
8

Provably Secure Timed-Release Public Key
Encryption
JUNG HEE CHEON
Seoul National University, Korea
and
NICHOLAS HOPPER, YONGDAE KIM and IVAN OSIPKOV
University of Minnesota - Twin Cities

A timed-release cryptosystem allows a sender to encrypt a message so that only the intended
recipient can read it only after a specified time. We formalize the concept of a secure timed-release
public-key cryptosystem and show that, if a third party is relied upon to guarantee decryption
after the specified date, this concept is equivalent to identity-based encryption; this explains the
observation that all known constructions use identity-based encryption to achieve timed-release
security. We then give several provably-secure constructions of timed-release encryption: a generic
scheme based on any identity-based encryption scheme, and two more efficient schemes based on
the existence of cryptographically admissible bilinear mappings. The first of these is essentially
as efficient as the Boneh-Franklin Identity-Based encryption scheme, and is provably secure and
authenticated in the random oracle model; the final scheme is not authenticated but is provably
secure in the standard model (i.e., without random oracles).

Categories and Subject Descriptors: E.3 [Data]: Data Encryption—Public Key Cryptosystems

General Terms: Security, Theory

Additional Key Words and Phrases: timed-release, authenticated encryption, key-insulated
encryption

ACM Reference Format:

Cheon, J. H., Hopper, N., Kim, Y., and Osipkov, I. 2008. Provably secure timed-release public key
encryption. ACM Trans. Inf. Syst. Secur. 11, 2, Article 8 (May 2008), 44 pages. DOI = 10.1145/
1330332.1330336. http://doi.acm.org/10.1145/1330332.1330336.

Authors’ addresses: J.H. Cheon, Seoul National University, Korea; email: jhcheon@shu.4c.kr;
N. Hopper, Y. Kim, University of Minnesota - Twin Cities; email: {hopper, kyd}@cs.umn.edu;
I. Osipkov, Microsoft Corp.; email: ivan.osipkov@microsoft.com.
Y. Kim and I. Osipkov were partly supported by NSF Career Grant CNS-0448423 and by
The Intelligent Storage Consortium at the Digital Technology Center, University of Minnesota.
J. H. Cheon was supported by Korea Telecom.
Permission to make digital/hard copy of all or part of this material without fee for personal or
classroom use provided that the copies are not made or distributed for profit or commercial advan-
tage, the ACM copyright/server notice, the title of the publication, and its date appear, and notice
is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish, to post
on servers, or to redistribute to lists requires prior specific permission and/or a fee. Permission
may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY
10121-0701, USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2008 ACM 1094-9224/2008/05–ART8 $5.00 DOI: 10.1145/1330332.1330336. http://doi.acm.org/

10.1145/1330332.1330336.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 2 · J. H. Cheon et al.

1. INTRODUCTION

The goal of timed-release cryptography is to “send a message into the future.”
One way to do this is to encrypt a message such that the receiver cannot de-
crypt the ciphertext until a specific time in the future. Such a primitive would
have many practical applications; a few examples include preventing a dishon-
est auctioneer from prior opening of bids in a sealed-bid auction [Rivest et al.
1996], preventing early opening of votes in e-voting schemes, fair exchange,
release of classified information, and delayed verification of a signed document,
such as electronic lotteries [Syverson 1998] and check cashing. The problem of
timed-release cryptography was first mentioned by [May 1993] and then dis-
cussed in detail by [Rivest et al. 1996].

Let us assume that Alice wants to send a message to Bob such that Bob
will not be able to open it until a certain time. Previous solutions fall into two
categories:

—Time-lock puzzles: Alice encrypts her message so that Bob needs to perform
non-parallelizable computation without stopping for the required time to de-
crypt it. If Alice accurately predicts Bob’s computing resources between now
and the desired time, then Bob recovers the message.

—Trusted decryption agents: Alice encrypts a message such that Bob needs
some secret value, published by a trusted agent on the required date, in
order to decrypt the message. Once the agent releases the information, Bob
can decrypt the message.

The first approach puts considerable computational overhead on the message
receiver, which makes it undesirable for real-life scenarios. In addition, know-
ing the computational complexity of decryption, while giving us a lower bound
on the computing time Bob may need to decrypt the message, does not guar-
antee that the plaintext will be available at a certain date. Still, this ap-
proach is widely used for specific applications [Boneh and Naor 2000; Belare
and Goldwasser 1996; Syverson 1998; Garay and Pomerance 2002, 2003].
The agent-based approach, on the other hand, relieves Bob from performing
nonstop computation, sets the date of decryption precisely and does not re-
quire Alice to have information on Bob’s capabilities. This comes at a price,
though: the agents have to be trusted and they have to be available at the
designated time.

In this article we concentrate on schemes that use such “decryption agents.”
We formalize this notion of a secure timed-release encryption scheme and show
that it is equivalent to the notion of strongly key-insulated encryption [Dodis
et al. 2002]; when there is no a priori bound on the number of time periods,
this notion is, in turn, known to be equivalent to identity-based encryption,
or IBE [Bellare and Palacio 2002]. We also give several provably-secure con-
structions of timed-release public-key encryption, including the first provably-
secure generic construction in the literature, and the first efficient scheme that
is provably secure in the standard model, that is, without random oracles.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 3

Our results also cast new light on several previous schemes that appear in
the literature: each can be seen as an adaptation of a known key-insulated
encryption scheme. For example, Rivest et al. [1996] propose that the agent
could encrypt messages on request with a secret key which will be published
on a designated date by the agent, or the agent can precompute pairs of
public/private keys, publish all public keys and release the private keys on
the required days; these exactly fit known key-insulated schemes appearing
in the literature. The scheme of Crescenzo et al. [1999] essentially replaces
publication of the key with publication of the message, requiring the receiver
to engage in a conditional oblivious transfer protocol with the agent to de-
crypt the message. In Chen et al. [2002], the authors proposed to use Boneh
and Franklin’s IBE scheme [Boneh and Franklin 2003] for timed-release en-
cryption: essentially, the scheme replaces the identity in an IBE scheme with
the time of decryption. Similar proposals appear in Marco Casassa Mont and
Sadler [2003] and Blake and Chan [2005].

While some of the above proposals contain informal proofs of security, none
of them consider and/or give a formal treatment of the security properties of
timed-release public key encryption (or TR-PKE). The first formal treatments
of TR-PKE security were displayed in Cheon et al. [2004] and then strength-
ened in Cheon et al. [2006]. Independently, Cathalo et al. [2005] introduce
another notion of timed-release security and argue that it is not implied
by key-insulated encryption; however, this seems to be a side effect of an
overly-restrictive model in which a user must commit to a specific decryption
agent before choosing his public key.

Authentication for Timed-Release Encryption. Many of the applications of
timed-release cryptography mentioned above require some form of authentica-
tion as well. For example, if there is no authentication of bids in a sealed-bid
auction, any bidder may be able to forge bids for others, or force the auction
to fail by submitting an unreasonably high bid. In this article, we consider
the security properties required by these applications and develop formal se-
curity conditions for a Timed-Release Public Key Authenticated Encryption
(TR-PKAE) scheme.

One avenue for developing a TR-PKAE scheme would be composing
an unauthenticated TR-PKE scheme with either a signature scheme or a
(non-timed-release) PKAE scheme. Although such constructions are possible,
we note that the details of this composition are not trivial; examples from An
[2001] and Dodis and Katz [2005] illustrate that naive constructions can fail
to provide the expected security properties. Additionally, we note that such
schemes are likely to suffer a performance penalty relative to a scheme based
on a single primitive. Thus, besides introducing a generic construction, we
also introduce a provably secure construction of a TR-PKAE scheme that is
essentially as efficient as previous constructions of non-authenticated TR-PKE
schemes [Chen et al. 2002; Marco Casassa Mont and Sadler 2003; Blake and
Chan 2005].

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 4 · J. H. Cheon et al.

2. DEFINITIONS

In this section we review security definitions that will be used in the article. In
addition, we introduce new definitions, namely, those of timed-release public
key encryption (TR-PKE) and authenticated TR-PKE (TR-PKAE).

Identity Based Encryption. Formally, we define an IBE scheme IBES to be a
tuple of four randomized algorithms:

—SetupIBE(1k), which given input 1k (the security parameter), produces pub-
lic parameters πIBE, which include hash functions, message and ciphertext
spaces among others. In addition, master secret δIBE is generated which is
kept confidential by the central authority.

—ExtractIBE(πIBE, δIBE, I), given public parameters πIBE, master secret δIBE

and identity I ∈ {0, 1}∗, outputs a secret key skI. The I (together with πIBE)
serves as the public key corresponding to identity I.

—EncryptIBE(πIBE, I, m) computes the ciphertext c denoting the encryption for
identity I of message m with public parameters πIBE.

—DecryptIBE(πIBE, skI, ĉ) outputs the plaintext corresponding to ĉ if decryption
is successful or the special symbol “fail” otherwise.

For consistency, we require that DecryptIBE(πIBE, skI, EncryptIBE(πIBE, I, m)) =
m, for all valid (I, skI), (πIBE, δIBE), and m.

We use the IND-ID-CCA notion of security for and IBE scheme [Boneh
and Franklin 2003]. Briefly, in this case, an adversary may adaptively ask
for secret keys corresponding to arbitrary identities, and may also ask for
decryption of any ciphertext using any identity. Eventually the adversary
presents a “challenge identity” and a pair of “challenge plaintexts” and is
given the encryption of one of these plaintexts under the challenge identity.
The adversary may then continue to ask for secret keys and decryptions,
except that it cannot query for the secret key of the challenge identity or
for decryption of the challenge ciphertext under the challenge identity. The
adversary wins if it can correctly guess which of the challenge ciphertexts was
encrypted by the challenger, and the scheme is secure if no polynomial time
adversary wins with an advantage non-negligibly greater than one half.

Public Key Encryption. A public key encryption system PKE consists of
three algorithms:

—KeyGenPKE, which on input 1k, outputs public/private key pair (pk, sk). The
public key also includes public parameters needed for encryption/decryption.

—EncryptPKE, which on input of pk and message m, outputs ciphertext c.

—DecryptPKE, which on input of ciphertext ĉ and private key sk, outputs either
some message m̂ or failure symbol.

For consistency, it is required that DecryptPKE(sk, EncryptPKE(pk, m)) = m, for
all valid (pk, sk) and m.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 5

We make use of a PKE that is IND-CCA2 secure against adaptive adversary
as described in Bellare et al. [1998]. Briefly, the challenger generates a pub-
lic/private key pair and gives the public key to the adversary. The adversary
is allowed to query for the decryption of any ciphertext using the private key.
In the challenge step, the adversary produces a pair of challenge plaintexts
and is given the encryption of one of the pair. The adversary wins if, given the
ability to query the decryption of any message but the challenge ciphertext, it
can correctly guess which of the two plaintexts was encrypted in the challenge
step.

We note that given a secure IBES, we can easily obtain a secure PKE. For
that purpose, each user simply runs IBES’s SetupIBE and ExtractIBE, using an
arbitrary identity I, to obtain its public key and private key (i.e., the master
secret key in IBES). The identity I along with IBES’s public parameters
serves as user’s public key, while the master secret key serves as the private
key. A straightforward argument shows that if IBES is IND-ID-CCA secure
then the corresponding PKE is IND-CCA2 secure. However, since in practical
applications we expect one to use more efficient PKE constructions, we make
use of separate IBE and PKE schemes in this article.

Digital Signatures and Labels. In addition to the above primitives, we will
also use signature schemes. We start with review of standard signatures first.
A signature scheme DS consists of three algorithms:

—SigGen, which on input 1k, outputs signing/verification key pair (SK, VK).
The VK also includes also public parameters such as the message space
among others.

—Sig, which on input SK and message m, outputs signature σ .

—Ver, which on input message m, signature σ and VK, outputs either true
or false.

For consistency, it is required that for every valid pair (SK, VK) and message
m, VerVK(m, SigSK(m)) = true. We will use the notion of strong unforgeability
under adaptive chosen plaintext attacks (SUF-CMA). Briefly, the challenger
generates a (SK, VK) pair and gives the VK to the adversary. The adversary
is given signatures σ1, σ2, . . . , σq on adaptively chosen messages m1, m2, . . . , mq

and outputs a pair (m, σ). The adversary wins if (m, σ) is a valid message
signature pair and is not equal to any pair (mi, σi).

Beside standard signatures, we will also use one-time signatures which are
defined analogously, except that in SUF-CMA the adversary is allowed to make
only one query. Any public-key signature that is SUF-CMA secure is also a
secure one-time signature. However, the opposite is obviously not true and
one-time signatures are generally much more efficient.

We can also add public labels to IBE and PKE encryption/decryption mecha-
nisms, which are bound in a nonmalleable way to the ciphertext [Shoup 2004]
while preserving security. In effect, ciphertext generation additionally takes
as input a label, which becomes part of the ciphertext. When decrypting, one
applies not only the decryption key but also the public label. The IND-ID-CCA

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 6 · J. H. Cheon et al.

and IND-CCA2 games can be modified in a natural way to take labels into
account.

2.1 Timed-Release Public Key Encryption (TR-PKE)

In this section we formalize the functionality and security requirements
for a timed-release public key encryption system. These requirements are
meant to capture the implicit security requirements not addressed in previ-
ous work [May 1993; Rivest et al. 1996; Chen et al. 2002; Marco Casassa Mont
and Sadler 2003; Blake and Chan 2005]; in particular they do not address the
authentication requirements, which we add in Section 2.3. Informally, we can
think of any principal in a TR-PKE system as filling one or more of three roles.
The timed-release agent—or TiPuS (TImed-release PUblic Server)—publishes
a timed-release public key and releases “tokens” that allow decryption of mes-
sages encrypted for the current time at regular intervals. The receiver pub-
lishes a public key that allows others to encrypt messages so that only he can
decrypt them, using a secret key that he keeps private, and the appropriate
timed-release token. The sender uses the receiver’s public key and the TiPuS
public key to encrypt messages that can later be decrypted at the time of his
choice.

2.1.1 Functional Requirements. Formally, we define a timed-release
public-key encryption system $ to be a tuple of five randomized algorithms:

—Setup, which given input 1k (the security parameter), produces public pa-
rameters πg, which include hash functions, message, and ciphertext spaces
among others.

—TRSetup, which on input πg, produces a pair (δ,πtr) where δ is a master secret
and πtr the corresponding timed-release public parameters. This setup is
carried out by TiPuS which keeps the master secret key confidential, while
all other parameters are public. We denote the combined public parameters
of πg and πtr by π .

—KeyGen, given public parameters πg, outputs a pair of secret key and public
key (sk, pk).

—TG(π, δ, T) computes the token tknT corresponding to time T using (δ,π).
This functionality is performed by TiPuS which publishes tknT at time T.

—Encrypt(π, pk, m, T) computes the timed-release ciphertext c denoting the
encryption of message m using public key pk, public parameters π and time
encoding T.

—Decrypt(π, sk, ĉ, tknT) outputs the plaintext corresponding to ĉ if decryption
is successful or the special symbol “fail” otherwise.

For consistency, we require that Decrypt(π, sk, Encrypt(π, pk, m, T), TG
(π, δ, T)) = m, for all valid (pk, sk), (π, δ), T, and m. Unlike the functional
requirements specified in Cathalo et al. [2005], we explicitly separate the func-
tions TRSetup and KeyGen, allowing a user to generate keys independent of
any timed-release server. This allows the sender to choose which servers to
trust during encryption.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 7

Fig. 1. TR-PKE security experiments for the IND-CCA2 and IND-RTR-CCA2 games.

2.1.2 Security. It is standard to require that the PKE cryptosystem be
secure against adaptive chosen-ciphertext (IND-CCA2) attack [Rackoff and
Simon 1991; Bellare et al. 1998; An 2001]. Ideally, in a TR-PKE, the timed-
release agent should not be able to read messages intended for third-party
recipients. To that effect, we require that IND-CCA2 security against a third
party is provided even when the master secret is given to the adversary. We
model this attack by a slightly modified IND-CCA2 game, shown in Figure 1.
Here, in addition to adaptively choosing two “challenge plaintexts” that the
adversary will need to distinguish between, he also adaptively chooses a “chal-
lenge time” for which his challenge ciphertext will be decrypted; he wins when
he can tell whether his challenge ciphertext is an encryption of his first or sec-
ond plaintext for the challenge time, given access to a decryption oracle and
the master secret key of the TiPuS.

