
SocialCloud: Using Social Networks for Building
Distributed Computing Services

Abedelaziz Mohaisen
University of Minnesota
Minneapolis, MN 55455

mohaisen@cs.umn.edu

Huy Tran
University of Minnesota
Minneapolis, MN 55455
huy@cs.umn.edu

Abhishek Chandra
University of Minnesota
Minneapolis, MN 55455
chandra@cs.umn.edu

Yongdae Kim
University of Minnesota
Minneapolis, MN 55455
kyd@cs.umn.edu

Abstract—In this paper we investigate a new computing
paradigm, called SocialCloud, in which computing nodes are
governed by social ties driven from a bootstrapping trust-
possessing social graph. We investigate how this paradigm differs
from existing computing paradigms, such as grid computing
and the conventional cloud computing paradigms. We show that
incentives to adopt this paradigm are intuitive and natural,
and security and trust guarantees provided by it are solid. We
propose metrics for measuring the utility and advantage of this
computing paradigm, and using real-world social graphs and
structures of social traces; we investigate the potential of this
paradigm for ordinary users. We study several design options
and trade-offs, such as scheduling algorithms, centralization, and
straggler handling, and show how they affect the utility of the
paradigm. Interestingly, we conclude that whereas graphs known
in the literature for high trust properties do not serve distributed
trusted computing algorithms, such as Sybil defenses—for their
weak algorithmic properties, such graphs are good candidates
for our paradigm for their self-load-balancing features.

Index Terms—Distributed computing, Security, Trust, Social
Computing, Performance.

I. INTRODUCTION

Cloud computing is a new paradigm of computing that over-
comes the restriction of conventional computing paradigms by
enabling new technological and economical aspects, such as
elasticity and pay-as-you-go—which free users from long-term
commitments and obligation towards service providers. Cloud
computing is beneficial for both consumers and cloud service
providers. While it meets customers and users technological
demands, the cloud computing paradigm is also a rich field of
profit to cloud providers [3].

For users, cloud computing overcomes several shortcomings
as opposed to using conventional computing paradigms; where
the used infrastructure and software are owned by the user.
For example, cloud computing enables users of the cloud—
who also can be providers of services—to virtually locate
their contents closers to their consumers and reduce latency
of serving such contents, a challenging issue in conventional
computing settings. Also, considering the return on investment,
cloud computing has its appealing economical benefits and
incentives, which make it a desirable option to many users.
These incentives can be seen in the long run as a reduced
overall cost resulting from hardware and software liabilities
and maintenance costs in alternative paradigms [3]. As for
providers, benefits are also economical in the absolute sense.

The current conventional cloud computing paradigm has
many benefits, despite posing several challenging issues that
need to be addressed before wider adoption by many potential
users [22]. Examples of these issues include the need for
concrete and clear business model that outlines clearer service
level agreements (SLA) and guarantees the rights of users [29],
[28], [15], the need for architectures that consider the variety
of potential applications demanded by users, the need for
programming models that consider the large scale of data
in the cloud, and the need for new applications that benefit
from the architectural and programming models in the cloud,
among other issues. While many of these issues are being
constantly addressed in ongoing research efforts; where several
architectures [19], [9], [51], programming models [21], [16],
[47], and applications [43], [54], [27], [51], [10], [29], [28]
are proposed, security and data privacy are chief among
other issues to be considered before this paradigm is widely
accepted. Indeed, both outsider and insider threats to security
and privacy of data in cloud systems are unlimited. Also,
incentives do exist for cloud providers to make use of users’
data residing in cloud for their own benefits, for the lack of
regulations and enforcing policies.

In this paper, we oversee a new type of computing paradigm,
called SOCIALCLOUD, that enjoys parts of the merits provided
by the conventional cloud. Imagine the scenario of a comput-
ing paradigm where users who collectively construct a pool
of resources perform computational tasks on behalf of their
social acquaintance. Our paradigm and model are similar in
many aspects to the conventional grid-computing paradigm.
It exhibits such similarities in that users can outsource their
computational tasks to peers, complementarily to using friends
for storage, which is extensively studied in literature. Our
paradigm is, however, very unique in many aspects as well.
Most importantly, our paradigm exploits the trust exhibited in
social networks as a guarantee for the good behavior of other
“workers in the system”. Accordingly, the most important
ingredient to our paradigm is the social bootstrapping graph, a
graph that is used for recruiting workers for a social network.

Indeed, social networks are very popular (c.f. §III-A). This
popularity of social networks has opened the door wide
for investigating the potential of these networks for many
applications. Problems that are unsolvable in the cyberspace
are easily solvable using social networks, for that they possess

both algorithmic properties—such as connectivity—and trust,
which are used to reason about the behavior of honest users
in the social network, and limit the misbehavior introduced by
other malicious users supported by efficiency features. Most
important to the context of our paradigm is the aggregate
computational power of nodes in the social network. Indeed,
beyond the nodes and social links, the social networks consist
of users with computing machines that are idle for most
of the time [6]. Furthermore, owners of these computing
machines are willing to share their computing resources for
their friends, and for a different economical model than in
the conventional cloud computing paradigm—fully altruistic
one. This behavior makes our work share commonalities with
an existing stream of work on creating computing services
through volunteers [53], [14]. Our results hence highlight
technical aspects of this direction and pose challenges for
designs options when using social networks for recruiting such
workers and enabling trust.

A. Contributions

To this end, our contribution in this paper is mainly twofold:
• First, we investigate the potential of the social cloud com-

puting paradigm by introducing a design that bootstraps
from social graphs to construct distributing computing
services. We advocate the merits of this paradigm over
existing ones such as the grid computing paradigm.

• Second, we verify the potential of our paradigm us-
ing simulation set-up and real-world social graphs with
varying social characteristics that reflect different, and
possibly contradicting, trust models. Both graphs and the
simulator are made public [40] to the community to make
use of them, and improve by additional features.

B. Organization

The organization of this paper is as follows. In §II we
argue for the case of our paradigm. In §III we review the
preliminaries of this work. In §IV, we introduce the main
design, including an intensive discussion on the design op-
tions. In §V, we describe our simulator used for verifying
the performance aspects of our design. In §VI we introduce
the main results and detailed analyses and discussion of the
design options, their benefits, and limitations. In §VII, we
summarize some of the related work, including work on using
social networks for building trustworthy computing services.
In §VIII, we conclude and suggest some of the future work
and directions that would be interesting to explore.

II. THE CASE FOR SOCIALCLOUD

In this paper, we look at the potential of using unstructured
social graphs for building distributed computing systems.
These systems are proposed with several anticipated benefits
in mind. First, such systems would exploit locality of data
based on the applications they are intended for, under the
assumption that the data would be stored at multiple locations
and shared among users represented in the social network—
see §III-D and [53] for concrete examples of such applications.

