
Myrmic: Secure and Robust DHT Routing

Peng Wang, Nicholas Hopper, Ivan Osipkov and Yongdae Kim

ABSTRACT
A distributed hash table such as Chord attempts to build a
persistent store from a network of (possibly unstable) peer
nodes. There has been a great deal of work on making DHTs
robust to environmental interference (such as membership
churn, transient routing failures and high CPU load) but con-
siderably less work on implementing DHTs that are secure
againstadversarialbehavior designed to cause DHT failure.
In this paper, we introduceMyrmic, a novel DHT routing
protocol designed to be robust against adversarial interfer-
ence. A key feature distinguishing Myrmic from other DHT
implementationsis a root verification protocolthat allows
anyone to verify that the node responding to a query for key
k is indeed the “correct” holder of the key. We give analyti-
cal results showing that even when a large fraction of nodes,
for example 30%, cooperate to adversarially interfere with
query routing, Myrmic finds uncorrupted roots in expected
logarithmic time, and confirm these results with simulations
of 1000 nodes. Finally, we implement the proposed proto-
col and evaluate it through experimentation with 120 nodes
on PlanetLab in order to measure wide area network perfor-
mance. All of these results suggest that Myrmic provides
stronger robustness guarantees while incurring minimal net-
work and CPU overhead.

1. INTRODUCTION
A distributed hash table (DHT) is a service that mapskeys

in a flat identifier space ontonodesin a network of peers.
Systems such as CAN [1], Chord [2], Pastry [3], OpenDHT [4]
and Tapestry [5] structure peers into an overlay network such
that each peer needs only rememberO(log n) other peers
and can locate any identifier in at mostO(log n) hops. Be-
cause of their scalability, lack of a central point of failure,
and design for fault tolerance, these systems have been used
to construct a wide range of distributed applications, for ex-
ample P2P file system [6], P2P archival systems [7, 8, 9],
BitTorrent [10], P2P web cache systems [11, 12], P2P mul-
ticast systems [13, 14], and P2P DNS [15, 16].

Many of these DHT implementations have been engineered
to tolerate faults caused by environmental conditions such
as transient routing failures, overloaded CPUs, and member-
ship churn. However, many of these systems do not deal with
adversarialfaults that maliciously prevent nodes from dis-
covering the correct mapping between identifiers and peers.
Interfering with this mapping can in turn invalidate the avail-
ability, correctness or security of protocols running on top
of the DHT, since they assume the mapping to be available,
correct and consistent. Since many of the systems proposed
to be built on top of DHTs have direct financial or security

implications, it is natural to expect that if they become pop-
ular, they will be targeted by adversaries who can control a
significant fraction of nodes in the system.

Algorithmically, several DHT schemes that are provably
robust to malicious failure have been proposed. These prov-
ably secure protocols are of interest because security proofs
rule outall possible future attacksin addition to the set of
currently known attacks. The literature on cryptographic
network protocols has many examples of schemes, using
strong cryptographic primitives, that were designed with-
out a proof of security and eventually broken [17, 18, 19].
Unfortunately, while many of these provably secure DHT
schemes scale well asymptotically (for example the scheme
in [20] has latencyO(log n) and bandwidthO(log2 n)) these
parameters do not always translate well to implementations
due to the constants involved. Thus these theoretical schemes,
while interesting, are not practical for implementation.

In this paper we introduce and report on the PlanetLab [21]
deployment of Myrmic, a DHT implementation with prov-
able security against malicious node failures. Myrmic has
the same semantics as Chord and in a network with no mali-
cious nodes it has message cost and latency that are provably
at most twice the cost of Chord with recursive routing. Our
experiments with the system both in the wide-area PlanetLab
testbed and in a local-area network show that good perfor-
mance is maintained even when large fraction (for example,
30%) of nodes behave maliciously by dropping all routing
requests. Thus, it can be used as a drop-in, secure replace-
ment for Chord.