The timed-release functionality is provided by the token-generating in-
frastructure (i.e., TiPuS). Not knowing the corresponding token is what
keeps the receiver from decrypting ciphertext until a designated time. To
effect secure timed-release, any TR-PKE cryptosystem must provide confi-
dentiality against the receiver itself until the corresponding token is made
available. We model this property by the IND-RTR-CCA2 game, shown in
Figure 1; in this game, we modify the basic IND-CCA2 game by allowing the
adversary to adaptively choose the receiver’s public key pk∗ and time T∗ for
the challenge. Instead of access to the timed-release secret, the adversary
is given access to arbitrary tokens tknT , where T #= T∗, and a decryption
oracle Decrypt∗(π, δ, ·, ·, ·) which computes Decrypt(π, ·, ·, TG(π, δ, ·)). The
adversary may thus compute the decryption of any ciphertext for any time,
except the challenge ciphertext in the challenge time T∗ with chosen public
key pk∗. We say a timed-release public-key cryptosystem $ is secure if every
polynomial time adversary A has negligible advantages AdvIND−CCA2

A,$ (k) and

AdvIND−RTR−CCA2
A,$

(k).

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 8 · J. H. Cheon et al.

2.2 Strongly Key-Insulated Public Encryption

Key-insulated public key encryption was introduced by Dodis et al. [2002,
2003] and Bellare and Palacio [2002] to address the problem of computer intru-
sion. The key idea is to break up the lifetime of a public key into periods, and
split the decryption key between the user (say, a mobile device) and a trusted
“helper” (say, a desktop server) to satisfy the following properties:

—Sequential Key Updates: At the beginning of each time period, the helper
securely transmits a “helper secret key” hski to the user, which he combines
with his previous key, uski−1, to obtain a secret key uski that will decrypt
messages encrypted during time period i.

—Random Access Key Updates: Given any uski and hsk j, the user can compute
usk j. This is useful for error recovery and it also allows the user to decrypt
old messages.

—User Compromise: An adversary who is given access to (uski, hski) for several
time periods i cannot break the encryption for a new time period.

—Helper Compromise: An adversary given only hsk cannot break the encryp-
tion scheme.

Combining the results of Bellare and Palacio [2002] and Dodis and Katz
[2005], one obtains that the existence of secure SKIE-OTRU is a necessary
and sufficient condition for the existence of secure IBE. Briefly, a SKIE-OTRU
scheme consists of the following algorithms: KG, which generates a triple
(pk, usk0, hsk) of public key, initial user secret key, and master helper key;
HKU, which computes a stage i helper secret key hski given (pk, hsk, i); UKU,
which computes the stage i user secret key uski given i, pk, hski, uski−1; RUKU,
which computes the stage i user secret key uski given i, j, pk, hski, usk j,∀i ≥

1, j ≥ 0; Enc, which produces a ciphertext corresponding to m to be decrypted
in stage i, given (pk, m, i); and Dec, which, given (i, pk, uski, c) attempts to de-
crypt a ciphertext for stage i. Intuitively, hsk is given to a “helper,” who will
securely transmit, at the beginning of each stage i, the secret hski to the user.
The user can then compute uski, delete any old usk’s in his possession, and
use uski to decrypt messages sent to him during stage i. The RUKU algorithm
facilitates error recovery and allows for decryption of old ciphertexts.

A SKIE (and SKIE-OTRU) scheme is considered CCA-secure with optimal
threshold if two conditions hold: (1) (IND-KIE-CCA2) given access to pk, a de-
cryption oracle, and pairs (hski, uski) of his choosing, an adversary cannot break
the IND-CCA2 security of the encryption scheme for a stage j for which he has
not been given hsk j; and (2) (IND-S-CCA2) given pk, hsk, and a decryption
oracle, an adversary cannot break the IND-CCA2 security of the encryption
scheme for any stage [Dodis et al. 2002, 2003; Bellare and Palacio 2002]. The
idea of separation of the timed-release master and user secrets in a TR-PKE
very closely parallels the notions of helper and user secrets in a key-insulated
cryptosystem; and both involve a “time period” parameter for encryption and
decryption. Furthermore, the two security conditions for a SKIE scheme, in
which either user keys or helper keys are assumed to be compromised, closely

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 9

Fig. 2. TR-PKAE experiments for the IND-KC-CCA2 and IND-RTR-KC-CCA2 games.

resemble the TR-PKE conditions IND-CCA2 and IND-RTR-CCA2 developed
here.

2.3 Authenticated TR-PKE (TR-PKAE)

The notion of authenticated encryption has been explored in depth in An [2001]
and Abdalla et al. [2001]. In this section we adapt these definitions to give
formal security and functionality requirements for a TR-PKAE scheme.

2.3.1 Basic Cryptosystem. The syntactic definition of a TR-PKAE scheme
is essentially the same as that of a TR-PKE scheme with the addition of the
sender’s public and secret key. Namely, the types of Setup, TRSetup, KeyGen
and TG stay the same, but Encrypt and Decrypt are modified to take into ac-
count sender’s keys:

—Encrypt(π, ska, pkb , m, T) returns an authenticated timed-release ciphertext
c denoting the encryption from sender A to receiver B of m for time T.

—Decrypt(π, pka, skb , ĉ, tknT) outputs plaintext m̂ if both decryption and au-
thentication are successful and the special symbol “fail” otherwise.

The consistency requirement is modified to require that, for all valid (pka, ska),
(pkb , skb), (π, δ), T, and m, Decrypt(π, pka, skb , Encrypt(π, ska, pkb , m, T),
TG(π, δ, T))=m.

2.3.2 Security.
Confidentiality. The confidentiality requirements of a TR-PKAE are es-

sentially the same as the confidentiality requirements of a TR-PKE; except
that we make the conservative assumption that the third party (in the case of
IND-CCA2) or the receiver (in the case of IND-RTR-CCA2) has compromised
the sender’s secret key. This results in two new notions, IND-KC-CCA2 and

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 10 · J. H. Cheon et al.

IND-RTR-KC-CCA2, which we define formally in Figure 2. As before, we say
that a TR-PKAE scheme provides confidentiality if every polynomial time ad-
versary has negligible advantage, as defined in Figure 2.

As in the case of TR-PKE, the difference between IND-KC-CCA2 and
IND-RTR-KC-CCA2 is in reversal of adversary roles. In IND-RTR-KC-CCA2,
the goal is to ensure security against the receiver itself prior to the designated
time.

Ciphertext (Plaintext) Forgery. For authentication properties of TR-PKAE,
we concentrate on ciphertext forgery (plaintext forgery is defined analogously).
We consider two types of ciphertext forgery: third-party forgery (TUF-CTXT),
by an adversary that does not know the sender’s and receiver’s private keys
but knows the master secret; and forgery by the ciphertext receiver (RUF-
CTXT) [An 2001]. If the TR-PKAE is not secure against TUF-CTXT then the
scheme cannot claim authentication properties since a third party may be able
to forge new (perhaps decrypting to junk) ciphertexts between two users. If
a TR-PKAE is not secure against RUF-CTXT, then the scheme does not pro-
vide non-repudiation1 and furthermore, if the receiver’s private key is compro-
mised, the attacker can impersonate any sender to this receiver. We introduce
the following games to model unforgeability (see Figure 3).

Receiver Unforgeability (RUF-CTXT and RUF-TR-CTXT). We introduce two
notions of receiver unforgeability: RUF-CTXT in which the receiver cannot
forge ciphertext to himself for any time and a weaker timed-release notion
of RUF-CTXT, called RUF-TR-CTXT, which requires that the receiver should
not be able to forge ciphertext to himself for a future date. The notion RUF-
TR-CTXT has two important implications: (1) the receiver should discard any
ciphertexts received past decryption dates if his private key may be compro-
mised; and (2) the receiver may be able to prove to a third party that a cipher-
text was generated by the alleged sender if he can produce a proof of ciphertext
existence prior to the decryption date. The game in Figure 3 is an enhance-
ment of the RUF-CTXT condition proposed by An [2001] to allow adaptive ad-
versarial behavior: The receiver is not given access to the token for a single,
adaptively-chosen challenge time period; in addition, the adversary can choose
any receiver public key in the encryption queries. We say that a TR-PKAE
encryption is secure against RUF-TR-CTXT, if every polynomial-time adver-
sary A has negligible advantage, AdvRUF-TR-CTXT

A,$
(k), against the challenger in

the RUF-TR-CTXT game. The game for RUF-CTXT is a natural simplification
of RUF-TR-CTXT in which the receiver obtains the master secret (and thus
the token queries are no longer required).

Third-Party Unforgeability (TUF-CTXT). In addition to timed-release re-
ceiver unforgeability, we also require a time-independent third-party unforge-
ability (TUF-CTXT) condition, which allows us to separate timed-release func-
tionality from PKAE. Thus, in the TUF-CTXT game defined in Figure 3, the

1Since the receiver can generate the ciphertext allegedly coming from another user to himself, the
receiver will not be able to prove to anybody that ciphertext was generated by the alleged sender
even if all secret information is disclosed.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 11

Fig. 3. TR-PKAE security experiments for the TUF-CTXT and RUF-TR-CTXT games.

master key is given to the adversary. We say that a TR-PKAE scheme $ is
secure against TUF-CTXT if every polynomial time adversary A has negligible
advantage, AdvTUF-CTXT

A ,$ (k), in k.

3. STRONGLY KEY-INSULATED PUBLIC ENCRYPTION AND TIMED RELEASE

Despite similarities between SKIE-OTRU and TR-PKE notions mentioned be-
fore, there is a key difference between them. In the SKIE-OTRU setting, a
helper is associated with at most one user, and cooperates exclusively with
that user, whereas in the TR-PKE setting, it is assumed that many users may
use the services of the TiPuS server, but the interaction between each user and
the server will be minimal. This results in several operational differences: 1)
User and Master Key Generation: in a TR-PKE scheme, they are generated in-
dependently, whereas in a SKIE-OTRU they are generated jointly; 2) Dissem-
ination of secrets per time period: a SKIE scheme must use a secure channel
to send the hski to only one user, whereas the tokens generated by a TiPuS
are assumed to be publicly disseminated; 3) Security notion of “user compro-
mise”: a SKIE scheme’s notion of “user compromise” is limited to chosen time
periods and the keys are generated by the victim, whereas in TR-PKE’s notion
the attacker is the user herself and she can generate her public key adaptively
(perhaps without necessarily knowing the corresponding secret key) in order
to break timed-release confidentiality. The following theorem shows that de-
spite these differences, these notions are essentially equivalent. Below we
provide a sketch of the proof and refer the reader to Appendix 7.2 for more
details.

THEOREM 3.1. There exists a (chosen-ciphertext) secure timed-release pub-
lic key encryption scheme if and only if there exists a secure strongly key-
insulated public-key encryption scheme with optimal threshold that allows
random-access key updates.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 12 · J. H. Cheon et al.

More precisely, given a SKIE-OTRU, PKE2 and one-time signature DSone, we
can construct a TR-PKE with the following properties:

—Given an IND-CCA2 adversary A against TR-PKE, we can construct al-
gorithms B1 and B2 with run-time O(Time(A)) such that AdvIND-CCA2

A ,TR-PKE(k) ≤
1
2AdvSUF-CMA

B1,DSone
(k) + AdvIND-CCA2

B2,PKE (k).

—Given an IND-RTR-CCA2 adversary A against TR-PKE, we can construct al-
gorithms B1 and B2 with run-time O(Time(A)) such that AdvIND-RTR-CCA2

A ,TR−PKE (k) ≤
1
2AdvSUF-CMA

B1,DSone
(k) + AdvIND-KIE-CCA2

B2,SKIE-OTRU(k).

Conversely, given a TR-PKE scheme, we can construct a SKIE-OTRU with
the following properties:

—Given an IND-S-CCA2 adversary A against SKIE-OTRU, we can construct
an algorithm B with run-time O(Time(A)) such that AdvIND-S-CCA2

A ,SKIE-OTRU(k) ≤

AdvIND-CCA2
B,TR-PKE(k).

—Given an IND-KIE-CCA2 adversary A against SKIE-OTRU, we
can construct an algorithm B with run-time O(Time(A)) such that

AdvIND-KIE-CCA2
A ,SKIE-OTRU (k) ≤ AdvIND-RTR-CCA2

B,TR-PKE (k).

PROOF. (Sketch) Suppose we have a secure TR-PKE scheme $ = (Setup,
TRSetup, TG, Encrypt, Decrypt). We construct a SKIE-OTRU scheme from
$ as follows. Set KG(1k) = ((π, pk), sk, δ), where (π, δ) ← TRSetup(1k) and
(pk, sk) ← KeyGen(π); HKU((π, pk), δ, i) = tkni, where tkni ← TG(π, δ, i); UKU(i,
(π, pk), tkni, (sk, tkni−1)) = (sk, tkni); RUKU(i, j, (π, pk), tkni, (sk, tknj)) = (sk,

tkni); Enc((π, pk), m, i) = c, where c ← Encrypt(π, pk, m, i); and set Dec(i,
(π, pk), (sk, tkni), c) = Decrypt(π, sk, c, tkni). This scheme essentially makes the
TiPuS server in TR-PKE scheme $ into a helper for an SKIE-OTRU scheme.

It is easy to see that this scheme must be a secure SKIE-OTRU scheme.
Suppose an IND-S-CCA2 attacker given access to spk = (π, pk), hsk = δ and
a decryption oracle can break the scheme; then it is easy to see that such an
adversary can also be used to mount an IND-CCA2 attack on $, since these
are exactly the resources given to an adversary in the IND-CCA2 game. Like-
wise, an IND-KIE-CCA2 adversary who can break the scheme given access
to spk = (π, pk), selected (uski, hski) = (sk, tkni) pairs, and a decryption oracle
can easily be used to mount an IND-RTR-CCA2 attack on $: when the SKIE
adversary makes a corruption request for stage i, the corresponding IND-RTR-
CCA2 adversary queries its TG oracle for tkni and can forward (sk, tkni) to the
SKIE adversary since the IND-RTR-CCA2 adversary gets sk as an input; all
other queries made by the SKIE adversary can be passed directly to the cor-
responding oracles of the IND-RTR-CCA2 adversary. The security reduction
statements follow trivially.

Now suppose we have a secure SKIE-OTRU scheme %. If % has the addi-
tional property that KG can be implemented as two independent keying al-
gorithms that generate (pkh, hsk) and (pku, usk), then it is straightforward to

2The PKE can be constructed from the SKIE-OTRU.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 13

transform % into a TR-PKE scheme. Since we would not expect this property
to hold in general, we work around this problem as follows. We know that by
the existence of % there also exists an ordinary chosen-ciphertext secure PKC
& = (PKGen, PKEnc, PKDec).

The idea behind our construction is that TRSetup will sample
(spk, hsk, usk0) ← %.KG(1k) and set π = spk and δ = (hsk, usk0); KeyGen will
sample (pk, sk) ← &.PKGen(1k) and output (pk, sk). TG(π, δ, i) will compute
hski = HKU(spk, hsk, i) and then use usk0 and hski to compute tkni = uski =
RUKU(i, 0, spk, usk0, hski). Encryption and decryption will use the multiple-
encryption technique of Dodis and Katz [2005] with one-time signature scheme
DSone

3. Applying the results of Dodis and Katz [2005], an IND-CCA2 attack on
this scheme reduces to an IND-CCA2 attack on &, while an IND-RTR-CCA2
attack (even when receiver chooses its public key adaptively) on this scheme
reduces to an IND-KIE-CCA2 attack on %.

4. GENERIC CONSTRUCTIONS OF TR-PKE AND TR-PKAE

We note that the previous theorem essentially gives a generic construction
of TR-PKE based on a SKIE-OTRU scheme. Note that since, as mentioned
previously, SKIE-OTRU and IBE have been shown to be equivalent, this gives
a generic construction using any IBE scheme as well. Here we elaborate on
this construction and show how to turn it into TR-PKAE.

The main idea of the generic TR-PKE (TR-PKEgen) construction is to com-
bine a PKE scheme4 and IBE using multiple encryption. Note that naive
multiple encryption fails to provide adaptive chosen-ciphertext security as was
shown in Dodis and Katz [2005]. More specifically, suppose that messages are
encrypted first for the receiver and then for the time. Then the time server, in
the IND-CCA2 game, can win by removing the outer layer of encryption on the
challenge ciphertext, re-encrypting for another time, and querying the decryp-
tion of this ciphertext. Similarly, if messages are first encrypted for the time
and then for the receiver, the receiver can win in the IND-RTR-CCA2 game
with a similar strategy.