This is in fact not a far-fetched assumption. For example,
consider a co-authorship social graph, like the one used in
our experiments, where the SOCIALCLOUD is proposed for
deployment. In that scenario, data on which computations
are to be performed is likely to be at multiple locations; on
machines of research collaborators, co-authors, or previous co-
authors. Even for some online social networks, the assumption
and achieved benefits are not far-fetched as well, considering
that friends would have similar interests, and likely to have
contents replicated across different machines, which could
be potentially of interest to use in our computing paradigm.
Examples of such settings include photos taken at parties,
videos—for image processing applications, among others.

The second advantage of this paradigm is its trustworthi-
ness. In the recent literature, there has been a lot of interest
in the distributed computing community for exploiting social
networks to perform trustworthy computations. Examples of
these literature works include exploiting social networks for
cryptographic signing services [55], Sybil defenses [58], [18],
[57], and routing in many settings including the delay tolerant
networks [7], [17]. In all of these cases, along with the
algorithmic property in these social networks, the built designs
exploit the trust in social networks. The trust in these networks
rationalizes the assumption of collaboration in these built sys-
tem, and the tendency of nodes in the network to act according
to the intended protocol with the theorized guarantees. Same as
in all of these applications, SOCIALCLOUD tries to exploit the
trust aspect of the social network, and thus it is easy to reason
about the behavior of nodes in this paradigm (c.f. §III-C).

Related to trust exhibited in the social fabric utilized in
our paradigm, the third advantage is that it is also easy
to reason about the recruitment of workers. In this context,
workers are nodes that are willing to perform computing
tasks for other nodes (tasks outsourcers). This feature, when
associated with the aforementioned trust, is quite advantageous
when compared to the challenge of performing trustworthy
computing on dedicated workers in the conventional grid-
computing paradigm, where it is hard to recruit such workers.

Finally, our design oversees an altruistic model of SOCIAL-
CLOUD, where nodes participate in the system and do not
expect in return. Further details on this model are in §III-C.
Grid Computing. While the SOCIALCLOUD uses a similar
paradigm to that of the grid computing paradigm—in the sense
that both try to outsource computations and use high aggregate
computational resources, the SOCIALCLOUD is slightly differ-
ent. In particular, in the SOCIALCLOUD, there is a pre-defined
relationship between the task outsourcer and the computing
worker, which does not exist in the grid-computing paradigm.
We limit the computations to 1−hop neighbors, which further
improve trustworthiness of computations in our model.

III. ASSUMPTIONS AND SETTINGS

In this section, we review the preliminaries required for
understanding the rest of this paper. In particular, we elaborate
on the social networks, their popularity, and their potential for
being used as bootstrapping tools for systems, services, and

protocols. We describe the social network formulation at a
high level, the economical aspect of our system, and finally,
the attacker model.

A. Social Networks and Systems Bootstrapping
Social networks are so popular. Nine of the twenty most

popular sites on the web are for social networking [24]. The
top ten online social networking websites have more than 650
million of unique visitors per month in total. The most popular
social network, Facebook [25] alone serves 250 million unique
visitors per month, with more than 96 unique visitors per
second. Such popularity of social networks has motivated so
many designs, protocols, and applications on top of social
networks. Examples include routing [7], [17], [20], [37], social
gossip [1], [26], [12], and Sybil defenses [58] (c.f. §VII).
While they are different in the details of their operation, all
of these designs and protocols weigh algorithmic properties
(connectivity), trust, and collaboration in the underlying social
networks, which are used for bootstrapping such systems.

B. Social Graphs—High Level Description
In this paper we view the social network as an undirected

and unweighted graph G = (V,E), where V = {v1, . . . ,vn} is
the set of vertexes, representing the set of nodes in the social
graph, and correspond to users (or computing machines),
and E = {ei j} (where 1 ≤ i ≤ n and 1 ≤ j ≤ n) is the
set of edges connecting those vertices—which implies that
nodes associated with the social ties are willing to perform
computations for each other. |V | = n denotes the size of
G and |E| = m denotes the number of edges in G. In the
rest of the paper, social network, network, and graph are
used interchangeably to refer to both the physical computing
network and the underlying bootstrapping social graph, and the
meaning depends on the context. Also, we refer to computing
entities associated with users in the social network as nodes.

C. Economics of SocialCloud
In our design we assume an altruistic model, which sim-

plifies the behavior of users and arguments on the attacker
model. In this altruistic model, users in the social network
donate their computing resources—while not using them—
to other users in the social network to use them for specific
computational tasks. In return, the same users who donated
their resources for others would anticipate others as well to
perform their computations on behalf of them when needed.

One can further improve this model. Social networks are
rich of trust characteristics that capture additional features,
and can be used to rationalize this model in several ways.
For example, trust in social networks, a well studied vein of
research in this context [38], can be used to adjust this model
so as users would bind their participation in computations
to trust values that they assign to other users. In this work,
in order to make use of and confirm this model, we limit
outsourced computations at 1-hop.

While we do not consider that in this paper, another model
using interests and groups is worth mentioning for its pop-
ularity and potential as a future work. The incentives model

can be further relaxed by enabling “interest” based model of
computation where workers do computation to other nodes in
the graph that only share some interest with them. This interest
can be publicly identified by the membership of a node in a
group. Investigating this model is left as a future work.

D. Use Model and Applications

For our paradigm, we envision compute intensive applica-
tions, for which other systems have been developed in the past
using different design principles, but lacking trust features;
where trust is needed in such applications and provided by our
paradigm. These systems include ones with resources provided
by volunteers, as well as grid-like systems, like in Condor [36],
MOON [34], Nebula [14], [53], and SETI@Home [2].

Specific examples of applications built on top of these
systems, that would as well fit to our use model, include blog
analysis [53], web crawling and social-network applications
(collaborative filtering, image processing, etc) [11], scientific
computing [52], among others.

Notice that each of these applications requires certain levels
of trust for which social ties are best suited as a trust boot-
strapping and enabling tool. Especially, reasoning about the
behavior of systems and expected outcomes (in a computing
system in particular) would be well-served by this trust model.
We notice that this social trust has been previously used as
an enabler for privacy in file-sharing systems [30], anonymity
in communications systems [42], and collaboration in sybil
defenses [33], [57], [38], among others. In this work, we use
the same insight to propose a computing paradigm that relies
on such trust and volunteered resources, in the form of shared
computing time. With that in mind, in the following section
we elaborate on the attacker used in our system and trust
models provided by our design, thus highlight its advantage
and distancing our work from prior works in the literature.

E. Attacker Model

In this paper, as it is the case in many other systems built
on top of social networks [57], [58], [49], we assume that
the attacker is restricted in many aspects. For example, the
attacker has a limited capability of creating arbitrarily many
edges between himself and other nodes in the social graph.