Three key ideas are involved in the design of Myrmic.
First, we use a small set of trusted nodes to provide a kind
of local admission control; these nodes store no state and
may fail transiently with no effect on the security of the sys-
tem. Second, our system is designed to tolerate failures on
a small percentageδ of routing requests, while guaranteeing
that these failures are transient, even when they are mali-
cious. Third, we use aroot verification protocolthat with
high probability allows only a single node to prove current
ownership of a given key; this prevents many of the previ-
ously known attacks on overlay routing schemes. This root
verification protocol is also directly applicable to other DHT
routing protocols even if proximity neighbor selection [22]
is used. To our knowledge, Myrmic is the only DHT proto-
col where root verification isexternally verifiable: any node
can check that the result of a lookup is correct. This simpli-
fies some aspects of application design, for example, allow-
ing new nodes to join the DHT or a client to use a generic
DHT service such as OpenDHT[4] without the additional
trust assumptions of a trusted gateway or the additional com-

1

munication cost of using several redundant gateways. We
use this verification protocol to augment the iterative rout-
ing protocol of Chord so that adversaries are constrained to
either drop routing queries or give correct responses.

The remainder of this paper is organized as follows. Sec-
tion 2 gives an overview of DHT protocols and Chord. Sec-
tions 3 and 4 give a more detailed overview of our threat
model and the algorithms employed by Myrmic. We ana-
lyze the security of these algorithms briefly in section 5, and
report on experimental evaluations in simulated, local-area
and wide-area networks in section 6. Finally, we discuss re-
lated work in section 7.

2. BACKGROUND
2.1 Overview of DHT Routing

In this section, we briefly overview DHTs, using Chord [2]
as a concrete example. DHT networks allow nodes to store
and to retrieve data objects efficiently. Each node is assigned
a unique identifier, ornodeId, and each application object is
assigned a unique identifier, orkey. Node identifiers are of-
ten computed as the cryptographic hash (e.g. SHA-1) of the
node’s public key or IP address, while a key is usually com-
puted as the cryptographic hash of an application object’s
attributes, which can be used to identify the object. NodeIds
and keys are uniformly distributed in theId space, a set ofn-
bit integers. A keyk is mapped to a unique node – the key’s
root is denoted asroot(k), based on numerical proximity. In
Chord, the noderoot(k) is the node with the smallest nodeId
equal to or greater thank in the Id space. When a node in-
serts a key-value pair(k, v), root(k) stores the pair, where
the valuev is application-specific information. When a node
queries the keyk, root(k) returnsv. In order to tolerate fail-
ures and/or expedite the query process,(k, v) can be repli-
cated at several nodes, calledreplica roots. In Chord, the
replica roots of(k, v) areroot(k) and its several successors.

A DHT provides a distributed lookup protocol, which al-
lows queriers to communicate with the node that stores a
particular data object efficiently. For this purpose, each node
maintains a routing table containing a set of other nodes’
nodeIds and IP addresses. The nodes in each routing ta-
ble are chosen in such a way that a lookup message can
be efficiently delivered to its destination. For example, in
Chord, the node withnodeId maintains arouting or finger
tablethat contains theO(log n) tuples of the formentryi =
(nodeIdi, IPi), wherenodeIdi = root(nodeId + 2i−1).
In addition, each node with IDx maintains pointers to its
immediate predecessors, denoted in order of distancep1(x),
p2(x), . . ., pi(x), and a list of its nearest successors in theId
space, denoted bys1(x), s2(x), . . . , si(x). We follow Chord
in using thisconstrainedrouting table; for a discussion of
the performance implications of this decision, and possible
optimizations, see section 6.4.

To route a message toroot(k), Chord finds the “finger” in
its routing table with the highestnodeId less than or equal to
k and hands over the query message to that node to be routed

further. At the end, the destination (supposedlyroot(k))
replies to the sender via direct IP communication. During
this routing, the distance between a message’s current loca-
tion and its destination is halved in each hop resulting in a
logarithmic number of hops. In this approach, calledrecur-
sive routing, the sender delegates routing to the next hop and
from then on it loses control over the traversed hops. In-
stead of asking to forward the message, the sender may ask
for the information regarding the next hop. In this approach,
callediterative routing, the sender discovers the full route to
root(k) and contacts the destination.