Thus we need to be careful when combining encryptions and will use the ap-
proach to IND-CCA2 multiple encryption proposed by Dodis and Katz [2005].
As in the proof of Theorem 3.1, the resulting encryption scheme will be se-
cure against IND-CCA2 and IND-RTR-CCA2 attacks. One can extend the
TR-PKEgen to obtain TR-PKAEgen, the generic TR-PKAE. For that purpose,
one can use the Encrypt-then-Sign approach [An 2001], where the TR-PKEgen

ciphertext is signed by the sender using SUF-CMA secure digital signature
scheme DS.

3Specifically, to encrypt message m for time T, we: (1) pick s1 ← U|m|, and set s2 = m ⊕ s1,
(2) pick signing and verification keys (SK, VK) for the one-time signature scheme DSone, (3) let
c1 = %.EncVK (spk, s1, T), c2 = &.PKEncVK (pk, s2), and (4) output (VK, c1, c2, Sig(VK, (T, c1, c2))).
Decryption follows the scheme of Dodis and Katz [2005], except that c1 is decrypted using tknT =
uskT .
4Which may or may not be derived from the IBE scheme used.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 14 · J. H. Cheon et al.

Fig. 4. The TR-PKAEgen scheme.

Due to similarity of TR-PKEgen and TR-PKAEgen constructions, below we
immediately jump to the TR-PKAEgen construction. By removing sender’s sig-
nature from the TR-PKAEgen mechanism, we immediately obtain the corre-
sponding TR-PKEgen.

4.1 TR-PKAEgen: Generic TR-PKAE

The generic construction is shown in Figure 4. The approach is to use IBE
for construction of timed-release encryption (TRE) and then encrypt the mes-
sage using multiple encryption that combines TRE and PKE, which results in
non-authenticated version. To obtain TR-PKAE, we remark that requiring the
sender to simply sign the ciphertext will not produce an IND-KC-CCA2 or IND-
RTR-KC-CCA2 secure scheme since in these games the adversary has access
to the sender’s secret key and thus may be able to generate a new signature
on the challenge ciphertext and submit this modified challenge ciphertext to
the decryption oracle; in the end, the adversary is able to decrypt the chal-
lenge ciphertext. To deal with this slight complication, prior to generation of
the one-time signature, the sender signs the concatenation of the intermedi-
ate ciphertext, the one-time verification key and the receiver’s public key. The
one-time signature is then computed on the intermediate ciphertext and the
sender’s signature—this ensures that the adversary will need to compute an-
other one-time signature with the same verification key in the previous attack.

THEOREM 4.1.1. The generic TR-PKAEgen scheme is secure against IND-
KC-CCA2, IND-RTR-KC-CCA2, TUF-CTXT and RUF-CTXT provided that the

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 15

one-time signature scheme is SUF-CMA-secure, PKE is IND-CCA2-secure, IBE
is IND-ID-CCA-secure and DS is SUF-CMA-secure.

More precisely, given an IBE, PKE5, signature mechanism DS and one-time
signature DSone, we can construct a TR-PKAE with the following properties:

—Given an IND-KC-CCA2 adversary A against TR-PKAE, we can construct al-
gorithms B1 and B2 with run-time O(Time(A)) such that AdvIND-KC-CCA2

A ,TR-PKAE (k) ≤
1
2AdvSUF-CMA

B1,DSone
(k) + AdvIND-CCA2

B2,PKE (k).

—Given an IND-RTR-KC-CCA2 adversary A against TR-PKAE, we can
construct algorithms B1 and B2 with run-time O(Time(A)) such that
AdvIND-RTR-KC-CCA2

A ,TR-PKAE (k) ≤ 1
2AdvSUF-CMA

B1,DSone
(k) + AdvIND-ID-CCA

B2,IBE (k).

—Given a RUF-CTXT adversary A against TR-PKAE that makes qe encryption
queries, we can construct algorithms B1 and B2 with run-time O(Time(A))
such that AdvRUF-CTXT

A ,TR-PKAE(k) ≤ qe · AdvSUF-CMA
B1,DSone

(k) + AdvSUF-CMA
B2,DS (k).

—Given a TUF-CTXT adversary A against TR-PKAE that makes qe encryption
queries, we can construct algorithms B1 and B2 with run-time O(Time(A))
such that AdvTUF-CTXT

A ,TR-PKAE(k) ≤ qe · AdvSUF-CMA
B1,DSone

(k) + AdvSUF-CMA
B2,DS (k).

PROOF. The proofs of IND-KC-CCA2 and IND-RTR-KC-CCA2 are very sim-
ilar to the [SKIE-OTRU ⇒ TR-PKE] proof of Theorem 3.1 (found in full in
Appendix 7.2) and, thus, here we concentrate on the main ideas.

To show that the scheme is secure against IND-KC-CCA2, whenever adver-
sary A makes a decryption query, we decrypt s1 using the IBE master secret
(after having verified the signatures) and forward c2 for decryption to the PKE
oracle. During the challenge phase, we pick s1 at random, compute c1 and
submit s2,1 = m1 ⊕s1 and s2,2 = m2 ⊕s1 along with VK as the challenge parame-
ters to the PKE challenger which encrypts one of s2,i. We return the resulting
complete ciphertext (with all required signatures) to A . Now suppose that the
adversary submits a ciphertext (different from the challenge one) for decryp-
tion after the challenge. If the VK in the submitted ciphertext is the same as
in the challenge, then either the adversary submits the challenge ciphertext
(which is an invalid query) or he breaks SUF-CMA of the one-time signature
scheme (in which case we return a random bit to PKE challenger). Otherwise,
since VK is different from the challenge one, we can use the PKE decryption
oracle without being forced to submit the challenge ciphertext that was re-
turned by the PKE challenger. If A can guess which message was encrypted,
then we automatically guess which message was encrypted by the PKE during
the challenge, thus breaking IND-CCA2 security of PKE. Noting that, in case
of SUF-CMA break, we win against the PKE with probability 1/2, the stated
reductions follow.

To show that the scheme is secure against IND-RTR-KC-CCA2, note that 1)
the token queries correspond to Extract queries in underlying IBE, and 2) for
decryption queries we can use (to decrypt s1) the IBE decryption oracle (where
s2 can be decrypted using the private key provided by the adversary). Also, dur-
ing the challenge, we submit corresponding challenge to IBE similarly to the

5The PKE can be constructed from the IBE.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 16 · J. H. Cheon et al.

IND-KC-CCA2 approach. Once again, if after the challenge the (valid) decryp-
tion query submitted by the adversary has the same VK as in the challenge,
then we break the SUF-CMA of the one-time signature (in which case we re-
turn a random bit). Otherwise, we can use the IBE decryption oracle even
after the challenge. If the adversary manages to guess correctly which mes-
sage was encrypted in the challenge, we automatically guess which message
was encrypted by the IBE challenger, thus breaking IND-ID-CCA security of
IBE. Reduction analysis stays the same as in the previous case.

The proofs of RUF-CTXT and TUF-CTXT are straightforward. Since RUF-
CTXT security automatically implies TUF-CTXT [An 2001], we are left with
a proof of RUF-CTXT security, where the adversary knows the timed-release
secret but no longer knows the sender’s secret key. The adversary has access
to the encryption oracle where he can submit any m, T and pkb . In the end, he
returns the secret receiver key sk∗

b , time T∗, and ciphertext c∗, which should
contain the sender’s authentication. If the adversary manages to generate a
new sender’s signature in the returned ciphertext (either with the new input
or a different signature with one of the inputs used during encryption queries),
then we break the SUF-CMA security of the DS. Otherwise, the VK∗, T∗, c∗

1,
c∗

2, c∗
3, and pk∗

b in the returned ciphertext should be the same as in one of the
ciphertexts returned by the encryption oracle. Thus, if the returned ciphertext
is different from the ones returned by the encryption oracle, the adversary
has to break SUF-CMA of the one-time signature in order to win. The stated
reductions follow easily.

4.2 TR-PKEgen: Generic TR-PKE

To obtain generic TR-PKEgen, we can simply remove the parts in the TR-
PKAEgen description where the sender signs with his secret key, i.e., users
no longer have to generate their signing/verification keys, and we remove c3

from the construction while leaving everything else intact. The proofs and the
reductions stay the same as in TR-PKAEgen, with obvious modifications.

THEOREM 4.2.1. The generic TR-PKEgen construction is secure against
IND-CCA2 and IND-RTR-CCA2 attacker provided that the IBE is IND-ID-
CCA-secure, PKE is IND-CCA2-secure and the underlying one-time signature
is SUF-CMA-secure.

5. TR-PKAEBF: TR-PKAE BASED ON A SINGLE PRIMITIVE

The generic construction TR-PKAEgen provides TR-PKAE with all required se-
curity. However, below we show how to construct a TR-PKAE that satisfies all
of the above security requirements with the exception that RUF-CTXT is re-
placed by RUF-TR-CTXT, which is based on a single primitive and is nearly as
efficient as BF-IBE scheme [Boneh and Franklin 2003]. We argue that in prac-
tical applications RUF-TR-CTXT is sufficient since the ciphertexts are submit-
ted before designated time. Moreover, it is desirable for modern authenticated
encryption to have one primitive that achieves the desired security proper-
ties [Boyen 2003]: such solutions generally allow for a more efficient scheme,

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 17

tighter security bounds and more stringent security. We start with a review of
the Bilinear Diffie-Hellman Problem.

5.1 Bilinear Diffie-Hellman Problem

Let G1 and G2 be two abelian groups of prime order q. We will use additive
notation for the group operation in G1 (where aP denotes P added a times for
P ∈ G1, a ∈ Zq) and multiplicative notation for G2 (ga denotes the g multiplied
a times for g ∈ G2, a ∈ Zq). Let e : G1 × G1 → G2 be an admissible bilinear
map [Boneh and Franklin 2003]. The properties of the groups and construc-
tions of e are explained in detail in [Boneh and Franklin 2003].

Let G be a Bilinear Diffie-Hellman (BDH) Parameter Generator [Boneh and
Franklin 2003], i.e. a randomized algorithm that takes positive integer input k,
runs in polynomial time in k and outputs prime q, descriptions of G1, G2 of or-
der q, description of admissible bilinear map e : G1 × G1 → G2 along with poly-
nomial deterministic algorithms for group operations and e computations. The
advantage of algorithm A in solving the computational BDH Problem (BDHP)
for G is defined as follows:

Advcbdh
A ,G (k) = Pr[〈q, G1, G2, e〉 ← G(1k), P ←R G1, a, b , c ←R Z∗

q :

A(q, G1, G2, e, P, aP, b P, cP) = e(P, P)abc] (1)

We say that G satisfies the computational BDH Assumption if for any ran-
domized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advcbdh

A ,G (k) < 1/f (k) for sufficiently large k.
The advantage of algorithm A in solving the decisional BDHP [Boneh and

Boyen 2004] for G is defined as follows:

Advdbdh
A ,G (k) = | Pr[A(q, G1, G2, e, P, aP, b P, cP, e(P, P)abc) = 0]

− Pr[A(q, G1, G2, e, P, aP, b P, cP, T) = 0]| (2)

where the probabilities are taken over the experiment that draws 〈q, G1,

G2, e〉 ← G(1k); P ←R G1; a, b , c ←R Z∗
q; and T ←R G2.

We say that G satisfies the decisional BDH (DBDH) Assumption if for any
randomized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advdbdh

A ,G (k) < 1/f (k) for sufficiently large k.
We also introduce a decisional tripartite Diffie-Hellman (decisional TDHP)

problem. A similar problem in the asymmetric setting was introduced in
Laguillaumie et al. [2005]. In this problem the adversary is given once again
the parameters generated by G, random aP, b P, cP ∈ G1 and T ∈ G1. The ad-
versary has to decide if T = abcP. Even though decisional Diffie-Hellman is
easy in G1

6, it is still hard to compute ab P and the bilinear map appears to be
of little help in making the decision in TDHP. The advantage of algorithm A
in solving the decisional TDHP for G is defined as follows:

Advdtdh
A ,G (k) = | Pr[A(q, G1, G2, e, P, aP, b P, Q, ab Q) = 0]

− Pr[A(q, G1, G2, e, P, aP, b P, Q, T) = 0]| (3)

6Given random aP, b P, Q ∈ G1, one can check if Q = ab P by verifying equality e(aP, b P) = e(Q, P).

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 18 · J. H. Cheon et al.

where the probabilities are taken over the experiment that draws
(q, G1, G2, e) ← G(1k); P, Q ←R G1; a, b ←R Z∗

q; and T ←R G1.
We say that G satisfies the decisional TDH (DTDH) Assumption if for any

randomized polynomial-time algorithm A and any polynomial f ∈ Z[x] we have
Advdtdh

A ,G (k) < 1/f (k) for sufficiently large k.
Note that DTDH assumption is stronger than DBDH. Namely, hardness

of DTDH problem easily implies hardness of DBDH problem. The converse,
however, is unknown.

Before we move on to the constructions, we must make a few final remarks.
First, computational BDHP is harder than decisional BDHP. Second, hardness
of computational BDHP automatically implies hardness of the computational
Diffie-Hellman problem (CDHP) in G1 and G2. Also, hardness of the discrete
logarithm problem (DLP) in G1 implies hardness of DLP in in G2 [Menezes
et al. 1993]. However, we must remind the reader that the decisional Diffie-
Hellman problem is easy in G1.

5.2 Description of the Scheme

Let G be a BDH Parameter Generator. Figure 5 gives a complete description of
our construction.7 The symmetric encryption scheme used is a straightforward
adaptation of the Fujisaki-Okamoto scheme [Fujisaki and Okamoto 1999]. We
briefly demonstrate the consistency of the scheme before moving on to security
considerations. Given ciphertext c = 〈Q1, Q2, σ ⊕ K, m ⊕ H5(σ)〉 computed
using ska, pkb and T, we note that in the corresponding Decrypt computations
we have 1) K̂ = K since e(Q2 + pka, sPT +skb · Q1) = e(r2 P+skaP, sPT +skb ·r1 PT)
= e([r2 + ska]P, [s + r1 · skb]PT) = e([s + r1 · skb]P, [r2 + ska]PT) = e(Ppub + r1 ·

pkb , [r2 + ska]PT), 3) as in Fujisaki-Okamoto, it follows that σ̂ = σ , m̂ = m
and 4) Q1 = H3(σ̂ , m̂)PT and Q2 = H4(σ̂ , m̂)P. Thus the original plaintext
is retrieved.

5.3 Security of the Scheme

The following security results apply to TR-PKAEbm. The hash functions are
modeled as random oracles [Bellare and Rogaway 1995]. Below we sketch
the main ideas used in the proofs of IND-RTR-KC-CCA2 (receiver timed-
release confidentiality) and RUF-TR-CTXT (receiver timed-release unforge-
ability), and refer the reader to Appendix A for full details. The proofs of
IND-KC-CCA2 and TUF-CTXT are more straightforward and are given in Ap-
pendix B. First, we note the confidentiality properties of the proposed scheme.

THEOREM 5.3.1. [IND-RTR-KC-CCA2] Let A be an IND-RTR-KC-CCA2
adversary that makes qd decryption queries, q2 queries to H2 and qtok queries
to TG. Assume that AdvIND-RT R-KC-CCA2

A ,T R-PK AEbm
(k) ≥ ε. Then there exists an al-

7As in Boneh and Franklin [2003], we can weaken the surjectivity assumption on hash function
H1. The security proofs and results will hold true with minor modifications. We skip the details
and refer the reader to Boneh and Franklin [2003].

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 19

Fig. 5. The TR-PKAEbm scheme.

gorithm B that solves computational BDHP with advantage Advcbdh
B,G (k) ≥

1
4q2 ·max(q2,qd)

[
ε

e·(1+qtok)

]3
and running time O(Time(A)), where e = 2.71828....