While this restriction may contradict some recent results in
the literature [8]—where it is shown that some legitimate users
befriend random users in the social network who are poten-
tially attackers, it can be relaxed to achieved the intended trust
and attack model by considering an overlay of subset of friends
of each users. This overlay expresses the trust value of the
social graph well and eliminates the influence introduced by
the attacker who infiltrated the social graph [38]. For example,
since each user decides on to which node among his adjacent
nodes to outsource computations to, each user is aware of other
users he knows well and those who are just social encounters
that could be potential attackers. Accordingly, the user himself
decides whether to include a given node in his overlay or
not, thus minimizing or eliminating harm and achieving the
required trust and attack model.

The description of the above attacker model might be at
odds with the rest of the paper, especially that we use some
online social networks that do not reflect characteristics of
trust required in our paradigm. However, such networks, when
used, are used for two reasons. First, to derive insight on the
potential of such social networks, and others that share similar
topological characteristics, for performing computational tasks
according to the method devised in this paper. Second, we use
them to illustrate that some of these social networks might be
less effective than the trust-possessing social graphs, which
we strongly advocate for our computing paradigm.
Comparison with Trust in Grid Computing Systems. While
there has been a lot of research on characterizing and improv-
ing trust in the conventional grid computing paradigm [4], [5],
[46], [31]—which is the closest paradigm to compare to ours,
trust guarantees in such paradigm are less strict than what is
expressed by social trust. For that, it is easy to see that some
nodes in the grid computing paradigm may act maliciously
by, for example, giving wrong computations, or refusing to
collaborate; which is even easier to detect and tolerate, as
opposed to acting maliciously [13].

IV. THE DESIGN OF SOCIALCLOUD

The main design of SOCIALCLOUD is very simple, where
complexities are hidden in design choices and options. In
SOCIALCLOUD, the computing overlay is bootstrapped by
the underlying social structure. Accordingly, nodes in the
social graph act as workers to their adjacent nodes (i.e., nodes
which are one hop away from the outsourcer of computations).
An illustration of this design is depicted in Figure 1. In
this design, nodes in the social graph, and those in the
SOCIALCLOUD overlay, use their neighbors to outsource com-
putational tasks to them. For that purpose, they utilize local
information to decide on the way they schedule the amount of
computations they want each and every one of their neighbors
to take care of. Accordingly, each node has a scheduler which
she uses for deciding the proportion of tasks that a node wants
to outsource to any given worker among her neighbors. Once
a task is outsourced to the given worker, and assuming that
both data and code for processing the task are transferred to
the worker, the worker is left to decide how to schedule the
task locally to compute it. Upon completion of a task, the
worker sends back the computations result to the outsourcer.

A. Design Options: Scheduling Entity

In the SOCIALCLOUD, two schedulers are used. The first
scheduler is used for determining the proportion of task
outsourced to each worker and the second scheduler is used at
each worker to determine how tasks outsourced by outsourcers
are computed and in which order. While the latter scheduler
can be easily implemented locally without impacting the
system complexity, the decision used for whether to centralize
or decentralize the former scheduler impacts the complexity
and operation of the entire system. In the following, we
elaborate on both design decisions, their characteristics, and
compare them.

1) Decentralized scheduler: In our paradigm, we limit
selection of workers to 1-hop from the outsourcer. This makes
it possible, and perhaps plausible, to incorporate scheduling
of outsourcing tasks at the side of the outsourcer in a decen-
tralized manner—thus each node takes care of scheduling its
tasks. On the one hand, this could reduce the complexity of
the design by eliminating the scheduling server in a centralized
alternative. However, on the other hand, this could increase the
complexity of the used protocols and the cost associated with
them for exchanging states—such as availability of resources,
online and offline time, among others. All of such states are
exchanged between workers and outsourcers in our paradigm.
These states are essential for building basic primitives in any
distributed computing system to improve efficiency (see below
for further details). An illustration of this design option is
shown in Figure 1. In this scenario, each outsourcer, as well
as worker, has its own separate scheduling component.

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Outsourcer

Worker

Scheduler Scheduler

Fig. 1. A depiction of the main SOCIALCLOUD paradigm as viewed by an
outsourcer of computations. The different nodes in the social network act as
workers for their friends, who act as potential jobs/tasks outsourcers. The links
between social nodes are ideally governed by a strong trust relationship, which
is the main source of trust for the constructed computing overlay. Both job
outsourcers and workers have their own, and potentially different, schedulers.

2) Centralized Scheduler: Despite the fact that nodes may
only require their neighbors to perform the computational
tasks on behalf of them and that may require only local
information—which could be available to these nodes in ad-
vance, the use of a centralized scheduler might be necessitated
to reduce communication overhead at the protocol level. For
example, in order to decide upon the best set of nodes to
which to outsource computations, a node needs to know which
of its neighbors are available, among other statistics. For that
purpose, and given that the underlying communication network
topology may not necessarily have the same proximity of
the social network topology, the protocol among nodes needs
to incur back and forth communication cost. One possible
solution to the problem is to use a centralized server that main-
tains states of the different nodes. Instead of communicating
directly with neighbor nodes, an outsourcer would request the
best set of candidates among its neighbors to the centralized
scheduling server. In response, the server will produce a set of
candidates, based on the locally stored states. Such candidates
would typically be those that would have the most available
resources to handle the outsourced computation task.

An illustration of this design option is shown in Figure 2. In

this design, each node in SOCIALCLOUD would periodically
send states to a centralized server. When needed, an outsourcer
node contacts the centralized server to return to it the best set
of candidates for outsourcing computations, which the server
would return based on the states of these candidates. Notice
that only states are returned to the outsourcer, upon which the
outsourcer would send tasks to these nodes on its own—Thus,
the server involvement is limited to the control protocol.

Worker

Worker

Worker

Worker

Worker

Worker

Worker

Outsourcer

Worker

Scheduler

Centralized
Scheduler

Fig. 2. The decentralized model of task scheduling in SOCIALCLOUD.

The communication overhead of this design option to trans-
fer states between a set of d nodes is 2d, where d messages
are required to deliver all nodes’ states and d messages are
required to deliver states of all other nodes to each node in the
set. On the other hand, d(d−1) messages are required in the
decentralized option (which requires pairwise communication
of states update). When outsourcing of computations is possi-
ble among all nodes in the graph, this translates into O(n) for
the centralized versus O(n2) communication overhead for the
decentralized option. To sum up, Table I shows a comparison
between both options.

TABLE I
A COMPARISON BETWEEN THE CENTRALIZED AND DECENTRALIZED

SCHEDULER OPTIONS. COMPARED FEATURES ARE RESISTANCE TO
FAILURE, COMMUNICATION OVERHEAD, REQUIRED ADDITIONAL

HARDWARE, AND REQUIRED ADDITIONAL TRUST.