2.2 Security Issues in DHTs
Like other networks, DHTs are vulnerable to attacks. Be-

low, we briefly overview the attacks (specific to DHTs) pro-
posed in previous work [23, 24] and the known approaches
to dealing with them.
Sybil attack [25]: an attacker generates a large number of
bogus DHT nodes to out-number the honest nodes. This
attack is, in general, overcome by introducing anoff-line
trusted entity [23], such as a certificate authority (CA). Even
with a CA, if malicious nodes can pick their nodeIds, they
can control the access to popular data objects by becoming
the root of those objects’ keys. Thus it is typically assumed
that the CA will perform some level of admission control to
limit the number of certificates issued to attackers.
Message corruption, drop, and delay[23]: A DHT node
forwards messages (data as well as control) for others using
its routing table. An attacker can eavesdrop on and modify
overlay messages passing through it. Even if the messages
are signed and encrypted, he can drop or delay them. Iter-
ative routing can be used to prevent such attacks on routing
messages [2, 26].
Routing Table Poisoning (Eclipse Attack)[23]: Since a
node’s routing table is generated from information from other
nodes, it is possible that its routing table could be corrupted
(i.e. filled with attacker’s IP addresses). This attack is effec-
tive for DHTs with flexible routing tables.
Root Spoofing: Routing in a DHT is “proximity” routing. A
message is routed to a key’s root rather than a node specified
by the querier. Without detailed knowledge of the replier’s
neighborhood, the querier cannot verify whether the replier
is indeed the root of the key.

3. PROBLEM DESCRIPTION, ASSUMPTIONS
AND OVERVIEW

DHTs are designed in such a way that each node stores
information about only a small number of other nodes. This
makes them scalable in terms of storage overhead and rout-
ing overhead, but leaves nodes vulnerable to attacks based
on limited knowledge of the current state of the network,
such as root-spoofing. Here we outline a specific (known)
attack scenario, followed by a general definition of routing
security and a description of our solution and assumptions.

3.1 Root Spoofing Attack
The most important property in DHT routing is that when

2

a lookup for a keyk is performed, the resulting DHT node
should beroot(k), given thecurrentsystem state. Figure 1
shows a typical attack scenario, where nodeR is root(k).
SupposeC inserts a key-value pair(k, v) at R. Later, when
Q queries the keyk, it asksD for the next hop, which returns
E. Now E, colluding withB (or perhaps unaware ofR’s
existence), returnsB, which claims (being close tok) that it
is responsible fork, thus, effectively hidingR fromQ. Since
Q does not know aboutR andB appears to be a plausible
destination,Q acceptsB as the destination responsible for
that key. In this case,Q is unable to retrieve the valuev
corresponding to keyk. We note that this attack can also
work if any node along the query route, for exampleD, is
malicious: whileD cannot claim to beroot(k) he can route
the query to his colluderB who is close tok.

Thus a DHT without a root veri-

k

Q

D

C

B

R
 E

Figure 1: Root
Spoofing Attack

fication mechanism cannot guaran-
tee the delivery of query messages.
The same basic attack can also be
applied to insertion of (key, value)
pair, routing table maintenance and
membership events, because typi-
cally all of the DHT protocols rely
on the ability to find the correct root
of a key. Thus, without a root ver-
ification mechanism, query and in-
sertion messages could be delivered to incorrect nodes, rout-
ing tables could have more and more malicious nodes, and a
new node could join a logically separate network filled with
malicious nodes. In short, an adversary can use this attack
to disrupt most of the functionalities of the DHT.

3.2 Problem Description
Security of DHT routing is thus a weak link in building

secure DHT-based applications. Castroet. al. [23] define
routing security as follows:The secure routing primitive en-
sures that when a non-faulty node sends a message to a key
k, the message reaches all non-faulty members in the set of
replica rootsRk with very high probability. While this is
certainly a necessary condition for security, we argue thatit
does not specify sufficient conditions. For example, if we
were to design a “secure routing primitive” that guaranteed
delivery to all replica roots inΩ(n!) steps, it would meet
this definition but its performance would be completely un-
acceptable, essentially making the protocol one giant algo-
rithmic denial-of-service attack [27]. Thus efficiency in the
face of an attack is an important concern. With this in mind,
we refine this definition more formally as follows:

DEFINITION 1 (δ-SECUREDHT ROUTING). A routing
protocol isδ-secure if it ensures that with probability at least
1− δ, when a non-faulty nodeA initiates a lookup for a uni-
formly chosen keyk, A correctly identifies the noderoot(k)
within an expectedO(log n) hops, despite the presence of a
fractionf < 1 of faulty nodes1.
1Node faults may be arbitrary, including directed adversarial be-

Notice that the above definition explicitly states that we
will allow a certain fraction,δ, of queries to fail. Thus an im-
portant question is what values ofδ a protocol can support.
Later in this paper, we show that Myrmic can deliver 99.99%
of packets within 1.4 times the latency of Chord even with
30% of attackers dropping packets. Also note that we al-
low arbitrary behavior by malicious nodes, including root
spoofing; message corruption, dropping, or mis-routing; and
other behavior outside of the protocol specification. In sum-
mary, (1) the sender must be able to verify the root, (2) in
case root verification fails (e.g., a malicious node imperson-
ates the root), the message must be able to bypass malicious
nodes and eventually reach the root if it isreachable(that
is, there is a path from the sender to the root that consists of
only non-faulty nodes), and (3) the secure routing protocol
must be efficient, even under attack. We note that an impor-
tant technical consequence of our definition is that protocols
satisfying this definition will correctly identify the root, even
when the root node is malicious.

3.3 Assumptions and Attack Model
To avoid attacks related with nodeId assignment such as

the Sybil attack [25], we assume the existence of an off-line
certification authority as in [23]. We also assume thatN
nodes form a DHT network. A bounded fraction of the nodes
f (0 ≤ f < 1) may be faulty. We assume faulty nodes may
collude and adversaries are “non-adaptive”, i.e., (1) faulty
nodes can operate in concert. (2) at most a fractionf of cur-
rent nodes are malicious or vulnerable to compromise in any
given time period, including the initial time period when the
network bootstraps. The set of vulnerable nodes, however,
are not chosen by the adversary. We note that a “fully adap-
tive adversary” that can instantaneously corrupt any node in
the DHT can defeat the security properties of not only Myr-
mic, but all previous protocols in the literature. We assume
adversaries can not corrupt or prevent IP network layer com-
munication between honest DHT nodes. However, we allow
adversaries complete control of IP- and DHT-layer traffic
passing through faulty nodes. (In other words, they can drop,
delay or replay messages, attempt to route messages to their
collaborators,etc.) We assume that all nodes are loosely
time synchronized, e.g. honest nodes’ clocks agree to within
a few seconds.2 We do not consider denial-of-service attacks
(against arbitrary nodes) at the network level; these attacks
can essentially defeat any protocol in the literature, (e.g. by
preventing nodes from initiating lookups) and are outside the
scope of this paper.

3.4 Myrmic: High-Level Overview
In addition to the off-line CA, Myrmic introduces a new

on-line authority, called theNeighborhood Authority (NA).

havior as well as faults caused by environmental conditions such as
node failures or transient routing failures.
2Since our setting includes a small set of trusted nodes that com-
municate periodically with each host, it is feasible to provide this
level of synchronization

3

TheNA only participates in DHT network management by
issuingNeighborhood Certificates (nCerts)to small sets of
nodes after DHT membership events such as joins and leaves.
TheNA is not involved in any other functionality of DHT
routing, and in particular queries proceed without contact-
ing theNA. TheNA has a public/private key pair for sign-
ing certificates and we assume that its certificate is publicly
available. TheNA is stateless, so that it can easily be repli-
cated to handle high churn rates or transient node failures.
Similar to a Certificate Authority, theNA is a central point
of trust rather than a central point of failure.3 If the NA
goes offline for some period of time, there will be two ef-
fects. First, new nodes will be unable to join the network
(but can still route queries through existing network nodes).
Second, since our analysis treats nodes that leave the net-
work without communicating with theNA as faulty, long
periods of unavailability will increase the fraction of faulty
nodes the network must tolerate. Once a node is no longer
included in fresh nCerts, it is no longer considered faulty,
because no nodes will attempt to contact it.