PROOF. Below we sketch the main idea of the proof. Let a′P, b ′ P, c′ P be
the BDH parameters and our goal is to compute e(P, P)a′b ′c′

. Since the ad-
versary should know the sender’s private key, we set ska = a ∈ Z∗

q and
make it public. Let us write the bilinear map in the challenge ciphertext as
e(Ppub + r1 · pkb , (r2 + a)PT) = e(Ppub + r1 · pkb , r2 PT) · [e(Ppub , PT)e(pkb , Q1)]a.
Note that, given a, anyone can compute the part [e(Ppub , PT)e(pkb , Q1)]a. On
the other hand, when we examine e(Ppub + r1 · pkb , r2 PT), we note that we can
use the adversary to solve a useful problem only if we do not know either r1 or
r2 during the challenge. However, even if the adversary manages to compute
the bilinear map (which we could not compute), it may not be trivial to extract
pkb from the bilinear map with the goal of solving BDHP. Let us set Ppub =
sP = b ′ P and suppose during the challenge time T we set PT = c′P (essentially
the only time for which we cannot compute token sPT). Let us choose r1 in the
normal way, but set Q2 = r2 P = a′P. Then the interesting portion of the chal-
lenge bilinear map becomes e(Ppub + r1 · pkb , r2 PT) = e(b ′P, a′c′ P)e(pkb , r2 PT)r1 .
Note that even if the adversary manages to compute this value we still cannot

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 20 · J. H. Cheon et al.

get rid of pkb . However, let us run the simulation once again with the same
random tapes, except that 1) the simulator’s random tape changes right after
the challenge ciphertext has been generated, and 2) in the challenge ciphertext
everything stays the same as in the previous simulation except that r1 is a dif-
ferent random number. Then if the adversary manages to compute a challenge
bilinear map again, we will obtain the value of e(b ′ P, a′c′P)e(pkb , r2 PT)r′

1 where
r1 #= r′

1. Using e(b ′ P, a′c′P)e(pkb , r2 PT)r1 and e(b ′ P, a′c′ P)e(pkb , r2 PT)r′
1, we can

easily extract e(b ′P, a′c′ P) and thus solve the BDHP.

THEOREM 5.3.2. [IND-KC-CCA2] Let A be an IND-KC-CCA2 adversary
that makes q2 queries to H2. Assume that AdvIND-KC-CCA2

A ,T R-PK AEbm
(k) ≥ ε. Then

there exists an algorithm B that solves computational BDHP with advantage
Advcbdh

B,G (k) ≥ 2ε
q2

and running time O(Time(A)).

The proposed protocol also satisfies the authentication properties specified
in the previous section, i.e., TUF-CTXT and RUF-TR-CTXT.

THEOREM 5.3.3. [RUF-TR-CTXT] Let A be a RUF-TR-CTXT adversary
that makes qe encryption queries, q2 queries to H2, and qtok queries to TG,
and let AdvRUF-T R-CT X T

A ,T R-PK AEbm
(k) ≥ ε. Then there exists an algorithm B with com-

putational BDHP advantage Advcbdh
B,G (k) ≥ ε

2·q2 ·qe·e·(1+qtok) and running time

O(Time(A)), where e = 2.71828....

PROOF. Below we sketch the main idea of the proof. Let a′ P, b ′ P, c′ P be the
BDH parameters and our goal is to compute e(P, P)a′b ′c′

. Suppose the adver-
sary manages to compute correctly a bilinear map using the adaptively cho-
sen receiver’s secret key b and time T. In this case, it can compute the bi-
linear map e(Ppub + r1 · b P, (r2 + ska)PT), where now the adversary no longer
knows ska. Let us rewrite the bilinear map as e(Ppub + r1 · b P, (r2 + ska)PT) =
e(Ppub , skaPT) · [e(Ppub , r2 PT) · e(Q2 + pka, Q1)b]. The second part of the bilin-
ear map is easily computed using information provided by the adversary and
the actual value of r2 (obtained from the random oracles). To solve BDHP we
can use the first part e(Ppub , skaPT) to our advantage by setting Ppub = b ′ P,
pka = a′P and PT = c′ P (as before, essentially the only time we cannot com-
pute token sPT). In that case, if the adversary computes the bilinear map, we
automatically obtain the value e(b ′ P, a′c′P), i.e., the solution to BDHP.

THEOREM 5.3.4. [TUF-CTXT] Let A be a TUF-CTXT adversary that makes
qe encryption queries and q2 queries to H2, and let AdvTUF-CT X T

A ,T R-PK AEbm
(k) ≥ ε. Then

there exists an algorithm B with computational BDHP advantage Advcbdh
B,G (k) ≥

ε
2·qe·q2

and running time O(Time(A)).

6. TR-PKESTD: TR-PKE IN THE STANDARD MODEL

The generic TR-PKEgen construction can be shown to be secure in the standard
model provided that the underlying primitives are also secure in the standard
model. Although efficient and secure (in the standard model) PKE and signa-
ture schemes do exist, until recently all efficient IBE constructions were shown
to be IND-ID-CCA-secure only in the random oracle model. The first efficient

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 21

and fully secure IBE was constructed by Waters [2005]: the construction used
a reduction from chosen-plaintext secure 2-level HIBE [Gentry and Silverberg
2002; Horwitz and Lynn 2002; Boneh et al 2005; Boyen and Waters 2006] (con-
structed using a semantically secure IBE from the same paper [Waters 2005]8)
to fully secure IBE using the techniques in Boneh et al. [2006]. Following this
work, Kiltz and Galindo [2006] and Kiltz [2006] directly constructed the first
efficient IBE scheme secure in the standard model without use of the HIBE
reduction and instead combining the basic IBE scheme of Waters [2005] with
techniques first described in Cramer and Shoup [1998]. More precisely, Kiltz
and Galindo [2006] and Kiltz [2006] constructed a secure identity-based key
encapsulation scheme [Cramer and Shoup 2003], which, together with the hy-
brid construction technique proposed in Shoup [2000], can be used to construct
efficient and secure IBE in the standard model.

In this section we give an example TR-PKE scheme in the standard model
which uses the same approach as in TR-PKAEbm. The scheme presented here
is secure against adaptive IND-CCA2 for TR-PKE and secure against non-
adaptive IND-RTR-CCA,9 given hardness of the decisional BDHP. The dif-
ference between IND-RTR-CCA2 and IND-RTR-CCA is that in the latter the
adversary no longer has access to decryption/token oracles once the challenge
ciphertext has been generated. Granted that this is a weaker attack, in many
practical scenarios this notion still provides sufficient security. Moreover, there
is evidence of adaptive IND-RTR-CCA2 security for the proposed scheme, al-
though reducing it to well-accepted standard hardness assumptions appears to
be challenging. More precisely, we also show that the scheme is secure against
adaptive IND-RTR-CCA2 provided decisional TDHP is hard.

The scheme presented here is an adaptation of the scheme in Kiltz and
Galindo [2006]. In addition to hardness of decisional BDHP (and decisional
TDHP for adaptive IND-RTR-CCA2), we also require existence of a target
collision-resistant hash function h : G1 → Zq which can be efficiently built as
shown in Boyen et al. [2005]. Briefly, for any polynomial-time A, Advtcr

A,h(k) =
Pr[x ← G1, y ← A(x) : h(y) = h(x) ∧ y #= x] should be negligible, i.e., given
random x ∈ G1 it should be hard to find y #= x such that h(x) = h(y). Note
that if h is injective (which is possible since both G1 and Z q are of order
q) then it trivially satisfies this requirement. However, in practice standard
cryptographic hash functions can also be used. We approach construction of
TR-PKEstd as follows: first we construct a timed-release key encapsulation
scheme and then we use the approach given in Shoup [2000] to provide fully
functional encryption.

6.1 Description of the Scheme

Let G be a BDH Parameter Generator. Figure 6 gives a complete description of
the key encapsulation scheme for TR-PKEstd.10 The encapsulation scheme is

8The construction was later improved in Naccache [2005] and Chatterjee and Sarkar [2005].
9i.e., timed-release security against the receiver under “lunchtime” chosen-ciphertext attacks.
10If only IND-RTR-CCA and IND-CCA2 are required, then one can simplify the encapsulation
scheme further as follows: 1) generator P3 is no longer required and the public key now is simply

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 22 · J. H. Cheon et al.

very similar to that given in Kiltz and Galindo [2006] and therefore we refer
the reader to the previous work for a consistency proof. Note that if any part
of encapsulation is inconsistent, then decapsulation will produce a random
result [Cramer and Shoup 2003; Kiltz and Galindo 2006]. More precisely, the
following are the modifications to Kiltz and Galindo [2006]:

—The public key of the timed-release server is sP as in Waters [2005] (with pri-
vate key sP2), which is the same as Kiltz and Galindo [2006] except that they
slightly simplify it. In addition to that, each receiver has a public/private key
pair constructed in the same way, i.e., a receiver has public key (b P, b P3)
and private key b P2 where b P3 is used only for key verification. We de-
note PT = H(T) = U ′ +

∑
i TiVi to be the hash of T rather than the identity,

constructed in the same way as in Waters [2005].

—To encrypt for time T, we simply add the public keys sP of timed-release
server and b P of receiver and encapsulate for time T the same way as Kiltz
and Galindo [2006] encapsulates for identity PT = H(T) with the public key
sP + b P.

—To decapsulate, the secret information needed in Kiltz and Galindo [2006] is
the identity decryption key {sP2 + tH(T), tP}. In our case, this information
will be published by the Timed-Release server on date T. However, this is
insufficient since the encapsulation was done using sP + b P and not simply
sP as the public key. This can be easily overcome by having receiver add
b P2 (his secret key) to sP2 + tH(T) and obtain {(sP2 + b P2) + tH(T), tP} which
is exactly the decryption key that would be required in Kiltz and Galindo
[2006] to decapsulate information that was encapsulated using sP + b P.

—To provide security against adaptive IND-KEM-RTR-CCA2, (receiver timed-
release confidentiality) we also slightly modify what goes inside the crypto-
graphic hash function h. In Kiltz and Galindo [2006], the authors used h(rP).
In our case, we use h(rPT + b P) which makes it harder for an adversary to
launch successful adaptive attacks.

6.2 Security of the Scheme

The security proofs are modifications of Waters [2005] and Kiltz and Galindo
[2006] and are provided in Appendix C, where we discuss the relevant modi-
fications and reduction analysis. The proofs are given with respect to notions
IND-KEM-CCA2 and IND-KEM-RTR-CCA which are defined almost identi-
cally to IND-CCA2 and IND-RTR-CCA except that decryption queries are
replaced by decapsulation queries; and during the challenge we compute an
encapsulation and choose at random whether to give the adversary the encap-
sulated key or a random key; the adversary’s goal is to decide which key was
given.

b̂ P; 2) instead of h(rPT + pk1), one can compute h(rP) with corresponding modifications in the
decapsulation. One can show that the resulting encapsulation scheme is IND-KEM-RTR-CCA
and IND-KEM-CCA2-secure. Using Shoup’s hybrid approach [Shoup 2000], the resulting TR-PKE
scheme is IND-RTR-CCA and IND-CCA2-secure. This saves two bilinear maps in the encryption,
but the encapsulation scheme is demonstrably insecure against adaptive IND-KEM-RTR-CCA2.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 23

Fig. 6. The TR-PKEstd key encapsulation scheme in the standard model.

Below we sketch the proof of receiver timed-release confidentiality IND-
KEM-RTR-CCA (and IND-KEM-RTR-CCA2 given hardness of decisional
TDHP). One notable (but expected) property is that due to the extra binding
in users’ public keys, the decryption oracle in the simulation given in the proof
no longer requires a receiver’s private key.

THEOREM 6.2.1. The TR-PKEstd encapsulation scheme is IND-KEM-RTR-
CCA secure, assuming that h is a target collision-resistant hash function and
the decisional BDHP is hard. Moreover, the scheme is IND-KEM-RTR-CCA2-
secure assuming also hardness of decisional TDHP.

More precisely, let A1 (resp, A2) be a IND-KEM-RTR-CCA (resp, IND-KEM-
RTR-CCA2) adversary for TR-PKEstd, with polynomial running time t(k), that
makes p(k) decryption queries and has non-negligible advantage ε(k). Then
there exist adversaries Abdh, Ahash, and A tdh such that

(1) AdvIND-KEM-RTR-CCA
A 1,TR-PKEstd

(k) ≤ 2
λ
Advdbdh

A bdh,G(k) + 4p(k)
qλ

+ 2Advtcr
A hash,h(k)

(2) AdvIND-KEM-RTR-CCA2
A 2,TR-PKEstd

(k) ≤ 2
λ
Advdbdh

A bdh,G(k) + 4p(k)
qλ

+ 2Advtcr
A hash,h(k) +

2
λ
Advdtdh

A tdh,G(k)

Where λ = 1
4(n+1)p(k) , Time(Abdh) = O(t(k) + ε−2(k) log ε log λ/λ + p(k)),

Time(Ahash) = O(t(k)), and Time(A tdh) = O(t(k)).

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 24 · J. H. Cheon et al.

PROOF. (Sketch) Let aP, b P, cP, K be a DBDHP challenge, i.e., with equal
probability K is random or K = e(P, P)abc. Due to the similarity between
our scheme and that of Kiltz and Galindo [2006], most of the proof features
carry over without significant changes. In particular, we set the system
parameters so that L1 = aP and L2 = −h(cP) · aP + d · P (for random d),
Q = sP2 = b L1 = ab P are constructed the same way.11 To suit this setup, we
set P2 = α · b P (for random α), Ppub = sP = α−1 · aP and P3 = b P. Also the
distribution of U ′, V is constructed the same way as in the previous proof, so
H(T) = PT = x(T)P + y(T)L1, where the simulator knows x(T) and y(T).

As in Kiltz and Galindo [2006], we immediately abort (returning a random
bit) when y(T) = 0 mod q during token queries, or when y(T∗) #= 0 mod q for
challenge time T∗. We follow the same technique for answering token queries
as in Kiltz and Galindo [2006]. During decapsulation query after the challenge
with T #= T∗, we safely assume that a token query has been made for T and
thus y(T) #= 0 mod q in such cases. If the simulation did not abort, at the end
we compute whether ArtAbort, or artificial abort, should be signaled using
sampling as in Kiltz and Galindo [2006]. To do so, the simulator computes, by
sampling, the probability that either y(T) = 0 mod q during token queries or
y(T∗) #= 0 mod q happen, keeping the adversarial view of the game the same
as in the current game trace but varying other parameters. When ArtAbort
is signaled, the simulator aborts and returns a random bit. The need to
replicate this portion of the simulation introduces the dependence on ε(k) in
the runtime of Abdh.

The decapsulation queries are carried out similarly to Kiltz and Galindo
[2006] except that now the adversary also submits receiver private key b̂ P2

(which is added to the token if needed). Suppose the adversary submits tuple
(T, C = {C1, rP, rPT}) with consistent C to decapsulation oracle. There are two
modifications that are introduced by our scheme, one is a new event and the
other one is a technical modification:

—If cP = rPT + b̂ P and y(T) = 0 mod q, then we mark this event as CoAbort
and abort returning a random bit.

—If h(cP) #= h(rPT + b̂ P), we return

K = e(C1 − d · rP, b P)(h(rPT +b̂ P)−h(cP))−1
· e(rP, b̂ P2) .

The challenge ciphertext is computed once again similarly to Kiltz and
Galindo [2006], but a few technical modifications are made due to the
presence of the receiver public key submitted by the adversary. Given
challenge time T∗ and public key {b̂∗ P, b̂∗ P3 = b̂∗ · b P}, the challenge
ciphertext is computed as follows (if y(T∗) #= 0 mod q we abort return-
ing a random bit). We choose cP = r∗ PT∗ + b̂∗ P, and create challenge

11One slight difference is that we use Q = sP2 (with the public information Ppub = sP), the
approach used by Waters. This does not affect the proof.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 25

ciphertext {d · cP−b̂ ∗ P
x(T∗) , cP−b̂ ∗ P

x(T∗) , cP − b̂∗ P} with corresponding session key

K∗ = K1/x(T∗) · e(b̂∗ P, P2)(c−b̂ ∗)/x(T∗) · e(−aP, b̂∗ · b P)1/x(T∗). Note that e(b̂∗ P,

P2)(c−b̂ ∗)/x(T∗) = e(P,α · b̂∗b P)(c−b̂ ∗)/x(T∗) = e((c − b̂∗)P,α · b̂∗b P)1/x(T∗).
Finally, we return to the DBDHP challenger the output of A .
We note that if we consider a non-adaptive adversary, the analysis of the

CoAbort event is the same as in Kiltz and Galindo [2006], i.e., since the ad-
versary obtains no information on cP until the challenge the probability that
CoAbort occurs is less than 2p/q. Consequently, all the analysis made in Kiltz
and Galindo [2006] carries over automatically and IND-KEM-RTR-CCA
security follows. The main thing to notice is that if in the DBDHP challenge,
K is in fact the solution to the computational BDHP, then the challenge
ciphertext is correct including the returned encapsulated key. If instead K is
random then so is the returned encapsulated key. Thus, if the adversary can
tell a random challenge encapsulated key from a real one, we will be able to
solve decisional BDHP.