Option Failure Communication Hardware Trust

Centralized 6 O(n) 6 6
Decentralized 4 O(n2) 4 4

B. Tasks Scheduling Policy

While the use of distributed or centralized scheduling entity
resolves the issue of scheduling at the outsourcer side, two de-
cisions remain unsolved: how much computation to outsource
to each node (worker), and how much time a node among these
workers should spend on a given task for a certain outsourcer.
We handle these two issues separately.

As mentioned earlier, any off-the-shelf scheduling algorithm
can be utilized to decide the right scheduling policy at the
side of the outsourcer, which can be further improved by
incorporating trust characterization models for weighted job

scheduling [38]. On the other hand, for workers scheduling,
we consider several scheduling options as follows (notice that
all of these policies are applied with respect to “computing
time”. This further requires estimating the time required for
each task as a first step for using these policies).
• Round Robin (RR) Scheduling Policy. This is the

simplest policy to implement, in which a worker spends
an equal share of time on each outsourced task in a round
robin fashion among all tasks he has.

• Shortest First (SF) Scheduling Policy. The worker
performs shortest task first.

• Longest First (LF) Scheduling Policy. The worker
performs longest task first.

Notice that we omit a lot of details about the underlying
computing infrastructure, and abstract such infrastructure to
“time sharing machines”, which further simplifies much of
the analysis in this work. In the results, we experiment with
the three scheduling policies.

C. Handling Outliers

The main performance criterion used for evaluating SO-
CIALCLOUD is the time required to finish computing tasks for
all nodes with tasks in the system. Accordingly, an outlier (also
called a computing straggler) is a node with computational
tasks that take a long time to finish, thus increasing the overall
time to finish and decreasing the performance of the overall
system. Detecting outliers in our system is simple: since the
total time is given in advance, outliers are nodes with com-
puting tasks that have longer time to finish when other nodes
participating in the same outsourced computation are idle. Our
method for handling outliers is simple too: when an outlier is
detected, we outsource the remaining part of computations on
all idle nodes neighboring the original outsourcer. For that,
we use the same scheduling policy used by the outsourcer
when she first outsourced this task. In the simulation part, we
consider both scenarios of handled and unhandled outliers, and
observe how they affect the performance of the system.

D. Deciding Workers Based on Resources

In real-world deployment of a system like SOCIALCLOUD,
we expect heterogeneity of resources, such as bandwidth,
storage, and computing power, in workers. This heterogeneity
would result in different results and utilization statistics of a
system like SOCIALCLOUD, depending on which nodes are
used for what tasks. While our work does not address this
issue, and leaves it as a future work (c.f. §VI-F and §VIII).
We further believe that simple decisions can be made in this
regard so as to meet the design goals and achieve the good
performance. For example, we expect that nodes would select
workers among their social neighbors that have resources and
link capacities exceeding a threshold, thus meeting an expected
performance outcome.

V. SIMULATOR OF SOCIALCLOUD

To demonstrate the potential of SOCIALCLOUD as a com-
puting paradigm, we implement a batch-based simulator [40]

that considers a variety of scheduling algorithms, an outlier
handling mechanism, job generation handling, and failure
simulation. A flow diagram of the simulator is in Figure 3.

The flow of the simulator, which represents the flow of the
system, is depicted in Figure 3. First, the node factory uses the
bootstrapping social graph to create nodes and their workers.
Each node then decides on whether she has a task or not,
and if she has a task she schedule the task according to her
scheduling algorithm. If needed, each node then transfers code
on which computations are to be performed to the worker
along with the splits of the data for these codes to run on.
Each worker then performs the computation according to the
scheduling algorithm of the worker and returns the results of
the computations to the outsourcer.
Timing. In SOCIALCLOUD, we use virtual time to simulate
computations and resources sharing. We scale down the simu-
lated time by 3 orders of magnitude of that in reality. This is,
for every second worth of computations in real-world, we use
one millisecond in the simulation environment. Thus, units of
times in the rest of this paper are in virtual seconds.

Social
Graph

Node
Factory

Task
Generator

Nodes
Task

Scheduler Execute

Tasks
Scheduler

For each node
(with tasks)	 Data and

Code
Transfer

To
Workers

At every worker	

Return results	

Fig. 3. The flow diagram of SOCIALCLOUD: social graph is used for boot-
strapping the computing service and recruit workers, nodes are responsible
for scheduling their tasks by determining the amount of work each of its
neighbors would process, and each worker (node) uses its local scheduler to
determine how much time is allowed for each sub-task by its neighbors.

VI. RESULTS AND ANALYSIS

In this section, in order to derive insight on the potential of
SOCIALCLOUD, we experiment with the simulator described
above. Before getting into the details of the experiments, we
describe the data and evaluation metric used in this section.

A. Evaluation Metric

To demonstrate the potential of operating SOCIALCLOUD,
we use the “normalized finishing time” of a task outsourced by
a user to other nodes in the SOCIALCLOUD as the performance
metric. We consider the same metric over the different graphs
used in the simulation. To demonstrate the performance for the
population of all nodes that have tasks to be computed in the
system, we use the empirical CDF (commutative distribution
function) as an aggregate measure. For a random variable X ,
the CDF is defined as FX (x) = Pr(X ≤ x). In our experiments,
the CDF measures the fraction (or percent) of nodes that finish
their tasks before a point in time x, as part of the overall
number of tasks. We define x as the factors of time of normal
operation per dedicated machines, if they were to be used
instead of outsourcing computations. This is, suppose that the

overall time of a task is Ttot and the time it takes to compute
the subtask by the slowest worker is Tlast , then x for that node
is defined as Tlast/Ttot .

B. Tasks Generation

Also for demonstrating the operation of our simulator, and
the trade-off that such operation provides, we consider two
different approaches for the tasks generated by each user. The
size of each generated task is measured by virtual units of time,
and for our demonstration we use two different scenarios:
• Constant task weight. each outsourcer generates tasks

with an equal size. These tasks are divided into equal
shares and distributed among different workers in the
computing system. The size of each task is T̄ .

• Variable task weight. each outsourcer has a different
task size. We model the size of tasks as a uniformly
distributed random variable in the range of [T̄ − `, T̄ + `]
for some T̄ > `. Each worker receives an equal share of
the task from the outsourcer.