Myrmic usesiterative routing, which incurs just under
twice the latency and message cost of recursive routing, in
order to allow a querier to monitor query progress and to find
alternative routes in case its query is mis-routed or dropped
on the route. With iterative routing, the secure routing prob-
lem can be reduced to the problem of verifying that a query
for keyk makes progress and discovers the correctroot(k).
Myrmic allows a querier to verify the keys a node is cur-
rently responsible for using an nCert issued by theNA. This
prevents a malicious node from impersonating the root of a
key outside it is not responsible for or routing a query to an
incorrect node.

A näıve approach would be for theNA to issue a nCert
to a joining node specifying the range of the keys it will be
responsible for. Whenever the node needs to prove that it is
responsible for a certain key, it could present its nCert. How-
ever, in such an approach it is not clear how to deal with cer-
tificate revocation securely and efficiently: when a new node
B joins the network, it is assigned a part of the key range that
was previously assigned to another nodeA, which necessi-
tates revocation of part ofA’s previous nCert. Without effi-
cient and secure revocation of nCerts, a malicious node may
claim responsibility for a key by presenting an old certifi-
cate. If the revocation information is broadcasted by trusted
nodes, nodes will have to keep an amount of information lin-
ear in the number of revoked certificates. Furthermore, the
NA will be required to remember what nCerts it has pre-
viously issued in order to revoke them, increasing the com-
plexity of implementation andNA replication.

Therefore, the key problem here is how to allow queriers
to efficiently obtain a fresh certificate that explains the cur-
rent range. Myrmic enables queriers to find fresh informa-

3If there is no appropriate central point of trust, the stateless design
of the NA also simplifies a threshold cryptography-based imple-
mentation; however, this is outside the scope of the present paper

tion by checking with “authorized witnesses.” We choose a
node’s neighbors as the authorized witnesses because: (1) a
node’s range is determined by its neighborhood information,
(2) the root’s neighbors are often used as replica roots, and
(3) nodes are already required to maintain neighborhood in-
formation. The IP addresses of these neighbors are listed in
the root’s nCert, which is a signed list including the root and
its immediate neighbors. When a certificate is invalidated
by a change in membership, those neighbors are informed.
Hence as long as a malicious node has one honest neighbor,
it cannot use a revoked certificate since the querier can con-
tact any neighbor directly to provide a more recent certifi-
cate; thus by adjusting the neighborhood size appropriately,
we can limit the probability that a malicious node can use a
revoked certificate while not requiring any interaction with
the NA. We stress that Myrmic also includes protocols that
allow the DHT to quickly recover from the occasional event
that all the nodes in a neighborhood become faulty; see Sec-
tion 5.4.

4. SECURE DHT ROUTING
In this section, we first present the format of the nCerts

used by Myrmic to certify the range of a node. We then
present the algorithms employed for the root verification,
join, leave, and lookup operations.

4.1 Root Verification Using nCerts
The range of a node in Myrmic is determined by its nodeId

and that of its immediate neighbors: the range of nodeR
is the interval from the predecessor of R (p(R)) to R, i.e.,
range(R) = (p(R), R]. Thus, in a DHT with static mem-
bership,R can prove its range by presenting a signed nCert
that includes the nodeIds ofR and p(R). With dynamic
membership, however, a node’s range may change, requir-
ing a method for queriers to determine whether an nCert is
fresh.

For this purpose, we include several nodes in each nCert
to serve as witnesses to the freshness of the nCert. When
a nCert is revoked, the witnesses are notified by theNA.
Hence, by consulting with the witnesses, one can verify that
an nCert is fresh. Since it only takes a single witness to
prove that an nCert has been revoked, a malicious node can
only use a revoked nCert if all of its witnesses are faulty.
Hence by adjusting the number of witnesses, we can bound
the probability that a malicious node successfully uses a re-
voked nCert. As previously mentioned, we choose a node’s
nearest neighbors as its witnesses because they must main-
tain this information anyways and may also be replica roots.
The nCert format is thus:

nCertR = Signskna
{nListR, issueT ime, expireT ime, pkR}

nListR = {Ipl(R), . . . , Ip(R), IR, Is(R), . . . , Isl(R)}

IR = (nodeIdR, IPR)