To show that the scheme is IND-KEM-RTR-CCA2 secure given hardness of
decisional TDHP, we note that in the above scheme we only need to address
the case when event CoAbort happens after the challenge. In this case, the
adversary finds rP, rPT∗ , b̂ P, b̂ P2, b̂ P3 such that r∗ PT∗ + b̂∗ P = rPT∗ + b̂ P and
b̂ #= b̂∗.12 Rewrite the equation as r∗ PT∗ + (b̂∗ − b̂)P = rPT∗ . Let ζ P, νP, R, T be
a DTDH challenge where we have to decide if T = ζ νR. We start with the real
IND-KEM-RTR-CCA2 game and change it as follows: we set U ′, V to random
multiples of ζ P and P3 = R; in particular given any PT we know κ such that
κ · ζ P = PT . Other than that the rest of the simulation proceeds exactly as
in the real game. According to the above, we have r∗ PT∗ + (b̂∗ − b̂)P = rPT∗ ,
or equivalently κ · r∗ζ P + (b̂∗ − b̂)P = κ · rζ P for some known κ . Dividing

both sides by ζ , we obtain that we can compute (b̂ ∗−b̂)
ζ

P. Next we compute

A1 = e((b̂ ∗−b̂)
ζ

P, T) and A2 = e((b̂∗ − b̂)R, νP), since R = P3 and b̂∗ P3 and b̂ P3

are part of the public keys. If and only if A1 = A2, then T = ζ νQ: indeed, if
T = ζ νQ, then A1 = e((b̂∗ − b̂)P, νR) = e((b̂∗ − b̂)R, νP) = A2. Therefore we
can solve decisional TDHP instances with exactly the probability of the event
CoAbort after the challenge.

The proof of the Theorem 6.2.2 below is more straightforward and we refer
the reader to Appendix C.

THEOREM 6.2.2. The TR-PKEstd encapsulation scheme is IND-KEM-CCA2
secure under the assumption that h is a target-resistant collision hash function
and the decisional BDHP is hard.

12As a side note, one can easily show there can be only one such distinct query and rewinding
the experiment, such that behavior changes only once A has submitted challenge parameters, will
not change the value of b̂ , for otherwise we will be able to solve the computational Diffie-Hellman
problem in G1.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 26 · J. H. Cheon et al.

Table I. Cost of Basic Operations

Function Modulus (bits) Exponent (bits) Performance (msec)
RSA(Sig/Dec) 1024 1024 2.96
RSA(Ver/Enc) 1024 16 (e = 216 + 1) 0.14
Scalar Mul in EC over F p 160 160 2.23
MapToPoint 512 - 1.52
Pairing 512 160 18.15

More precisely, if there exists IND-KEM-CCA2 adversary A with polynomial
running time t(k) that makes p(k) decapsulation queries and has advantage
ε(k), then there exist adversaries Abdh and Ahash such that

AdvIND-KEM-CCA2
A ,T R-PKEstd

(k) ≤
2

λ
(Advdbdh

A bdh,G(k) + 2p/q) + 2Advtcr
A hash,h(k) ,

where λ = 1
4(n+1)p(k) , Time(Abdh) = O(t(k) + ε−2(k) log ε log λ/λ + p(k)) and

Time(Ahash) = O(t(k)).

The following corollary is a direct application of Theorem 1 given in Shoup
[2000].

COROLLARY 1. Using Shoup’s hybrid scheme [Shoup 2000] and the encap-
sulation scheme for TR-PKEstd, we obtain a TR-PKE scheme secure against
IND-CCA2 and IND-RTR-CCA in the standard model, given the existence of
a secure pseudo-random bit generator, target collision-resistant hash function h
and the hardness of decisional BDHP. In addition, given the hardness of deci-
sional TDHP, the resulting TR-PKE scheme is secure against IND-RTR-CCA2.

7. DISCUSSION

In this article, we discussed several constructions of TR-PKE and TR-PKAE.
Fully secure generic constructions of TR-PKE require chosen-ciphertext se-
cure IBE, PKE and SUF-CMA-secure one-time signature scheme, while TR-
PKAE requires in addition a SUF-CMA-secure digital signature scheme. The
most efficient IBE schemes were constructed to be secure in the random oracle
model [Boneh and Franklin 2003]. Table I shows the cost of basic operations
involved in bilinear maps. The performance results were computed using Mir-
acl library v.4.8.3 [Shamus Software Ltd.] with Tate pairing for the bilinear
map and were all averaged over 10,000 runs, except that the RSA results were
obtained by running OpenSSL v.0.9.8 speed command. The group G1 was cho-
sen to be a subgroup of order q in a super-singular elliptic curve E over F p,
where p is a 512 bit and q is a 160 bit prime. Group G2 was a subgroup of a
finite field of order 1024 bits. We used a P4-3.2 GHz “Northwood” (800MHz
FSB) with 2GB of 400 MHz RAM desktop. Table II shows the comparison of
BF-IBE, Kiltz-Galindo’s IBE and single-primitive constructions of TR-PKAEbm

and TR-PKEstd proposed in this article. Note that TR-PKAEbm is only slightly

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 27

Table II. Complexity Comparison of Significant Operations

Function # Bilinear Maps # of Exp # of MapToPoint
BF-IBE Enc/Dec 1/1 2/0 1/0
TR-PKAEbm Enc/Dec 1/1 4/3 1/0
Kiltz-Galindo IBE Enc/Dec 0/3 5/5 0/0
TR-PKEstd Enc/Dec 1/3 5/5 0/0

more expensive than BF-IBE.13 When we switch to IBE in the standard model,
the encryption becomes less expensive while decryption is at least three times
slower compared to BF-IBE. Extending Kiltz-Galindo’s IBE to TR-PKEstd adds
additional bilinear map in the encryption14, while decryption complexity stays
the same. All these observations are natural since constructions in the ran-
dom oracle model are generally more efficient and allow for rich functionality
and extensions [Boyen 2003]. Efficient extensions of primitives in the standard
model are much more challenging. Moreover, there is a security trade-off when
one considers random oracles and the standard model: security in BF-IBE was
shown under computational BDH assumption, while security in the standard
model was under stronger decisional BDH assumption. If we make the even
stronger mBDDH assumption, then one can reduce the cost of decryption down
to two bilinear maps [Kiltz 2006].

7.1 Alternative Models for TR-PKE

Cathalo et al. [2005] introduced a slightly different model of timed-release pub-
lic key encryption, in which a receiver’s public key was bound to the public key
of timed-release server. The constructed scheme (without authentication) was
shown to be secure in the random oracle model, assuming hardness of Bilinear
Diffie-Hellman Inversion problem [Boneh and Boyen 2004], with similar effi-
ciency as the proposed TR-PKAEbm.15 However, binding the user’s public key
to a specific server violates our goal of separating timed-release servers from
users and does not allow the sender to choose which servers will be used. In ad-
dition, Cathalo et al. [2005] introduce a stronger game for IND-RTR-CCA2 in
which the receiver no longer supplies a private key during decryption queries.
While this models a very strong attack, it is not clear how realistic such game

13However, when BF-IBE is extended to provide comparable functionality to TR-PKAEbm, e.g.,
using generic constructions, we expect the resulting scheme to be at least as expensive in practice
as the proposed protocol.
14Since the user public key in the TR-PKEstd is independent of timed-release server, one can
assume that public keys are preverified. Otherwise additional two bilinear maps are needed to
verify consistency of public key. Moreover, one can precompute for a given sender and timed-
release servers such that no bilinear maps are required in the encryption (this also applies to
BF-IBE).
15Encryption requires verification of the receiver’s public key which takes two bilinear map com-
putations; provided verification can be done beforehand no bilinear map computation is needed in
the encryption. Moreover, ciphertext is shorter by one point of G1.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 28 · J. H. Cheon et al.

is, since in a real game the decryption oracle needs a receiver’s private key to
decrypt ciphertext.16

7.2 Extensions

The proposed TR-PKAEbm (and the TR-PKEstd along with generic TR-PKE/
TR-PKAE with well-known IBE constructions) allows for efficient use of timed-
release encryption using multiple independent servers. In TR-PKAEbm, given
public keys s1 P, ..., smP of m timed-release servers, the sender can simply en-
crypt using sP =

∑
j sij

P while the receiver decrypts using sPT =
∑

j sij
PT . In

this case, the receiver will be able to decrypt only when all chosen servers have
published their tokens. This approach enhances security for timed-release con-
fidentiality, since if the receiver fails to obtain even one token he will not be
able to obtain any information about the encrypted plaintext. However, if a
single chosen server fails, the receiver will not be able to decrypt at all. To ad-
dress robustness issues, one can easily adapt Pedersen’s distributed threshold
protocol [Pederson 1991], in which the servers will have to perform a brief ini-
tial setup among themselves which allows them to compute their secret keys
di such that given a threshold of di’s one can reconstruct the master secret d of
the group. After that, each server publishes diP and on day T publishes diPT .
Any user will be able to use this group of servers in a threshold manner by
noting that a user can compute dP (dPT) from any threshold number of diP’s
(diPT respectively) using Lagrange multipliers. As long as at least a threshold
number of servers publish their tokens, the receiver will be able to decrypt a
valid ciphertext. Also, as long as fewer than the threshold of servers cooperate,
the group master secret d stays secret. Note that using Lagrange coefficients,
in the TR-PKAEbm the added complexity in decryption is a threshold number
of multiplications/additions in G1, while encryption complexity stays the same
(provided dP is published along with the description of the group of servers).
Thus after the initial setup, the timed-release servers can function without
interaction. To reduce complexity of decryption, the servers can take the job
of computing dPT onto themselves in which case the complexity of decryption
is as in the base TR-PKAEbm. Similar techniques can be applied to the TR-
PKEstd in which now the servers split the master secret Q, while complexity
discussion stays the same as in TR-PKAEbm.

Finally, the timed-release schemes proposed here and in the literature, re-
quire that past tokens be stored in a repository in case a user attempts to
decrypt a message with designated time well in the past. As a result, the re-
quired storage for tokens grows linearly over time. Hierarchical IBE (HIBE)
schemes such as the one proposed by Boneh et al. [Boneh et al 2005], when

16The main issue here is that of knowledge: if no one knows the private key and/or the encrypted
plaintext, then decrypting without knowledge of the private key is unrealistic in the real game.
If the adversary is asking the oracle to decrypt some intercepted ciphertext for which it does not
know the private key, the adversarial ability to choose public keys is limited to those of existing
users’. Such situations can be modeled by a simple modification of the IND-RTR-CCA2 game in
which the challenger generates a random series of public/private key pairs and gives the public
keys to the adversary.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 29

used in the generic constructions, allow us to reduce the required token storage
to O(log3/2 T) at the expense of larger tokens (from which all previous tokens
can be derived) and encryption/decryption complexity, where T is an upper
bound on the number of time periods when tokens are published.

Appendix A. Full Proofs of Theorems 5.3.1 and 5.3.3

PROOF. [IND-RTR-KC-CCA2] Assume that we are given 〈q, G1, G2, e〉 (out-
put by G(1k)) and a random instance of BDH parameters 〈X , a′X , b ′ X , c′X 〉,
where X is a generator of G1. Below, we design an algorithm B that inter-
acts with A by simulating a real game for the adversary in order to compute
solution to BDHP e(X , X)a′b ′c′

.
We choose P = X . When hash functions H1, H2, ..., H5 are queried as ran-

dom oracles, B will store the returned value in its database coupled with the
query and repeated queries will retrieve answers from the database. The or-
acles H2, ..., H5 will return random answers, while the way queries to H1 are
handled will be specified later. Moreover, we also use a biased coin that with
probability θ > 0 returns 0 and otherwise returns 1. The optimal value of
θ maximizes the probability Pθ that simulation does not quit during token
queries or the challenge. We have Pθ ≥ θqtok · (1 − θ), where qtok is the num-
ber of token queries made by A , and the right-hand side is maximized when
θ = 1 − 1/(qtok + 1) with value Pθ ≥ 1

e·(1+qtok) , where e = 2.71828.... This value of

θ and Pθ will be used in the proof.
During Setup, B chooses Ppub = sP to be b ′ P and generates a random

sender’s private key ska = a ∈ Z∗
q. The adversary A is given the public pa-

rameters and the sender’s secret key ska.
When A makes a query to H1 for PT , B chooses random cT ∈ Z∗

q, flips the
biased coin and returns cT P if the coin outcome is 0. Otherwise, it returns
cT · c′P. When A makes a token query for tkn[T] = sPT , B queries H1, ob-
tains corresponding cT and 1) returns sH1(T) = cT(b ′P) if H1(T) = cT P, 2) fails
otherwise.

Consider decryption query prior to the challenge: A submits ciphertext
〈T, b , Q1, Q2, c1, c2〉, where b is the receiver’s secret key, pka is the sender, and
T, Qi, c1 and c2 carry the same meaning as in the previous proofs. In this case,
as before, B obtains r1 and r2 from the databases, which allows it to decrypt
correctly.

During the challenge, A chooses two equal-sized plaintexts m0,m1; public
key pkb ∗ ; and time T∗. If PT∗ = cT∗ P the simulator quits. It is assumed
that A did not query (nor will query in the future) for tkn[T∗]. For chal-
lenge ciphertext, B chooses arbitrary β ∈ {0, 1} and σ , and sets r2 = r∗

2 = a′

while the value of r1 = r∗
1 is computed in a normal way. Then it chooses the

value of the bilinear map at random and composes the resulting ciphertext
c∗ = 〈T∗, pkb ∗ , Q∗

1 = r∗
1 PT∗, Q∗

2 = a′ P, c∗
1, c∗

2〉.
After the challenge, A has a choice to continue queries or to reply to the

challenge. However, A is not allowed to query for decryption of c∗ using T∗ and
skb ∗ corresponding to pkb ∗ . Suppose A submits ciphertext 〈T, b , Q1, Q2, c1, c2〉

after the challenge. If PT = cT P, then B can compute the corresponding

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 30 · J. H. Cheon et al.

bilinear map and answer the query correctly. If PT = cT · c′ P, then we con-
sider two cases separately:

—If Q2 = Q∗
2, then we return false and enter the tuple (T, b) in the database

Daux. Note that for ciphertext to be valid we must have at least that Q1 =
r∗

1 PT and the bilinear map was computed correctly. Thus the simulator’s
response is incorrect only when the adversary made a query to H2 with the
correct value of the bilinear map constructed with the following parameters:
r1 = r∗

1, r2 = r∗
2, time T and the receiver’s secret key b .

—If Q2 #= Q∗
2, then we should be able to obtain the corresponding value of r2

and the input pair (σ, m) from the queries to H3. Likewise, we can obtain
the value of r1. Going through routine checks and noting that we can now
compute the correct value of the bilinear map, we can answer correctly the
decryption query.

We will run the above simulation twice. The second simulation is run using
the same random tape for the adversary and changing the random tape of
the simulator immediately after the adversary made the selection during the
challenge, but ensuring that the only possible difference in the challenge step
is in the value of r∗

1. After each simulation the following post-simulation steps
are taken:

—After the first simulation, 1) we pick at random a query Y1 that an adversary
made to H2 and a random pair (T, b) from database Daux, computing B1 =
(Y1/[e(Q∗

2 + aP, r∗
1 · b · PT) · e(b ′ P, aPT)])cT/cT∗ ; note that if Y1 is the correct

value of the bilinear map corresponding to r∗
1, r∗

2, T and b , then B1 is the
solution to BDHP; 2) we also pick at random a query F1 that an adversary
made to H2 (a possible value of the bilinear map used in the challenge) and
output the pair (F1, r∗

1,1), where r∗
1,1 is the value r∗

1 used in the challenge.

—After the second simulation, as in the first simulation, 1) we compute the
value of a possible solution to BDHP using adversarial queries to H2 and
database Daux, but we mark this value now as B2; 2) we pick at random a
query F2 that an adversary made to H2 (a possible value of the bilinear map
used in the challenge) and output the pair (F2, r∗

1,2), where r∗
1,2 is the value r∗

1
used in the challenge.