C. Deciding Tasks Outsourcers

Not all nodes in the system are likely to have tasks to
outsource for computation at the same time. Accordingly, we
denote the fraction of nodes that have tasks to compute by
p, where 0 < p < 1. In our experiments we use p from 0.1
to 0.5 with increments of 0.1. We further consider that each
node in the network has a task to compute with probability p,
and has no task with probability 1− p—thus, whether a node
has a task to distribute among its neighbors and compute or
not follows a binomial distribution with a parameter p. Once
a node is determined to be among nodes with tasks at the
current round of run of the simulator, we fix the task length.
For tasks length, we use both scenarios mentioned in §VI-B;
with fixed or constant and variable tasks weights.

D. Social Graphs

To derive insight on the potential of SOCIALCLOUD, we
run our simulator on several social graphs with different size
and density, as shown in Table II. The graphs used in these
experiments represent three co-authorship social structures
(DBLP, Physics 1, and Physics 2), one voting network (of
Wiki-vote for wikipedia administrators election), and one
friendship network (of the consumer review website, Epinion).
All of these graphs are made undirected, if they are not
already, which rationalizes their use in our system. Notice
the varying density of these graphs, which also reflects on
varying topological characteristics. Also, notice the nature of
these social graphs, where they are built in different social
contexts and possess varying qualities of trust [38].

E. Main Results

In this section we demonstrate our paradigm and discuss the
main results of this work. Due to the lack of space, we delegate
additional results to the technical report in [39]. For all mea-
surements, our metric of performance and comparison is the
normalized time to finish metric, explained in section VI-A.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(a) Physics 1.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(b) Physics 2.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(c) DBLP.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(d) Epinion.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

p = 0.1
p = 0.2
p = 0.3
p = 0.4
p = 0.5

(e) Wiki-vote.

Fig. 4. The normalized time it takes to perform outsourced computations in SOCIALCLOUD. Different graphs with different social characteristics have
different performance results, where those with well-defined social structures have self-load-balancing features, in general. These measurements are taken with
round-robin scheduling algorithm that uses the outlier handling policy in §IV-C for a fixed task size (of 1000 simulation time units).

TABLE II
SOCIAL GRAPHS USED IN OUR EXPERIMENTS.

Dataset # nodes # edges Description

DBLP 614981 1155148 CS Co-authorship
Epinion 75877 405739 Friendship network
Physics 2 11204 117649 Co-authorship
Wiki-vote 7066 100736 Voting network
Physics 1 4158 13428 Co-authorship

1) Performance When Varying the Number of Outsourcers:
In the first experiment, we run our SOCIALCLOUD simulator
on the different social graphs discussed earlier to measure the
evaluation metric when the number of the outsourcers of tasks
increases. We consider p = 0.1 to 0.5 with increments of 0.1
at each time. The results of this experiment are in Figure 4. On
the results of this experiment we make several observations.

First, we observe the potential of SOCIALCLOUD, even
when the number of outsourcers of computations in the social
network is as high as 50% of the total number of nodes, which
translates into a small normalized time to finish even in the
worst performing social graphs (about 60% of all nodes with
tasks would finish in 2 normalized time units). However, this
advantage varies for different graphs: we observe that sparse
graphs, like co-authorship graphs, generally outperform other
graphs used in the experiments (by observing the tendency in
the performance in figures 5(b) through 4(c) versus figures 4(d)
and 4(e)). In the aforementioned graphs, for example, we see
that when 10% of nodes in each case is used, and by fixing
x, the normalized time, to 1, the difference of performance
is about 30%. This difference of performance is observed
between the Physics co-authorship graphs—where 95% of

nodes finish their computations—and the Epinion graph—
where only about 65% of nodes finish their computations.

Second, we observe that the impact of p, the fraction of
nodes with tasks in the system, would depend on the graph
rather than p alone. For example, in Figure 5(b), we observe
that moving from p = 0.1 to p = 0.5 (when x = 1) leads to a
decrease in the fraction of nodes that finish their computations
from 95% to about 75%. On the other hand, for the same
settings, this would lead to a decrease from about 80% to 40%,
a decrease from about 65% to 30%, and a decrease from 70%
to 30% in DBLP, Epinion, and Wiki-vote, respectively. This
suggests that the decreases in the performance are due to an
inherit property of each graph. The inherit property of each
graph and how it affects the performance of SOCIALCLOUD is
further illustrated in Figure 5. Interestingly, we find that even if
DBLP is almost two orders of magnitude the size of Wiki-vote,
for example, it outperforms Wiki-vote when not using outlier
handling, and gives almost the same performance when using
outliers handling.

2) Performance with different scheduling policies: Now, we
turn our attention to understanding the impact of the different
scheduling policies discussed in §IV-B on the performance of
SOCIALCLOUD. We consider the different datasets, and use
p = 0.1 to 0.5 with 0.2 increments (the results are shown
in Figure 6). The observed consistent pattern in almost all
figures in this experiment tells that shortest first policy always
outperforms the round robin scheduling policy, whereas the
round robin scheduling policy outperforms the longest first.
This pattern is consistent regardless of p and the outlier
handling policy. The difference in the performance when using
different policies can be as low as 2% (when p = 0.1 in
physics co-authorship; shown in figure 7(b)) and as high as

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(a) Physics 1 (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(b) Physics 2 (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(c) DBLP (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(d) Epinion (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(e) Wiki-vote (p = 0.1).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(f) Physics 1 (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(g) Physics 2 (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(h) DBLP (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(i) Epinion (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(j) Wiki-vote (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F
Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(k) Physics 1 (p = 0.5).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(l) Physics 2 (p = 0.5).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(m) DBLP (p = 0.5).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(n) Epinion (p = 0.5).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(o) Wiki-vote (p = 0.5).

Fig. 6. The normalized time it takes to perform outsourced computations in SOCIALCLOUD for different scheduling policies. Naming convention: U stands
for unhandled outlier and B stands for handled outliers (Balanced). RRS, SFS, and LFS stand for round-robin, shortest first, and longest first scheduling.

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

Physics 1
Physics 2

Epinion
Wiki-vote

DBLP

(a) Handled outliers

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

Physics 1
Physics 2

Epinion
Wiki-vote

DBLP

(b) Unhandled outliers

Fig. 5. The performance of SOCIALCLOUD on the different social graphs
used for our experiments, demonstrating the inherent differences in the dif-
ferent social graphs. Both figures use p = 0.3 and the round robin scheduling
algorithm. Left figure is when handling outliers, whereas the right figure
without handling the outliers.

70% (when using p = 0.5 and outlier handling as in wiki-vote
(figure 6(o))). The patterns are made clearer in Figure 6 by
observing combinations of parameters and policies.