An nCert is signed by theNA using a secure digital sig-
natureSignskna

(·) with the private key of theNA. The
nCert also includes its issue time, its expiration time, and
the public key ofR ThenListR in nCertR includes tuples
I = (nodeIdi, pki, IPi), which allow direct IP connections

4

// verify if R is the root of keyk
Q.verify root(nCertR, k)

1: if(good timestamp signature(nCertR) is false or
2: is root(nCertR, k) is false)
3: returnfalse;
4: for(X ∈ nCertR.nList)
5: nCert′R = X.find nCert(R);
6: if(good timestamp signature(nCert′R) is true)
7: if(nCert′R.issueT ime > nCertR.issueT ime
8: andis root(nCert′R, k) is false)
9: returnfalse;
10: returntrue;

// verify if R is the root ofk according tonCertR

Q.is root(nCertR, k)
11: if(k ∈ (nodeIdp(R), nodeIdR])
12: returntrue;

returnfalse;

Figure 2: The pseudocode to verify if R is the root of k.
to R’s neighbors. The size of thenList (= 2l + 1) is a sys-
tem parameter defined by theNA. The relation between this
parameter and security is described in Section 5.

Figure 2 summarizes the root verification procedure, which
assumes that all nodes have current nCerts. In this proce-
dure, querierQ usesnCertR to verify whetherR = root(k)
using two tests: first, it checks ifk ∈ range(R) = (p(R), R]
wherep(R) andR are included innCertR; second, it checks
if nCertR is fresh. These two tests are accomplished by ob-
taining copies ofnCertR directly from the witnesses. If a
witnessX gives a more recent, validnCert′R that lists a dif-
ferentroot(k), thenR fails the test (lines 7-9). The querier
Q’s communication overhead is to contact2l witnesses and
the computation overhead is at most2l + 1 signature verifi-
cation.

4.2 Neighborhood Certificate Update
For every membership change, theNA must re-issue nCerts

to the nodes affected by the change. When a nodeJ joins
the DHT, it obtains a nCert and, in addition, theNA must
update the nCerts of the2l nodes that gainJ as a neigh-
bor. More specifically, theNA updates the nCerts of all the
nodes listed innListJ to includeJ in theirnLists. Similar
updates are also carried out when the NA is notified thatJ
has left the network.

In Chord, when a new node joins, it first learns its neigh-
borhood information from a bootstrap node, and then grad-
ually fills in its finger table using queries to the appropriate
Ids. Myrmic’s join protocol modifies only the first part of
the Chord joining protocol, i.e., we only modify the part of
the protocol that the joining node follows to initiate the list
of its neighbors and notify them.

As shown in Figure 3, with the help of a bootstrapping
nodeB (not necessarily trusted), the joining nodeJ locates
the nodeR = root(nodeIdJ) using the secure iterative rout-
ing protocol (to be presented in section 4.3). NextJ contacts
theNA to getnCertJ .

To generatenCertJ , theNA needs to learn the(nodeId, IP)
pairs of the2l nearest neighbors, which will be inJ ’s nList.
Similarly, to update the nearest neighbors’ nCerts,NA needs
to find out the(nodeId, IP) pairs oftheir nearest neighbors
(line 6). For this purpose,NA obtains and verifiesR’s nCert
using the root verification protocol (line 5). OnceNA has

// node J joins the network. node B is used for bootstrap
J .join(B)

1: R = B.find root(J);
2: NA.update nCerts(R, J);
3: init finger table(B);
4: update others();

// issue a nCert to the joining node and update its neighbors’ nCerts
NA.update nCerts(R, J)

5: if (accept(J) is true and verify root(nCertR, J) is true)
6: list = construct neighbor list(R, J);
7: generate distribute nCerts(list);

// NA constructs a list of the nearest neighbors of the joining node
NA.construct neighbor list(R, J)