After both simulations have been run, we flip a coin. If the coin output
is “heads”, we pick at random either B1 or B2 as the solution to BDHP. If
the coin output is “tails”, we compute Z = (F1/F2)(r∗

1,1−r∗
1,2)−1

, then compute
Y = F1/[e(sP, aPT∗) · Z r∗

1,1] which is taken to power c−1
T∗ . The final result is

output as the solution to BDHP. Note that if Fi are indeed correct values of the
challenge bilinear maps used in the simulations, then Z = e(b P, (r∗

2 + a)PT∗),
Y = e(sP, r∗

2 PT∗) and the final result is indeed the correct value of the solution
to BDHP.

Note that the simulations above fail to be indistinguishable from the real
game when either the adversary makes a query to H2 with the correct value
of the challenge bilinear map, or when after the challenge the simulator incor-
rectly answers the decryption query (in the part where Daux is updated). On

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 31

the other hand, without making a query to H2 with the correct value of the
challenge bilinear map, the adversary cannot succeed more than with negligi-
ble probability.

Denote by P the probability that in a single run of the simulation either
the adversary makes a query to H2 with the correct value of the bilinear map
corresponding to some entry in Daux or corresponding to the challenge, and
the simulation does not fail due to the biased coin. Then P ≥ 2ε · Pθ . Using
well-known probabilistic lemma [Pointcheval and Stern 1996] (aka the forking
lemma), the probability that this event happens in both simulations is at least
(P/2)3. Given that in one of the simulations adversary makes a query to H2

with the correct value of the bilinear map corresponding to some entry in Daux,
probability that we output the solution to BDHP is at least P1 = 1

4·qd·q2
. Given

that in one of the simulations the adversary makes a query to H2 with the cor-
rect value of the bilinear map corresponding to the challenge in both simula-
tions, the probability that we output the solution to BDHP is at least P2 = 1

4·q2
2
.

It follows that the probability that the combined simulation above outputs cor-
rect solution to BDHP is at least (P/2)3 · min(P1, P2) ≥ 1

4q2 ·max(q2,qd) [ε · Pθ]3.

PROOF. [RUF-TR-CTXT] The preliminaries in this proof are the same as in
IND-KC-RTR-CCA2. More precisely, we are once again given BDH parameters
〈X , a′X , b ′X , c′X 〉, we set P = X , the oracles H2, ..., H5 return random answers,
and we use the same biased coin with the same value of θ which maximizes
probability Pθ that simulation does not quit during forgery and token queries.
Our goal is to compute e(X , X)a′b ′c′

.
During Setup, B chooses Ppub = sP to be b ′ P and sets pka = a′P. The adver-

sary A obtains public parameters and pka. In addition, B maintains database
Ds updated during encryption queries.

When A queries H1 for PT , B chooses random cT ∈ Z∗
q, flips the biased coin

and returns cT P if the coin outcome is 0. Otherwise, it returns cT · c′P. When
A queries for token sPT , B queries H1, obtains corresponding cT and returns
sH1(T) = cT(b ′ P) if H1(T) = cT P, 2), or the simulation fails and stops otherwise.

During encryption query, A submits T, m and b P. The simulator is expected
to output the encryption of m using a′ (sender) and b P (receiver). If PT = cT P,
B computes the ciphertext in a normal way. It chooses arbitrary σ , queries
H3 for r1, H4 for r2, and then queries H5 with input σ . Then it computes the
bilinear map as e(sP+r1 ·b P, r2 PT +aPT) by noting that aPT = a′ ·cT P = cT ·a′P.
The corresponding query is made to H2 and B returns resulting ciphertext. If
PT = cT · c′ P, B chooses σ and computes r2 in the normal way. Then it picks
random r′

1 and sets r1 PT = r′
1 P, updating appropriately the database of H2.

The value of bilinear map is chosen at random and the resulting ciphertext is
given to the adversary. The simulator enters the parameters (T, r2, r′

1, b P) in
database Daux.

Finally, either simulation halts or the adversary outputs forged ciphertext
c∗ = 〈Q∗

1, Q∗
2, T∗, c∗

1, c∗
2〉 and the receiver secret key b∗, which will be used for

verification. If PT∗ = cT∗ P, the simulation fails. The simulator flips a fair coin.
Next we describe what one does depending on the outcome of the coin: if the

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 32 · J. H. Cheon et al.

output is “tails” and the description below does not have data to proceed, then
the coin is set to “heads” and vice versa.

—If the coin outcome is “heads”, B picks a random entry (T, r2, r′
1, b P) from

database Daux, and picks at random a query Y that the adversary made
to H2. Then it computes Z = e(r1 · b P, (r2 + a)PT) = e(b P, (r2 + a) · r1 PT) =
e(r′

1 ·b P, r2 P+aP), computes Y/[e(sP, r2 PT) · Z], and takes the result to power

c−1
T . The final result is output as the solution to BDHP. Note that if Y was

the correct value of the bilinear map corresponding to (T, r2, r′
1, b P), then we

do obtain the solution to BDHP.

—If the coin outcome is “tails”, B picks at random a query Y that the adversary
made to H2. If r∗

2 for Q∗
2 was not found in database of H4, the simulation fails.

If the actual value of r∗
1 corresponding to Q∗

1 was found in the database of H4,
then B computes Z = e(sP, r∗

2 PT∗) · e(r∗
2 P + aP, r∗

1 · b · PT). Then it computes

(Y/Z)c−1
T∗ and outputs the result as the solution to BDHP. If no actual value

of r∗
1 was found and there exists an entry (T, r2, r′

1, b P) in Daux such that
r∗

1 = r1 (where r1 = r′
1/cT), then as in the “heads” case we can compute Z =

e(r∗
1 · b∗ P, (r∗

2 + a)PT∗) = e(b∗ P, (r∗
2 + a) · r∗

1 PT∗) = e(r′
1 · cT∗/cT · b∗ P, r∗

2 P + aP),

then compute Y/[e(sP, r∗
2 PT∗) · Z] and take the result to power c−1

T∗ producing
our solution to BDHP. Note that if Y was the correct value of the bilinear
map in the forgery, then we do obtain the solution to BDHP.

Note that the simulation fails to be indistinguishable from the real game
when the adversary makes a query to H2 with a real value of one of the bilinear
maps used in the encryption queries. However, in this case, the probability
that we output correct solution to BDHP is at least 1

2·q2 ·qe
. If no such query was

made and the forgery is correct then the probability that we solve BDHP is at
least 1

2·q2
.

Taking into account the probability of failure due to the biased coin and the
advantage ε of the adversary in the real game, we obtain that the probability
of outputting correct solution to BDHP is at least ε·Pθ

2·q2 ·qe
.

Appendix B. Proofs of Theorems 5.3.2 and 5.3.4

For completeness, below we show the proofs of IND-KC-CCA2 and TUF-CTXT
for the proposed single-primitive TR-PKAEbm. As in IND-KC-TR-CCA2 and
RUF-TR-CTXT, we are given 〈q, G1, G2, e〉 (output by G(1k)) and a random in-
stance of BDH parameters 〈X , a′X , b ′X , c′X 〉, where X is a generator of G1.
Our goal is to compute e(X , X)a′b ′c′

using the adversarial advantage in the real
games. Once again, we set P = X and random oracles H2, ..., H5 return random
answers, while the way queries to H1 are handled will be specified later.

PROOF. [IND-KC-CCA2] During Setup, B chooses random master secret s
and makes it public, receiver public key pkb = b ′ P, and random ska = a ∈R Z∗

q.
The adversary A , in addition to public parameters, receives s, ska, and pkb .
In addition, B maintains database L of possible values of e(P, P)a′b ′c′

updated
during decryption queries made after the challenge.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 33

When A queries H1 for PT , B samples cT ∈R Zk and returns PT = cT · P,
storing the query T in the database coupled with cT .

Consider the decryption query made by A before the challenge: A submits
ciphertext 〈T, Q1, Q2, c1, c2〉, where c1 denotes σ ⊕K, and c2 denotes m⊕ H4(σ),
Q1 represents r1 PT , Q2 represents r2 P, ska = a is the sender private key, and
T is the designated time. In this case, B goes through the oracle databases,
checks that relevant queries have been made, and that the ciphertext is con-
sistent. In particular, it can retrieve the message m and verify that the bilinear
map is the same as e(sP, (r2 + a)PT) · e([r2 + a] · b P, Q1) using retrieved r1, r2.
Should any step fail, false is returned. Otherwise, the message m is returned.

During selection, A chooses two equal-sized plaintexts m0,m1, and T = T∗.
To generate challenge ciphertext,

—B chooses arbitrary β ∈ {0, 1}, and assigns Q∗
1 = r∗

1 PT∗ = a′P, Q∗
2 = r∗

2 P = c′ P.
Then B chooses σ ∗, two random strings c∗

1 and c∗
2, and composes and returns

ciphertext c∗ = 〈T∗, Q∗
1, Q∗

2, c∗
1, c∗

2〉.

—Next, B updates the databases. For database of H3: B, instead of r∗
1, puts

Q∗
1 = r∗

1 PT∗ as a value (marked that it’s already multiplied by PT) and
(σ ∗, mβ) as the query. Similar steps are taken with respect to Q∗

2 and the
database of H4. Next, B puts mβ ⊕ c∗

2 as a value and σ ∗ as the query into
database of H5. If H1(T∗) was never queried, then the query is made. Fi-
nally, the database of H2 is instructed never to return the corresponding
value of K = K∗ = σ ∗ ⊕ c∗

1.

After the challenge ciphertext, A has a choice to continue queries or to reply
to the challenge. However, A is not allowed to query for decryption of c∗ using
T∗ chosen for the challenge. Now, when A submits ciphertext 〈T, Q1, Q2, c1, c2〉

for decryption, slightly different steps are carried out by B. First, B searches
for r1, r2 corresponding to Q1, Q2 in databases of H3, H4. If either one is not
found even in the form that we put during challenge, B simply returns false. If
Q1 = Q∗

1, Q2 = Q∗
2, T = T∗ we also return false.17 Otherwise,

—First suppose Q2 = Q∗
2. If Q1 = Q∗

1 and T #= T∗, then if we cannot find the
exact value of r1 in the databases we return false. Otherwise, we note that
r1 PT = cTr1 P = a′P which allows us to compute the solution to BDHP. If
Q1 #= Q∗

1, then we again return false if we cannot find the exact value of r1.
Otherwise, we can compute correctly the bilinear map used in the encryption
as e(sP+r1 ·b P, aPT +cT · Q2) and thus answer the decryption query correctly.

—Now suppose that Q2 #= Q∗
2. In that case, if exact value of r2 could not be re-

trieved, then false is returned. Otherwise, we can compute the bilinear map
as e((r2 +a)P, sPT)e((r2 +a) ·b P, Q1) and thus correctly answer the decryption
query.

In the end, the simulation may either halt or A returns β. If during the
above simulation we managed to compute the solution to BDHP, then that is

17Note that if c1 #= c∗
1, and adversary computed bilinear map correctly, then the correct query was

made to H2.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 34 · J. H. Cheon et al.

the value output by B. Otherwise, B outputs at random one of the queries that
the adversary has made to H2.

Note that if the simulation answers a decryption query incorrectly, then (up
to probability of guessing) the adversary will have made a query to oracle H2

with correct value of the challenge bilinear map, which will allow us to compute
solution to BDHP. Simple computations show that the resulting advantage is
at least 2ε/q2.

PROOF. [TUF-CTXT] During Setup, B generates random master secret s ∈

Z∗
q, sets public key of the receiver to be pkb = b ′ P, and the public key of the

sender to be pka = a′P. The adversary A receives public parameters, master
secret s, pka and pkb . In addition, B maintains database Ds updated during
encryption queries.

When A makes a query to H1 for PT , B chooses random cT ∈ Z∗
q and returns

cT(c′ P). Query T along with cT are stored and replies for repeated queries use
the database.

When A submits T and m for an encryption query, B chooses σ , r1, and r2

the same way as in the protocol. However, the value of the bilinear map is
chosen at random. Other than that, the ciphertext is formed in a normal way
and the databases are updated accordingly. Also B keeps the local database Ds

in which it enters the information about the inputs of the bilinear map, i.e.,
T and which r1,r2 were chosen.

Finally, either A returns forged ciphertext 〈T∗, Q∗
1, Q∗

2, c∗
1, c∗

2〉 or simulation
halts. Then B flips a coin. If Ds is empty and/or the adversary did not make
any queries to H2, then we reset the coin outcome to “tails”. If no forgery
was submitted then the coin outcome is changed to “heads”. If coin outcome is
“heads”, B picks a random entry from database Ds, and obtains corresponding
T, r1, r2. Then it picks the random adversarial query Y to H2 and computes
Y/[e(r2 P + aP, sPT) · e(r1 · b P, r2 PT)]]c−1

T r−1
1 , which is output as the solution to

BDHP. If the coin outcome is “tails”, B first obtains corresponding values of r1

and r2 since they had to be queried from H3 and H4. Then it extracts K = σ ⊕c∗
1

and looks up the query Y that was made to H2 and returned K. Then as in the
previous case, a candidate solution to BDHP is computed.

The above simulation fails to be indistinguishable from a real game if the
adversary correctly computed the bilinear map corresponding to one of the en-
cryption queries and then made the correct query to the H2 oracle. However,
in this case, with probability 1

2·qe·q2
, the simulation will output the correct so-

lution to BDHP. Otherwise, the simulation is indistinguishable from a real
game and if forgery is successful the simulation outputs the correct solution
to BDHP. It follows that the BDHP solution is output with a probability of at
least ε

2·qe·q2
.

Appendix C. Proof of Theorems 6.2.2 and 6.2.1

PROOF. [IND-KEM-CCA2] Let aP, b P, cP, K be DBDHP challenge, i.e., with
equal probability K is random or K = e(P, P)abc.

Set m = 2p (where p is the maximum number of adversarial queries). The
simulator randomly chooses x0, ..., xn in Zq, y′

0, y1, ..., yn in Zm, k in Zn+1, and

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 35

sets y0 = q − km + y′
0. Then set U ′ = x0 P + y0L1 and Vi = xiP + yiL1, i = 1, ..., n.

The simulator can compute PT as x(T)P + y(T)L1, where x(T) = x0 +
∑n

i=1 Tixi

and y(T) = y0 +
∑n

i=1 Tiyi. Note that distribution of U ′, V is indistinguishable
from random in the adversarial view.

Simulator B sets L1 = aP, L2 = −h(cP + b P) · aP + d · P for random d,
random s ∈ Zq. Also P2 = α · aP for random α, and P3 = β P for random β.
The adversary A obtains public parameters, Q = sP2 and receiver’s public key
{b P, b P3 = β · b P}.

Suppose tuple (T, C = {C1, rP, rPT}) is queried to the decapsulation oracle
with consistent C. First consider the case when h(cP + b P) = h(rPT + b P):

—cP #= rPT , then we found collision in the hash function; we stop and return a
random bit.

—cP = rPT and y(T) = 0 mod q. In this case, we abort and return a random
bit.

—cP = rPT and y(T) #= 0 mod q. Since y(T) #= 0 mod q and rPT = x(T) · rP +
r · y(T) · aP, we can compute r · aP. Then the encapsulated key is e(Q, rP) ·

e(b P,α · raP), which we return to the adversary.

If none of the above cases happen during the decapsulation query, we compute
response by noting that r[h(C2+b P)L1+L2] = r[([h(C2+b P)−h(cP+b P))aP+dP]
which allows us to compute r · aP. Then the encapsulated key is e(Q, rP) ·

e(b P,α · raP), which we can compute.
The challenge ciphertext for challenge time T∗ is computed as follows. If

y(T∗) #= 0, then we stop and return a random bit. Otherwise, we choose cP =
r∗ PT∗ = x(T∗) · r∗ P. The challenge ciphertext is {d/x(T∗) · cP, 1/x(T∗) · cP, cP}

with the corresponding encapsulated key K∗ = e(Q, 1/x(T∗) · cP) · Kα/x(T∗).
If the game did not abort before the end, at the end of the game we fix

A ’s random tape and all values that it sees from the simulator during execu-
tion. In particular, set ID∗ = {T1, ..., T p0, T∗}, the set of times queried dur-
ing decapsulations and challenge, is fixed. Note that Y = (y′

0, y1, ..., yn, k)
can still be varied randomly without changing the adversarial view. Define
event ForcedAbort to be the case when either 1) y(Ti) = 0 mod q for some
i, or 2) y(T∗) #= 0 mod q. Set η = PrY [¬ForcedAbort] ≥ λ = 1

4(n+1)p . If

ForcedAbort did occur during the game, we abort and return a random bit.
If no ForcedAbort has occurred, B determines a good estimate η′ of η (the
estimate is a function of T1, ..., T p0 , T∗). If η′ > λ, then with probability
1 − λ/η′ it stops and outputs random bit – this event is called ArtAbort, or
artificial abort. Otherwise, we return to the DBDHP challenger the output
of A .