3) Performance with Outliers Handling: Outliers, as de-
fined in §IV-C, drag the performance of the entire system
down. However, as pointed out earlier, handling outliers is
quite simple in SOCIALCLOUD if accurate timing is used in

the system. Here we consider the impact of the outlier handling
policy explained in §IV-C. The impact of using the outlier
handling policy can be also seen on figure 6, which is used
for demonstrating the impact of using different scheduling
policies as well. In this figure, we see that the simple handling
policy we proposed improves the performance of the system
greatly in all cases. The improvement differs depending on
other parameters, such as p, and the scheduling policy. As
with the scheduling policy, the improvement can be as low
as 2% and as high as more than 60%. When p is large, the
potential for improvement is high—see, for example, p = 5 in
Physics 2 with the round robin scheduling policy where almost
65% improvement is due to outlier handling when x = 1.

4) Performance with Variable Task Size: In all of the above
experiments, we considered computational tasks of fixed size;
1000 of virtual time units in each of them. Whether the
same pattern would be observed in tasks with variable size is
unclear. Here we experimentally address this concern by using
variable duty size that is uniformly distributed in the interval
of [500,1500] time units. The results are shown in Figure 7.
Comparing these results to the middle row of Figure 6 (for

the fixed size tasks), we make two observations. (i) While
the average task size in both scenarios is same, we observe
that the performance with variable task size is worse. This
performance is anticipated as our measure of performance is
the time to finish that would be definitely increased as some
tasks with longer time to finish are added. (ii) The same
patterns advantaging a given scheduling policy on another are
maintained as in earlier with fixed task length.

5) Relationship Between Structure and Performance: It is
worth noting that the performance of SOCIALCLOUD is quite
related to the underlying structure of the social graph. For
example, sparse graphs such as co-authorship graphs—which
are pointed out in [38] to be slow mixing graphs—are the
graphs with performance advantage in SOCIALCLOUD. These
graphs, in particular, are shown to possess a nice trust value
that can be further utilized for SOCIALCLOUD. Furthermore,
this trust value is unlikely to be found in online social networks
which are prone to infiltration, making the case for trust-
possessing graphs even stronger, as they achieve performance
guarantees as well. This, indeed, is an interesting finding by
itself, since it shows opposite outcomes to what is known in
the literature on the usefulness of these graphs—see §III and
more details, see [38].

F. Additional Features and Limitations of Experiments

Our simulator of SOCIALCLOUD omits a few details con-
cerning the way a distributed system behaves in reality. In par-
ticular, our measurements do not report on or experiment with
failure. However, our simulator is equipped with functionality
for handling failure in the same way used for handling outliers
(c.f. §IV-C). Furthermore, our simulator considers a simplistic
scenario of study by abstracting the hardware infrastructure,
and does not consider additional resources consumed, such as
memory and I/O resources. In the future, we will consider
equipping our simulator with such functionalities and see how
this affects the behavior and benefits of SOCIALCLOUD.

One last concern related to our demonstration of our
paradigm is that we do not consider the heterogeneity of
resources, such as bandwidth and resources, in nodes acting
as workers in the system. Furthermore, we did not consider
how this affects the usability of our system and what decision
choices this particular aspect of distributed computing systems
would have on the utility of our paradigm. While this would
be mainly a future work to consider (c.f. §VIII), we expect
that nodes would select workers among their social neighbors
that have resources and link capacities exceeding a threshold,
thus meeting an expected performance outcome.

VII. RELATED WORK

There have been many papers on the use of social networks
for building communication and security systems, studying the
performance of such designs on top of social networks, and
analyzing the assumptions used in these designs as well. Below
we highlight a few examples of these efforts and works.

Systems built on top of social networks include file sharing
systems [30], anonymous communication systems [50], [42]

Sybil defenses [18], [33], [56], [58], referral and filtering
systems [32], [44], and live streaming [35]. Most of these
applications weigh the trust in social graph, and an algorithmic
property that makes the operation of these systems on top
of social network effective. Another set of applications that
exploit social networks’ trust is routing [7], [17], [20], [37]—
in several settings, where it has been shown that connectivity
in social graphs can be of benefit in disconnected networks.
Finally, assumptions of social network-based systems are
explored recently, where Sybil defenses and their assumptions
are studied in [41], and trust is challenged in [38].

Perhaps the closest vein of related work in the literature
to our work is on the use of social networks for building
computing services. Until the time of writing this work,
most of the prior research work has been solely focused on
providing storage services, but not a platform of computations.
Such storage services use slightly different economical model
from SOCIALCLOUD’s model, where payment per Megabyte
per month rates are used as opposed to our eco-system.
Examples of such efforts are reported by Sato [45] and Tran
et al. [48]). Xu et al. [55] have further explored a first step in
the direction of building cloud computing platforms on top of
social networks where by considering the access control model
in this domain with preferred access control guarantees. The
results of this work can be used as a building block in our work
to improve the quality of access control and authorization.

With similar flavor of distributed computing services design,
there has been prior works in literature on using volunteers’
resources for computations exploiting locality of data [14],
[53], examination of programing paradigms, like MapRe-
duce [21] on such paradigm [34], [11]. Finally, our work shares
several commonalities with the grid and volunteer computing
systems [36], [34], [14], [53], [2], of which many aspects
are explored in the literature. Trust of grid computing and
volunteer-based systems is explored in [4], [5], [46], [31], [23].
Applications built on top of these systems, that would fit to
our use model, are reported in [53], [11], [52], among others.

VIII. SUMMARY AND FUTURE WORK

A. Summary

In this paper we have introduced the design of SOCIAL-
CLOUD, a distributed computing service that recruits comput-
ing workers from friends in social networks and use such so-
cial networks that characterize trust relationships to bootstrap
trust in the proposed computing service. We further advocated
the case of such computing paradigm for the several advan-
tages it provides. To demonstrate the potential of our proposed
design, we used several real-world social graphs to bootstrap
the proposed service and demonstrated that majority of nodes
in most cases would benefit computationally from outsourcing
their computations to such service. We considered several
basic distributed system characteristics and features, such as
outlier handling, scheduling decisions, and scheduler design,
and show advantages in each of these features and options
when used in our system. To the best of our knowledge, this
is the first and only work in literature that bases such design

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(a) Physics 1 (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(b) Physics 2 (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(c) DBLP (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(d) Epinion (p = 0.3).

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.5 1 1.5 2 2.5 3 3.5 4

C
D

F

Time (normalized)

BRRS

BLFS

BSFS

URRS

ULFS

USFS

(e) Wiki-vote (p = 0.3).

Fig. 7. The normalized time it takes to perform outsourced computations in SOCIALCLOUD, for variable task size.

of computing paradigm on volunteers recruited from social
networks and tries to bring the trust factor from these networks
and use it in such systems. This characteristic distances our
work from the prior work in literature that uses volunteers’
resources for computations [14], [53].