8: list = nil;
9: for (X ∈ R.nCert)
10: for (Y ∈ X.nCert)
11: for (Z ∈ Y.nCert)
12: if (in list(list, Z) is false) andping(Z) is live)
13: insert into list(list, Z);
14: insert into list(list, J);
15: while(count live successors(list, J) < 2l)
16: get more successors(list, J);
17: while(count live predecessors(list, J) < 2l)
18: get more predecessors(list, J);
19: returnlist;

NA.generatedistribute nCerts(list, J)
20: nListJ = gen nList(list, J);
21: for (X ∈ nListJ);
22: nListX = gen nList(list, X);
23: nCertX = Signskna{nListX , issueT ime, expireT ime};
24: send(nCertX);

// these procedures are not modified from chord
J .init finger table(B)
J .update others()

Figure 3: The pseudocode for a nodeJ joining the DHT.
// node X maintains updated neighborhood
X.maintain()

1: for (Y ∈ nListX)
2: if (ping(Y) is dead)
3: Z = Y ;
4: do
5: Z = find root(X, (Z.id + 1));
6: while (ping(Z) is dead)

NA.update nCerts(Z, Z);

Figure 4: The pseudocode for a nodeX to maintain up-
dated neighborhood

R’s nCert, it can directly contact the neighbors ofR. Next
NA calls construct neighbor list() to construct a list of
nodes includingJ and its (at least) nearest4l neighbors (2l
predecessors and2l successors). The result is a list:list =
{. . . , Ip2l(J), . . . , Ip(J), IJ , Is(J), . . . , Is2l(J), . . . }. This list
includes all the information theNA needs to generate new
nCerts. OnceNA has the list, it callsgenerate distribute nCerts()
to generate the2l + 1 new nCerts forJ , its nearestl prede-
cessors, and its nearestl successors. EachnCertX is sent to
all of the nodes in itsnList.

When a nodeleavesthe DHT, other nodes (gradually) up-
date their state tables. The range of the absent node must be
allocated to its neighbor(s). Hence once a leave is detected,
theNA should be notified to update the nCerts of the neigh-
bors of the missing node. In Myrmic, a nodeX periodically
callsmaintain() to ping the nodes listed in its nCert (Fig-
ure 4). If it believes that one of them, sayY , has left, it
findsY ’s immediate live successorZ and contacts theNA,
which callsupdate nCerts(Z,Z). When the procedure fin-
ishes,Z inheritsrange(Y) and the nodes listed innCertZ
(includingX) obtain updated nCerts.

We briefly consider the overhead ofupdate nCerts. To

5

// find the root of k using gateway node G
Q.find root(G, k)

1: try = G;
2: nCertnext = try.next hop(k);
3: nCertcurrent = nCertnext;
4: do
5: if(good timestamp signature(nCertnext) is true)
6: if(is root(nCertnext, k) is true)
7: if(verify root(next, k) is true)
8: returnnext;
9: else
10: nCertcurrent = nCertnext;
11: else
12: if(progress(try, nCertnext, k) is true)
13: nCertcurrent = nCertnext;
14: try = random select from(nCertcurrent);
15: nCertnext = try.next hop(k)
16: mark as contacted(nCertcurrent, try);
17: while(try is not nil);
18: returnnil;

// return root or closest preceding finger
X.next hop(k)

19: for(nCerti ∈ {nCert stored by X})
20: if(is root(nCerti, k) is true)
21: returnroot;
22: returnclosest preceding finger(k)

// check iftry returns the closest proceding finger tok
progress(try, nCertnext, k)

23: i = ⌊log(next − try)⌋;
24: if(2i < k − try < 2i+1 andis root(nCertnext, try + 2i) is true)
25: returntrue;
26: returnfalse;

// this procedure is not modified from chord
closestpreceding finger(k)

Figure 5: The pseudocode to find and verify the root.

simplify the discussion, we calculate communication and
computation overhead in terms of the number of messages
an entity sends and the number of digital signature opera-
tions it performs, respectively. Note that nodes in neigh-
bors’ nCerts are overlapping andnCertX is stored by all
nodes listed in it. Hence, in the threefor loops ofupdate nCerts(),
the NA can retrieve all of the4l + 1 nCerts held by the
2l + 1 nodes listed innCertR. TheNA pings another2l
nodes incount live predecessors(list, J) andcount live
successors(list, J). TheNA also signs the2l + 1 newly

generated nCerts. Since an nCert is sent to all nodes listed
in it, the NA sends4l + 1 messages to distribute the2l +
1 nCerts. The overhead of regular nodes involved in the
change is (at most) one signature verification and one mes-
sage, either sending an nCert toNA or replying to a ping.

