field of Cryp-
tography [9]. In this setting, two or more parties want to
jointly compute the function from the combination of their
inputs, such that they learn the output, yet receive no more
information about the other’s input than they can discern
from the output alone. Much work has been done in this
area, starting with [14], where a private computation was
shown for computing information gain, allowing a secure
computation of ID3 decision trees. Following this, work
was done for kNN classification [3, 12, 21], association rule
mining [18],k-means clustering [11, 19], and outlier detec-
tion [20].

The work which is closest to ours includes work done for
kNN classification [3, 12] and outlier detection [20]. For
more information about how these works differ from ours,
and a fuller list of related work in both the cryptographic ap-
proach and the randomization approach, we refer the reader
to the full version of our paper [16].

6 Conclusion

In conclusion, we have shown a protocol for privately
computing thek nearest neighbors of points in a horizon-
tally partitioned data set. We described this algorithm in the
two party case and proved security for each of the parts of
the algorithm. In addition, we showed how this algorithm
could be used to compute LOF outlier scores. For future
work, we aim to improve the algorithm to not reveal the
intermediate neighborhood information, thus reducing the
potential information leakage. Also, as this work is focused
on horizontally partitioned data, another area of future work
would be extending it to vertically partitioned data.
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