Most important outcome of this study, along with the
proposed design, is the relationship exposed between the social
graphs and the behavior of the built computing service on top
of them. In particular, we have shown that social graphs that
possess strong trust characteristics as evidenced by face-to-
face interaction [38], which are known in the literature for their
poor characteristics prohibiting their use in applications (such
as Sybil defenses [18], [57], [58]), have a self-load-balancing
characteristics when the number of outsourcers are relatively
small (say 10 to 20 percent of the overall population on nodes
in the computing services). That is, the time it takes to finish
tasks originated by a given fraction of nodes in such graph,
and for the majority of these nodes, ends in a relatively short
time. On the other hand, such characteristics and advantages
are maintained even when the number of outsourcers of
computations is as high as 50% of the nodes, contrary to the
case of other graphs with dense structure and high connectivity
known to be proper for the aforementioned applications. This
last observation encourages us to investigate further scenarios
of deployment of our design. We anticipate interesting findings
based on the inherit structure of such deployment contexts—
since such contexts may have different social structures that
would affect the utility of the built computing overlay.

B. Future Work

In the future we will look at two directions. In the first
direction, we aim to complete the missing ingredient of the
simulator and enrich it by further scenarios of deployment of

our design, under failure, with different scheduling algorithms
at both sides of the outsourcer and workers (in addition to
those discussed in this work), and to consider other overhead
characteristics that might not be in line with topological
characteristics in the social graph. These characteristics may
include the uptime, downtime, communication overhead, and
I/O overhead consumption, among others. One interesting fea-
ture that we will consider is trust-based scheduling, benefiting
from the prior work in [38].

In the second direction, we will turn our attention from
the simulation settings to real-world deployment settings, thus
addressing options discussed in §VI-F, and to implement a
proof-of-concept application, among those discussed in §III-D,
by utilizing design options discussed in this paper. We antic-
ipate a lot of hidden complexities in the design to arise, and
significant findings to come out of the deployment that we
will report on in the future work.

ACKNOWLEDGEMENT

This work is supported by a research grant from Korea
Advanced Institute of Technology (KAIST). A. Mohaisen is
partly supported by a Doctoral Dissertation Fellowship of the
graduate school of the University of Minnesota and H. Tran
is partly UROP (undergraduate research opportunity program
of the University of Minnesota).

REFERENCES

[1] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips, “A
gossip-based distributed social networking system,” in Proc. of WETICE,
2009, pp. 93–98.

[2] D. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“Seti@ home: an experiment in public-resource computing,” Communi-
cations of the ACM, vol. 45, no. 11, pp. 56–61, 2002.

[3] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Kon-
winski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“A view of cloud computing,” CACM, vol. 53, no. 4, pp. 50–58, 2010.

[4] F. Azzedin and M. Maheswaran, “Evolving and managing trust in grid
computing systems,” in IEEE Canadian Conference on Electrical and
Computer Engineering, vol. 3. IEEE, 2002, pp. 1424–1429.

[5] ——, “Towards trust-aware resource management in grid computing
systems,” in Proc. of CCGRID. IEEE, 2002, pp. 452–452.

[6] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33–37, 2007.

[7] G. Bigwood and T. Henderson, “Social dtn routing,” in Proc. of ACM
CoNEXT, 2008, pp. 1–2.

[8] L. Bilge, T. Strufe, D. Balzarotti, and E. Kirda, “All your contacts are
belong to us: automated identity theft attacks on social networks,” in
Proc. of WWW. ACM, 2009, pp. 551–560.

[9] N. Botts, B. Thoms, A. Noamani, and T. A. Horan, “Cloud computing
architectures for the underserved: Public health cyberinfrastructures
through a network of healthatms,” in Proc. of HICSS, 2010, pp. 1–10.

[10] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Proc. of ICA3PP, 2010, pp. 13–31.

[11] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman,
“Exploring mapreduce efficiency with highly-distributed data,” in Proc.
of ACM MapReduce, 2011.

[12] A. Chaintreau, P. Fraigniaud, and E. Lebhar, “Opportunistic spatial
gossip over mobile social networks,” in Proc. of SNS, 2008.

[13] A. Chakrabarti, Grid computing security. Springer Verlag, 2007.
[14] A. Chandra and J. Weissman., “Nebulas: Using distributed voluntary

resources to build clouds,” in Proc. of HotCloud, 2010.
[15] R. Clarke, “User requirements for cloud computing architecture,” in

Proc. of IEEE CCGRID, 2010, pp. 625–630.
[16] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, J. Gerth, J. Talbot,

K. Elmeleegy, and R. Sears, “Online aggregation and continuous query
support in mapreduce,” in ACM SIGMOD, 2010, pp. 1115–1118.

[17] E. M. Daly and M. Haahr, “Social network analysis for routing in
disconnected delay-tolerant manets,” in Proc. of ACM Mobihoc, 2007.

[18] G. Danezis and P. Mittal, “Sybilinfer: Detecting sybil nodes using social
networks,” in Proc. of NDSS, 2009.

[19] A. V. Dastjerdi, S. G. H. Tabatabaei, and R. Buyya, “An effective archi-
tecture for automated appliance management system applying ontology-
based cloud discovery,” in Proc. of IEEE CCGRID, 2010.

[20] J. Davitz, J. Yu, S. Basu, D. Gutelius, and A. Harris, “ilink: search and
routing in social networks,” in KDD. ACM, 2007, pp. 931–940.

[21] J. Dean and S. Ghemawat, “Mapreduce: a flexible data processing tool,”
Communications of the ACM, vol. 53, no. 1, pp. 72–77, 2010.

[22] T. S. Dillon, C. Wu, and E. Chang, “Cloud computing: Issues and
challenges,” in Proc. of IEEE AINA, 2010, pp. 27–33.

[23] P. Domingues, B. Sousa, and L. Moura Silva, “Sabotage-tolerance
and trust management in desktop grid computing,” Future Generation
Computer Systems, vol. 23, no. 7, pp. 904–912, 2007.

[24] Ebizmba, “Ebizmba,” www.ebizmba.com/, 2009.
[25] Facebook, “Facebook,” www.facebook.com, 2009.
[26] Y. Fernandess and D. Malkhi, “On spreading recommendations via social

gossip,” in Proc. of SPAA. ACM, 2008, pp. 91–97.
[27] M. Hagiwara, “Development procedure of the cloud-based applications,”

in Proc. of DASFAA, 2010, pp. 320–326.
[28] W. Iqbal, M. N. Dailey, and D. Carrera, “Sla-driven dynamic resource

management for multi-tier web applications in a cloud,” in Proc. of IEEE
CCGRID, 2010, pp. 832–837.

[29] W. Iqbal, M. N. Dailey, D. Carrera, and P. Janecek, “Sla-driven auto-
matic bottleneck detection and resolution for read intensive multi-tier
applications hosted on a cloud,” in Proc. of GPC, 2010, pp. 37–46.