The main thing to notice is that if the K is in fact the solution to com-
putational BDHP, then the challenge ciphertext is correct, including the
returned encapsulated key. If instead K is random then so is the re-
turned encapsulated key. Thus, if the adversary can tell the random chal-
lenge encapsulated key from a real one, we will be able to solve decisional
BDHP.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 36 · J. H. Cheon et al.

Next, we provide the necessary analysis. Consider a game X1 where
we know a, b , c and we answer all decapsulation queries correctly without
any aborts. The adversarial advantage in this game is the same as in the
real IND-KEM-CCA2 game. Next, let us call X2 the game which is the
same as X1, except that the simulator aborts when a hash collision hap-
pens, in which case it returns a random bit. Let us set γ to be 0 if K
is random, and γ = 1 if K = e(P, P)abc. Let us call γ ′ the output of ad-
versary A . Denote by β ′ the output of the simulator for the DBDHP chal-
lenge. Using Difference Lemma, we obtain |PrX 2 [β

′ = γ] − PrX 1 [β
′ = γ]| ≤

PrX 2 [HashCollision].
Denote by X3 the game which is the same as X2 except that the simulator

at the very end computes if ForcedAbort or ArtAbort happen, in which case
it returns a random bit. Denote κ1 = PrX 3 [¬ForcedAbort ∧ ¬ArtAbort|γ =
γ ′] and κ2 = PrX 3 [¬ForcedAbort ∧ ¬ArtAbort|γ #= γ ′]. Then, following ab-
solutely the same analysis as in Kiltz and Galindo [2006], we have PrX 3 [β ′ =
γ] − 1/2 = 1/2 · (PrX 2 [β ′ = γ] · (κ1 + κ2) − κ2). As in Kiltz and Galindo
[2006], we have |κi − λ| ≤ λρ/4, where λ = 1

4(n+1)p
. After additional ma-

nipulations, we obtain |PrX 3 [β ′ = γ] − 1/2 − λ · (PrX 2 [β
′ = γ] − 1/2)| ≤

λρ/2.
The value ρ will be determined later and is a parameter in how many

samples the simulator takes during ArtAbort computations. We assume
that O(ρ−2 ln ρ ln λ/λ) samples are taken which leads to the inequality
|κi − λ| ≤ λρ/4 used above. The run-time complexity of the simulator, then, is
O(Time(A) + ρ−2 ln ρ ln λ/λ + p).

Denote by X4 the final game described above, which is the same as X3 except
that we immediately abort, returning a random bit, if y(T∗) #= 0 mod q during
the challenge or if we abort during the decapsulation query. In case y(T∗) #= 0
mod q, it does not matter if we abort immediately or at the very end—in both
cases, the simulator will return the random bit. During decapsulation, abort
happens when cP = rPT and y(T) = 0 mod q:

—If this abort happens before the challenge, then the adversary does not have
information about cP and equality cP = rPT can happen only due to random
chance. Thus, the probability of such an abort is less than or equal to 2p/q.

—If this abort happens after the challenge, two cases are possible. If T = T∗,
then the queried ciphertext is the same as the challenge ciphertext and
thus the query is invalid. If T #= T∗, then the game X3 would also return a
random bit at the end during ForcedAbort check.

From the above comments, we conclude that |PrX 3 [β ′ = γ] − PrX 4 [β ′ =
γ]| ≤ 2p/q. Thus, combining all inequalities and equations, we have
|PrX 1 [β ′ = γ] − 1/2| ≤ |PrX 2 [β ′ = γ] − 1/2| + PrX 2 [HashCollision] ≤

ρ/2 + |PrX 3 [β
′ = γ] − 1/2|/λ + PrX 2 [HashCollision] ≤ ρ/2 + (|PrX 4 [β

′ =
γ] − 1/2| + 2p/q)/λ + PrX 2 [HashCollision]. The run-time of X2 and X1 is
O(Time(A)), and the run-time of X4 is O(Time(A) + ρ−2 ln ρ ln λ/λ + p).

Let Abdh be the resulting algorithm that, using A , outputs the answer to
DBDHP in the game X4. And let Ahash denote the resulting algorithm that,

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 37

using A , outputs the hash collision input y such that cP #= y and h(cP) = h(y)
in the game X2. Since X1 is indistinguishable from a real IND-KEM-CCA2
game, we obtain AdvIND-KEM-CCA2

A ,TR-PKEstd
≤ ρ/2 + (Advdbdh

A bdh,G + 2p/q)/λ + Advtcr
A hash,h,

where the run-time of Ahash is O(Time(A)), and the run-time of Abdh is
O(Time(A) + ρ−2 ln ρ ln λ/λ + p). The final conclusion of the Theorem follows
by setting ρ = AdvIND-KEM-CCA2

A ,TR-PKEstd
.

PROOF. [IND-KEM-RTR-CCA(2)]
First, we describe construction of the simulation in full details. Let

aP, b P, cP, K be DBDHP challenge, i.e., with equal probability K is random
or K = e(P, P)abc.

Set m = 2p (where p is the maximum number of adversarial queries). The
simulator randomly chooses x0, ..., xn in Zq, y′

0, y1, ..., yn in Zm, k in Zn+1 and
sets y0 = q − km + y′

0. Then set U ′ = x0 P + y0L1 and Vi = xiP + yiL1, i = 1, ..., n.
The simulator can compute PT as x(T)P + y(T)L1, where x(T) = x0 +

∑n
i=1 Tixi

and y(T) = y0 +
∑n

i=1 Tiyi. Note that the distribution of U ′, V still looks random.
Simulator B sets L1 = aP, L2 = −h(cP) · aP + d · P for random d, Q = sP2 =

b L1 = ab P. Also P2 = αb P for random α, P3 = b P and Ppub = sP = α−1 · aP.
The adversary A obtains public parameters only.

When queried for token for time T, if y(T) = 0 mod q we immediately abort
and return a random bit. If y(T) #= 0 mod q, then, as in Kiltz and Galindo
[2006], we pick random r′, implicitly define r = −b/y(T) + r′, and compute the
token as {−x(T)/y(T) · b P + r′x(T)P + r′y(T)L1,−1/y(T) · b P + r′ P}.

During a decapsulation query, we are given a tuple (T, C = {C1, rP, rPT})
with consistent C, where the adversary also submits the decryption key b̂ P2

and public key {0 #= b̂ P, b̂ P3}:

—If h(cP) = h(rPT + b̂ P) and y(T) = 0 mod q, then we abort and return a
random bit. If cP #= rPT + b̂ P, then we found a collision in the hash function.
Otherwise, we mark this event as CoAbort.

—If y(T) #= 0 mod q, then decryption can be carried out using token for time
T and the public/private keys submitted by the adversary.

—If h(cP) #= h(rPT + b̂ P), we return K = e(C1 − d · rP, b P)(h(rPT +b̂ P)−h(cP))−1
·

e(rP, b̂ P2).

The challenge ciphertext is computed once again similarly to Kiltz and
Galindo [2006], but a few technical modifications are made due to pres-
ence of the receiver public key submitted by the adversary. Given challenge
time T∗ and public key {b̂∗ P, b̂∗ P3 = b̂∗ · b P}, the challenge ciphertext is
computed as follows. If y(T∗) #= 0 mod q we immediately abort returning
a random bit. Otherwise, we choose cP = r∗ PT∗ + b̂∗ P, and create chal-
lenge ciphertext {d · cP−b̂ ∗ P

x(T∗) , cP−b̂ ∗ P
x(T∗) , cP − b̂∗ P} with the corresponding session

key K∗ = K1/x(T∗) · e(b̂∗ P, P2)(c−b̂ ∗)/x(T∗) · e(−aP, b̂∗ · b P)1/x(T∗). Note that
e(b̂∗ P, P2)(c−b̂ ∗)/x(T∗) = e(P,α · b̂∗b P)(c−b̂ ∗)/x(T∗) = e((c − b̂∗)P,α · b̂∗b P)1/x(T∗).

If the game did not abort before the end, at the end of the game we fix A ’s
random tape and all values that it sees from the simulator during execution. In
particular, set ID∗ = {T1, ..., T p0 , T∗}, the set of times queried during decapsu-

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 38 · J. H. Cheon et al.

lations and challenge, is fixed. Note that Y = (y′
0, y1, ..., yn, k) can still be varied

randomly without changing adversarial view. Define event ForcedAbort to be
the case when either 1) y(Ti) = 0 mod q for some i, or 2) y(T∗) #= 0 mod q.
Set η = PrY [¬ForcedAbort] ≥ λ = 1

4(n+1)p . If no ForcedAbort has occurred, B
determines a good estimate η′ of η (the estimate is a function of T1, ..., T p0, T∗).
If η′ > λ, then with probability 1 − λ/η′, it stops and outputs a random bit,
this event is called ArtAbort, or artificial abort. Otherwise, we return to the
DBDHP challenger the output of A .

The main thing to notice is that if the K is in fact the solution to computa-
tional BDHP, then the challenge ciphertext is correct including the returned
encapsulated key. If instead K is random then so is the returned encapsulated
key. Thus, if the adversary can tell the random challenge encapsulated key
from a real one, we will be able to solve decisional BDHP.

In the analysis, we follow an approach similar to the one given in IND-
KEM-CCA2. At first, we will consider adaptive and non-adaptive games to-
gether and then separate the analyses when needed. Consider a game X1

where we know a, b , c and we answer all decapsulation and token queries cor-
rectly without any aborts. The adversarial advantage in this game is the same
as in the real IND-KEM-RTR-CCA game. Next, let us call X2 the game which
is the same as X1 except that the simulator aborts when hash collision hap-
pens, in which case it returns a random bit. Let us set γ to be 0 if K is random,
and γ = 1 if K = e(P, P)abc. Let us call γ ′ the output of adversary A . Denote
by β ′ the output of the simulator for the DBDHP challenge. Using Difference
Lemma, we obtain |PrX 2 [β ′ = γ] − PrX 1 [β ′ = γ]| ≤ PrX 2 [HashCollision].

Denote by X3 the game which is the same as X2 except that the simulator
at the very end computes if ForcedAbort or ArtAbort happen, in which case it
returns a random bit. Denote κ1 = PrX 3 [¬ForcedAbort∧ ¬ArtAbort|γ = γ ′] and
κ2 = PrX 3 [¬ForcedAbort ∧ ¬ArtAbort|γ #= γ ′]. Then, following absolutely the
same analysis as in Kiltz and Galindo [2006], we have PrX 3 [β

′ = γ] − 1/2 =
1/2 · (PrX 2 [β

′ = γ] · (κ1 + κ2) − κ2). As in Kiltz and Galindo [2006], we have
|κi − λ| ≤ λρ/4, where λ = 1

4(n+1)p . After additional manipulations, we obtain

|PrX 3 [β ′ = γ] − 1/2 − λ · (PrX 2 [β
′ = γ] − 1/2)| ≤ λρ/2.

The value ρ will be determined later and is a parameter in how many
samples the simulator takes during ArtAbort computations. We assume
that O(ρ−2 ln ρ ln λ/λ) samples are taken, which leads to the inequality |κi −

λ| ≤ λρ/4 used above. The run-time complexity of the simulator, then, is
O(Time(A) + ρ−2 ln ρ ln λ/λ + p).

Denote by X4 the game, which is the same as X3 except that the simulator
immediately aborts returning a random bit when 1) a query T is made to the
token oracle with y(T) = 0 mod q, or 2) if y(T∗) #= 0 mod q. If y(T∗) #= 0 mod q
happens, then both X4 and X3 return a random bit (although X3 does it at the
end, which in this case does not matter). The same comment goes for the case
y(T) = 0 mod q during token queries. Thus, PrX 3 [β ′ = γ] = PrX 4 [β ′ = γ].

Denote by X5 the final game, which is the same as X4 except that we immedi-
ately abort and return a random bit when CoAbort happens. Using Difference
Lemma, PrX 4 [β ′ = γ] − PrX 5 [β ′ = γ]| ≤ PrX 5 [CoAbort].

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 39

Combining all equations and inequalities, we have |PrX 1 [β ′ = γ] − 1/2| ≤

|PrX 2 [β ′ = γ] − 1/2| + PrX 2 [HashCollision] ≤ ρ/2 + |PrX 4 [β ′ = γ] − 1/2|/λ +
PrX 2 [HashCollision] ≤ ρ/2 + (|PrX 5 [β

′ = γ] − 1/2| + PrX 5 [CoAbort])/λ +
PrX 2 [HashCollision]. The run-time of X2 and X1 is O(Time(A)), and the run-
time of X5 is O(Time(A) + ρ−2 ln ρ ln λ/λ + p).

Let Abdh be the resulting algorithm that, using A , outputs the answer to
DBDHP in the game X5. And let Ahash denote the resulting algorithm that,
using A , outputs the hash collision input y such that cP #= y and h(cP) = h(y)
in the game X2. Since X1 is indistinguishable from a real IND-KEM-RTR-CCA
game, we obtain AdvIND-KEM-RTR-CCA2

A ,TR-PKEstd
≤ ρ/2 + (Advdbdh

A bdh,G + PrX 5 [CoAbort])/λ +

Advtcr
A hash,h, where the run-time of Ahash is O(Time(A)), and the run-time of Abdh

is O(Time(A) + ρ−2 ln ρ ln λ/λ + p).
In non-adaptive IND-KEM-RTR-CCA, the probability of CoAbort is less

than 2p/q, since the adversary obtains no information about cP until the
challenge. Thus, we have AdvIND-KEM-RTR-CCA

A ,TR-PKEstd
≤ ρ/2 + (Advdbdh

A bdh,G + 2p/q)/λ +

Advtcr
A hash

, h. By setting ε = AdvIND-KEM-RTR-CCA
A ,TR-PKEstd

and ρ = ε, we readily obtain the
Theorem statement.

In adaptive IND-KEM-RTR-CCA2, the CoAbort may happen with higher
probability after the challenge since the adversary knows cP. The probability
before the challenge is the same as above. Thus, we concentrate on cases when
CoAbort happens after the challenge. If in this event we have T #= T∗, then
we can assume that a query to the token query has been made with y(T) = 0
mod q, in which case we would abort in game X4. Thus, the new event, which
we call AcAbort, happens after the challenge and when T = T∗, cP = rPT∗ + b̂ P
and the queried ciphertext is different from the challenge. In this case, the
adversary finds rP, rPT∗ , b̂ P, b̂ P2, b̂ P3 such that r∗ PT∗ + b̂∗ P = rPT∗ + b̂ P and
b̂ #= b̂∗. We get the following inequality AdvIND-KEM-RTR-CCA2

A ,TR-PKEstd
≤ ρ/2+(Advdbdh

A bdh,G +

2p/q + PrX 5 [AcAbort])/λ + Advtcr
A hash,h.

Now, we design a game, which we will call Y , to estimate the probability of
AcAbort. Let ζ P, νP, R, T be the DTDH challenger where we have to decide
if T = ζ νR. In game Y , we set U ′ = α · ζ P and V = β · ζ P for some random
α,β. We also set P3 = R. We set the rest of parameters in this game in ab-
solutely the same way as in a normal game. In particular, we now can compute
any token and answer any decapsulation query. And we compute the chal-
lenge ciphertext in a normal way. Consider the case r∗ PT∗ + b̂∗ P = rPT∗ + b̂ P
mentioned above and rewrite this equation as r∗ PT∗ + (b̂∗ − b̂)P = rPT∗ , or
equivalently κ · r∗ζ P + (b̂∗ − b̂)P = κ · rζ P for some known κ . Dividing

both sides by ζ , we obtain that we can compute (b̂ ∗−b̂)
ζ

P. Next we compute

A1 = e((b̂ ∗−b̂)
ζ

P, T) and A2 = e((b̂∗ − b̂)R, νP), since R = P3 and b̂∗ P3 and b̂ P3

are part of the public keys. If and only if A1 = A2, then T = ζ νR: indeed,
if T = ζ νR, then A1 = e((b̂∗ − b̂)P, νR) = e((b̂∗ − b̂)R, νP) = A2. There-
fore we can solve decisional TDHP with exactly the probability of the event
AcAbort. We note that Y is indistinguishable from a real IND-KEM-RTR-
CCA2 game, and the runs of X5 where no abort (other than possibly AcAbort)
happens are indistinguishable from Y in adversarial view. Thus, we have

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 40 · J. H. Cheon et al.