[30] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson, “Privacy-
preserving p2p data sharing with oneswarm,” in Proc. of ACM SIG-
COMM, vol. 40, no. 4, 2010, pp. 111–122.

[31] S. Kamvar, M. Schlosser, and H. Garcia-Molina, “The eigentrust algo-
rithm for reputation management in p2p networks,” in Proc. of WWW.
ACM, 2003, pp. 640–651.

[32] H. A. Kautz, B. Selman, and M. A. Shah, “Referral web: Combining
social networks and collaborative filtering,” Communications of the
ACM, vol. 40, no. 3, pp. 63–65, 1997.

[33] C. Lesniewski-Laas, “A Sybil-proof one-hop DHT,” in Proc. of the
workshop on Social network systems. ACM, 2008, pp. 19–24.

[34] H. Lin, X. Ma, J. Archuleta, W.-c. Feng, M. Gardner, and Z. Zhang,
“Moon: Mapreduce on opportunistic environments,” in Proc. of HPDC.
New York, NY, USA: ACM, 2010, pp. 95–106.

[35] W. Lin, H. Zhao, and K. Liu, “Incentive cooperation strategies for peer-
to-peer live multimedia streaming social networks,” IEEE Transactions
on Multimedia, vol. 11, no. 3, pp. 396–412, 2009.

[36] M. Litzkow, M. Livny, and M. Mutka, “Condor-a hunter of idle
workstations,” in Proc. of ICDCS. IEEE, 1988, pp. 104–111.

[37] S. Marti, P. Ganesan, and H. Garcia-Molina, “Dht routing using social
links,” in Proc. of IPTPS. Springer, 2004, pp. 100–111.

[38] A. Mohaisen, N. Hopper, and Y. Kim, “Keep your friends close:
Incorporating trust into social network-based sybil defenses,” in Proc.
of INFOCOM, 2011, pp. 1943–1951.

[39] A. Mohaisen, H. tran, A. Chandra, and Y. Kim, “Socialcloud: Using
social networks to build distributed computing services,” University of
Minnesota, Tech. Rep., 2011.

[40] A. Mohaisen, H. Tran, A. Chandra, and Y. Kim, “SocialCloud,” http:
//socialcloud.cypriv.com, July 2011.

[41] A. Mohaisen, A. Yun, and Y. Kim, “Measuring the mixing time of social
graphs,” in Proc. of IMC. 11: ACM, 2010.

[42] S. Nagaraja, “Anonymity in the wild: Mixes on unstructured networks,”
in Proc. of PETS, 2007, pp. 254–271.

[43] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, “A particle swarm
optimization-based heuristic for scheduling workflow applications in
cloud computing environments,” in Proc. of AINA, 2010, pp. 400–407.

[44] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, “Grou-
plens: An open architecture for collaborative filtering of netnews,” in
Proc. of ACM CSCW, 1994, pp. 175–186.

[45] M. Sato, “Creating next generation cloud computing based network
services and the contributions of social cloud operation support system
(oss) to society,” in Proc. of IEEE WETICE, 2009, pp. 52–56.

[46] S. Song, K. Hwang, and Y. Kwok, “Trusted grid computing with security
binding and trust integration,” Grid computing, vol. 3, no. 1, 2005.

[47] M. Stonebraker, D. J. Abadi, D. J. DeWitt, S. Madden, E. Paulson,
A. Pavlo, and A. Rasin, “Mapreduce and parallel dbmss: friends or
foes?” Communications of the ACM, vol. 53, no. 1, pp. 64–71, 2010.

[48] D. Tran, F. Chiang, and J. Li, “Friendstore: cooperative online backup
using trusted nodes,” in Proc. of SNS, 2008, pp. 37–42.

[49] N. Tran, B. Min, J. Li, and L. Subramanian, “Sybil-resilient online
content voting,” in Proc. of USENIX NSDI, 2009, pp. 15–28.

[50] E. Vasserman, R. Jansen, J. Tyra, N. Hopper, and Y. Kim, “Membership-
concealing overlay networks,” in Proc. of ACM CCS, 2009, pp. 390–399.

[51] M. Wallis, F. Henskens, and M. Hannaford, “Expanding the cloud: A
component-based architecture to application deployment on the inter-
net,” in Proc. of IEEE CCGRID, 2010, pp. 569–570.

[52] L. Wang, J. Tao, M. Kunze, A. Castellanos, D. Kramer, and W. Karl,
“Scientific cloud computing: Early definition and experience,” in Proc.
of IEEE HPCC. Ieee, 2008, pp. 825–830.

[53] J. B. Weissman, P. Sundarrajan, A. Gupta, M. Ryden, R. Nair, and
A. Chandra, “Early experience with the distributed nebula cloud,” in
Proc. of ACM DIDC, 2011, pp. 17–26.

[54] B. Wickremasinghe, R. N. Calheiros, and R. Buyya, “Cloudanalyst: A
cloudsim-based visual modeller for analysing cloud computing environ-
ments and applications,” in Proc. of IEEE AINA, 2010, pp. 446–452.

[55] S. Xu, X. Li, and T. P. Parker, “Exploiting social networks for threshold
signing: attack-resilience vs. availability,” in Proc. of ACM ASIACCS,
2008, pp. 325–336.

[56] H. Yu, P. B. Gibbons, and M. Kaminsky, “Toward an optimal social
network defense against sybil attacks,” in Proc. of PODC. ACM, 2007,
pp. 376–377.

[57] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao, “Sybillimit: A near-
optimal social network defense against sybil attacks,” in Proc. of IEEE
S&P, 2008, pp. 3–17.

[58] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman, “Sybilguard:
defending against sybil attacks via social networks,” in Proc. of ACM
SIGCOMM, 2006, pp. 267–278.

www.ebizmba.com/
www.facebook.com
http://socialcloud.cypriv.com
http://socialcloud.cypriv.com

	Introduction
	Contributions
	Organization

	The Case for SocialCloud
	Assumptions and Settings
	Social Networks and Systems Bootstrapping
	Social Graphs—High Level Description
	Economics of SocialCloud
	Use Model and Applications
	Attacker Model

	The Design of SocialCloud
	Design Options: Scheduling Entity
	Decentralized scheduler
	Centralized Scheduler

	Tasks Scheduling Policy
	Handling Outliers
	Deciding Workers Based on Resources

	Simulator of SocialCloud
	Results and Analysis
	Evaluation Metric
	Tasks Generation
	Deciding Tasks Outsourcers
	Social Graphs
	Main Results
	Performance When Varying the Number of Outsourcers
	Performance with different scheduling policies
	Performance with Outliers Handling
	Performance with Variable Task Size
	Relationship Between Structure and Performance

	Additional Features and Limitations of Experiments

	Related Work
	Summary and Future Work
	Summary
	Future Work

	References