PrX 5 [AcAbort] ≤ PrY [AcAbort], where Y runs in time O(Time(A)). Denote
by A tdh the resulting adversary against decisional TDHP. Finally, we obtain
AdvIND-KEM-RTR-CCA2

A ,TR-PKEstd
≤ ρ/2 + (Advdbdh

A bdh
, G + 2p/q + Advdtdh

A tdh,G)/λ + Advtcr
A hash,h. The

final conclusion of the Theorem follows by setting ρ = AdvIND-KEM-RTR-CCA2
A ,TR-PKEstd

.

Appendix D. Key-Insulated Equivalence Proofs

There are two parts to proving equivalence of key-insulated encryption and
timed-release: 1) construction of SKIE-OTRU from TR-PKE; and 2) construc-
tion of TR-PKE from SKIE-OTRU. As the first part is fairly trivial (including
the resulting security proofs and reductions), in this section we concentrate
only on the second part. The construction of TR-PKE from SKIE-OTRU is
given in the main text and here we concentrate in more detail on the security
proofs and reductions.

Let us consider adversary A against IND-CCA2 of the resulting TR-PKE
scheme. In this case, the adversary knows the timed-release secret and thus
can compute the helper tokens of the related SKIE-OTRU. We fix the receiver’s
public/private keys and give the receiver’s public key to A . The adversary is
also given access to the decryption oracle which decrypts using the above re-
ceiver’s secret key and helper tokens. The adversary chooses adaptively time
T∗, two equal-sized plaintexts and asks for IND-CCA2 challenge with these
parameters and the above receiver’s public key. The adversary can continue
with decryption queries, except that it cannot ask for decryption of the chal-
lenge ciphertext unless T #= T∗. In the end, A guesses which plaintext was
encrypted and wins if the guess is correct.

Next, we design an algorithm B which plays a SUF-CMA game against
the one-time signature challenger, and at the same time plays an IND-CCA2
game against the underlying PKC. The PKC gives us public key pk which we
will use as the receiver’s public key in the TR-PKE, and the DSone challenger
provides us with a one-time signature verification key VK∗. When A gives
us a decryption query, we decrypt using the SKIE-OTRU secrets, obtaining s1.
Then we query the PKC decryption oracle with c2 and label VK obtaining s2,
allowing us to extract m. When A gives us challenge (T∗, m∗

0, m∗
1), we choose

random s∗
1, compute s2,i = m∗

i ⊕ s∗
1 and submit to PKC the pair (s2,0, s2,1) and

VK∗ for challenge encryption. The PKC challenger chooses β and returns c∗
2 =

&.PKEncVK∗

(pk, s2,β). We set c∗
1 = %.EncVK∗

(spk,∗ s1, T∗), query the one-time
signature oracle for signature Sig(VK∗, (T∗, c∗

1, c∗
2)), and return the complete

TR-PKE ciphertext to the adversary.
After the challenge, if the adversary queries the decryption oracle with

V K = VK∗, and either Sig(VK∗, (T, c1, c2)) is different from the challenge
and/or (T, c1, c2) #= (T∗, c∗

1, c∗
2), then we return this signature to the DSone

challenger, thus winning the SUF-CMA game. When we break SUF-CMA,
we abort and return a random bit to the PKC challenger. If the adversary
queries the decryption oracle with VK #= VK∗, then we can legitimately
use the PKC decryption oracle (since we will not be querying the PKC or-
acle with the label used in the PKC challenge). In the end (unless we al-
ready broke SUF-CMA), we return the response of A to the PKC challenger.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 41

The adversarial advantage against TR-PKE is the same as our advantage
against IND-CCA2 with respect to PKC, since essentially it was the PKC
challenger who chose which plaintext to encrypt. Noting that, in case of SUF-
CMA break, we win against PKC with probability exactly 1/2, we obtain that
AdvIND-CCA2

A ,TR-PKE(k) ≤ 1
2AdvSUF-CMA

B,DSone
(k) + AdvIND-CCA2

B,PKE (k), where B runs with com-
plexity of A . The algorithm B1 against SUF-CMA is a modification of B, where
B simulates the PKC challenger; similarly, algorithm B2 against IND-CCA2 of
PKC is a modification of B, where B simulates the SUF-CMA challenger. Note
that the game from the view of A , the IND-CCA2 game against TR-PKE is
indistinguishable from a real one.

Now let us consider adversary A against IND-RTR-CCA2 of TR-PKE. In
this case, the adversary makes token queries and decryption queries. In the
decryption queries, A also submits the secret key of the receiver. The adver-
sary chooses adaptively time T∗, receiver’s public key, two distinct equal-sized
plaintexts, and asks for the IND-CCA2 challenge with these parameters. The
adversary is not allowed to query the token for time T∗, and cannot ask for
decryption of the challenge ciphertext unless either T #= T∗ or the submitted
secret key does not correspond to the challenge public key. The A guesses
which plaintext was encrypted and wins if the guess is correct.

As in the case of IND-CCA2 against TR-PKE, we design an algorithm B
which plays a SUF-CMA game against the one-time signature challenger, and
at the same time plays an IND-KIE-CCA2 game against the underlying KIE.
The KIE gives us public information spk (so that we can encrypt, with labels,
in KIE any message for any time period), provides us access to its decryption
oracle and allows us to query for uski.18 The DSone challenger provides us with
a one-time signature verification key VK∗.

When A requests a token, we simply ask the KIE oracle for the decryption
key for the specified time. During decryption queries, we decrypt using sup-
plied private/public key pair, and then ask the KIE to decrypt the rest. When
the adversary submits (pk∗, m∗

0, m∗
1, T∗) for the challenge, we choose random s∗

2
and set s1,i = m∗

i ⊕ s∗
2. We submit (s1,0, s1,1, T∗) and VK∗ to the KIE challenger,

which returns the c∗
1 = %.EncVK∗

(spk, s1,β, T∗) for some randomly chosen β. We

compute c∗
2 = &.PKEncVK∗

(pk∗, s2) using the public key pk∗ that A has given
us, and query the one-time signature oracle for signature Sig(VK∗, (T∗, c∗

1, c∗
2)).

The resulting challenge ciphertext is returned to A , which is a correct encryp-
tion of m∗

β .
After the challenge, if the adversary queries the decryption oracle with

VK = VK∗, and either Sig(VK∗, (T, c1, c2)) is different from the challenge
and/or (T, c1, c2) #= (T∗, c∗

1, c∗
2), then we return this signature to the DSone

challenger, thus winning the SUF-CMA game. When we break SUF-CMA,
we abort and return a random bit to the KIE challenger. If the adversary
queries the decryption oracle with VK #= VK∗, then we can legitimately use
the KIE decryption oracle to decrypt the c1 part (since we will not be querying

18The restriction is that we cannot query for uski for the challenge period, and we cannot ask for
decryption of the IND-KIE-CCA2 challenge ciphertext with the same parameters that were used
during the challenge.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 42 · J. H. Cheon et al.

the KIE oracle with the label used in the IND-KIE-CCA2 challenge); we de-
crypt the rest of the ciphertext using the supplied receiver’s secret key. In
the end (unless we already broke SUF-CMA), we return the response of A to
the KIE challenger. The adversarial advantage against TR-PKE is the same
as our advantage against IND-KIE-CCA2, since essentially it was the KIE
challenger who chose which plaintext to encrypt. Noting that, in case of SUF-
CMA break, we win against KIE with probability exactly 1/2, we obtain that
AdvIND-RTR-CCA2

A ,TR-PKE (k) ≤ 1
2AdvSUF-CMA

B,DSone
(k) + AdvIND-KIE-CCA2

B,SKIE-OTRU (k), where B runs with
complexity of A . The algorithm B1 against SUF-CMA is a modification of B,
where B simulates the KIE challenger; similarly, algorithm B2 against IND-
KIE-CCA2 of KIE is a modification of B, where B simulates the SUF-CMA
challenger. As before, the game IND-RTR-CCA2 that A plays here is indistin-
guishable from a real IND-RTR-CCA2 game. This finishes the proof.

ACKNOWLEDGMENT

The authors thank Moti Yung, Ran Canetti, Rosario Gennaro, Shai Halevi, and
Hugo Krawczyk for many invaluable comments.

REFERENCES

ABDALLA, M., BELLARE, M., AND ROGAWAY, P. 2001. The oracle Diffie-Hellman assumptions and
an analysis of DHIES. In Cryptographer’s Track at the RSA Conference.

AN, J. H. 2001. Authenticated encryption in the public-key setting: security notions and analyses.
http://eprint.iacr.org/2001/079/.

BELLARE, M., DESAI, A., POINTCHEVAL, D., AND ROGAWAY, P. 1998. Relations among notions
of security for public-key encryption schemes. In Annual International Cryptology Conference
(CRYPTO’98).

BELLARE, M. AND GOLDWASSER, S. 1996. Encapsulated key escrow. Tech. rep., Laboratory for
Computer Science, MIT, TR-688.

BELLARE, M. AND PALACIO, A. 2002. Protecting against key exposure: Strongly key-insulated
encryption with optimal threshold. http://eprint.iacr.org/2002/064/.

BELLARE, M. AND ROGAWAY, P. 1995. Random oracles are practical: A paradigm for designing ef-
ficient protocols. In ACM Conference on Computer and Communications Security (ACM CCS’95).

BLAKE, I. F. AND CHAN, A. C.-F. 2005. Scalable, server-passive, user-anonymous timed release
public key encryption from bilinear pairing. In International Conference on Distributed Comput-
ing System (ICDCS’05).

BONEH, D. AND BOYEN, X. 2004. Efficient selective-ID secure identity based encryption without
random oracles. In International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’04).

BONEH, D., BOYEN, X., AND GOH, E.-J. 2005. Hierarchical identity based encryption with con-
stant size ciphertext. In International Conference on the Theory and Applications of Crypto-

graphic Techniques (EUROCRYPT’05).

BONEH, D., CANETTI, R., HALEVI, S., AND KATZ, J. 2006. Chosen-ciphertext security from
identity-based encryption. SIAM J. Comput. To appear.

BONEH, D. AND FRANKLIN, M. 2003. Identity based encryption from the weil pairing. In Annual
International Cryptology Conference (CRYPTO’03).

BONEH, D. AND NAOR, M. 2000. Timed commitments. In Annual International Cryptology Con-
ference (CRYPTO’00).

BOYEN, X. 2003. Multipurpose identity based signcryption: A swiss army knife for identity based
cryptography. In Annual International Cryptology Conference (CRYPTO’03).

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

Provably Secure Timed-Release Public Key Encryption · 8: 43

BOYEN, X., MEI, Q., AND WATERS, B. 2005. Simple and eficient CCA2 security from IBE tech-
niques. In ACM Conference on Computer and Communications Security (ACM CCS’05).

BOYEN, X. AND WATERS, B. 2006. Anonymous hierarchical identity-based encryption (without
random oracles). In International Conference on the Theory and Applications of Cryptographic
Techniques (EUROCRYPT’06).

CATHALO, J., LIBERT, B., AND QUISQUATER, J.-J. 2005. Efficient and non-interactive timed-
release encryption. In International Conference on Information, Communications and Signal
Processing (ICICS’05).

CHATTERJEE, S. AND SARKAR, P. 2005. Trading time for space: Towards an efficient IBE scheme
with short(er) public parameters in the standard model. In International Conference on Infor-
mation Security and Cryptology (ICISC’05).

CHEN, L., HARRISON, K., SOLDERA, D., AND SMART, N. 2002. Applications of multiple trust
authorities in pairing based cryptosystems. In Proceedings of Infrastructure Security Conference.

CHEON, J. H., HOPPER, N., KIM, Y., AND OSIPKOV, I. 2004. Authenticated key-insulated public
key encryption and timed-release cryptography. http://eprint.iacr.org/2004/231.

CHEON, J. H., HOPPER, N., KIM, Y., AND OSIPKOV, I. 2006. Timed-release and key-insulated
public key encryption. In Financial Cryptography.

CRAMER, R. AND SHOUP, V. 1998. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In Annual International Cryptology Conference
(CRYPTO’98).

CRAMER, R. AND SHOUP, V. 2003. Design and analysis of practical public-key encryption schemes
secure against adaptive chosen ciphertext attack. SIAM J. Comput. 33.

CRESCENZO, G. D., OSTROVSKY, R., AND RAJAGOPALAN, S. 1999. Conditional oblivious transfer
and timed-release encryption. In International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT’99).

DODIS, Y. AND KATZ, J. 2005. Chosen-ciphertext security of multiple encryption. In Theory of
Cryptography Conference.

DODIS, Y., KATZ, J., XU, S., AND YUNG, M. 2002. Key-insulated public key cryptosystems. In
International Conference on the Theory and Applications of Cryptographic Techniques (EURO-
CRYPT’02).

DODIS, Y., KATZ, J., XU, S., AND YUNG, M. 2003. Strong key-insulated signature schemes. In
Conference on Theory and Practice of Public-Key Cryptography.

FUJISAKI, E. AND OKAMOTO, T. 1999. Secure integration of asymmetric and symmetric encryp-
tion schemes. In Annual International Cryptology Conference (CRYPTO’99).

GARAY, J. AND POMERANCE, C. 2003. Timed fair exchange of arbitrary signatures. In Financial
Cryptography.

GARAY, J. A. AND POMERANCE, C. 2002. Timed fair exchange of standard signatures. In Financial
Cryptography.

GENTRY, C. AND SILVERBERG, A. 2002. Hierarchical ID-based cryptography. In International
Conference on the Theory and Application of Cryptology and Information Security (ASI-
ACRYPT’02).

HORWITZ, J. AND LYNN, B. 2002. Toward hierarchical identity-based encryption. In International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’02).

KILTZ, E. 2006. Chosen-ciphertext secure identity-based encryption in the standard model with
short ciphertexts. http://eprint.iacr.org/2006/122/.

KILTZ, E. AND GALINDO, D. 2006. Direct chosen-ciphertext secure identity-based key encapsula-
tion without random oracles. http://eprint.iacr.org/2006/034/.

LAGUILLAUMIE, F., PALLIER, P., AND VERGNAUD, D. 2005. Universally convertible directed sig-
natures. In International Conference on the Theory and Application of Cryptology and Informa-
tion Security (ASIACRYPT’05).

MARCO CASASSA MONT, K. H. AND SADLER, M. 2003. The HP time vault service: Exploiting
IBE for timed release of confidential information. In World Wide Web Consortium.

MAY, T. 1993. Timed-release crypto. http://www.cyphernet.org/cyphernomicon/chapter14/
14.5.html.

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

8: 44 · J. H. Cheon et al.

MENEZES, A., OKAMOTO, T., AND VANSTONE, S. 1993. Reducing elliptic curve logarithms to log-
arithms in a finite field. In IEEE Trans. Inform. Theory IT-39, 5.

NACCACHE, D. 2005. Secure and practical identity-based encryption. http://eprint.iacr.org/
2005/369/.

PEDERSON, T. P. 1991. A threshold cryptosystem without a trusted party. In International Con-
ference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’91).

POINTCHEVAL, D. AND STERN, J. 1996. Security proofs for signature schemes. In International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’96).

RACKOFF, C. AND SIMON, D. R. 1991. Non-interactive zero-knowledge proof of knowledge and
chosen ciphertext attack. In Annual International Cryptology Conference (CRYPTO’91).

RIVEST, R. L., SHAMIR, A., AND WAGNER, D. A. 1996. Time-lock puzzles and timed-release
crypto. Tech. rep., Laboratory for Computer Science, MIT, TR-684.

SHAMUS SOFTWARE LTD. MIRACL: Multiprecision integer and rational arithmetic C/C++ library.
http://indigo.ie/ mscott/.

SHOUP, V. 2000. Using hash functions as hedge against chosen ciphertext attack. In International
Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’00).

SHOUP, V. 2004. ISO 18033-2: An emerging standard for public-key encryption.
http://shoup.net/iso/.

SYVERSON, P. F. 1998. Weakly secret bit commitment: Applications to lotteries and fair exchange.
In Computer Security Foundations Workshop.

WATERS, B. 2005. Efficient identity-based encryption without random oracles. In International

Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT’05).

Received September 2006; revised May 2007; accepted July 2007

ACM Transactions on Information and Systems Security, Vol. 11, No. 2, Article 8, Pub. date: May 2008.