4.3 Secure Iterative Routing
Using the root verification procedure along with securely

maintained finger tables, we can design an iterative rout-
ing mechanism that guarantees correct and efficient DHT
lookup: at each hop, the Querier can verify, via nCert valid-
ity, that the current node provides a correct next hop, and at
the conclusion, the querier can use root verification to check
that the alleged result of a query fork is the correctroot(k).
Figure 5 shows a procedure for a Myrmic clientQ to route
a query for keyk through a possibly untrusted gatewayG
(whenQ’s routing table is not established) orQ itself.

The protocol resembles the iterative routing of Chord. The
main idea is as follows:Q iteratively asks a node on the
route for the nCert of the next hop (using theX.next hop
procedure), which is either the root or the closest preced-
ing finger towards the key. For eachnCertnext received,Q

first verifies, locally, ifnCertnext showsnext as the root
of the key k (line 6). If so, Q verifies the freshness of
nCertnext using root verification (line 7). Otherwise,Q
checks ifnCertnext makes the expected progress, i.e., if
try indeed returned its closest preceding finger tok (line
12). If so,Q randomly selects a node fromnCertnext for
its next hop (line 14). Otherwise,Q discardsnCertnext and
randomly selects a node from the previousnCertnext (i.e.,
nCertcurrent). Note that, while verifying the progress,Q
does not need to verify the freshness ofnCertnext, because
as long as one of the nodes listed innCertnext is honest
and alive,Q will be able to find a next hop. HenceQ only
verifies the signature and timestamp ofnCertnext (line 5).

In addition to the protocol shown in figure 5, our itera-
tive routing protocol also uses dual timeouts. Asoft time-
out happens whenQ judges that it has waited too long for
a reply from try, and simply contacts another node listed
in nCertnext. If Q receives a message fromtry after a
soft timeout, it will still process the result. When all nodes
in nCertnext have been marked as contacted and thehard
timeoutis reached,Q determines that the lookup has failed
and drops the query. Using a short soft timeout may increase
the number ofnext hop (NH) messages sent, while reduc-
ing the delay caused by a slow link or, more importantly, a
malicious node who does not respond in time. On the other
hand, by using a longer soft timeout, we can reduce the to-
tal number ofNH messages sent; this gives the nodeQ the
opportunity to trade off lookup latency for bandwidth con-
sumption. (See appendix A for more discussion).

5. SECURITY ANALYSIS
In this section, we analyze the security of the protocols

sketched in section 4. We first show that honest nodes al-
ways have a correct nCert and consistent neighborhood view.
This allows us to prove that the root verification procedure
fails with only small probability. Finally we argue that be-
cause of these properties, the iterative routing procedureof
Myrmic succeeds inO(log n) steps with high probability.

5.1 Security of nCert Updates
We define a correct nCert to be one that consists of the

nodeID and IP of its owner, plus thel most immediate pre-
decessors and successors that are visible to theNA. We ar-
gue that with high probability the Neighborhood Certificate
Update protocol generates correct nCerts. In this protocol,
the NA first constructs a neighbor list and then generates
and distributes nCerts based on the list. The second step
is straightforward assuming that adversaries cannot corrupt
or prevent the delivery of IP-network layer communication
between honest DHT nodes and theNA. Hence the correct-
ness of this protocol depends only on theNA constructing a
correct neighbor list.

So suppose that at timet, all honest nodes possess correct
nCerts, and that at timet + 1, honest noden notices that its
predecessor does not respond to pings and initiates the nCert
update protocol by sending its nCert plus the nCert of all of

6

its neighbors. TheNA responds by contacting all of these
neighbors and asking for their nCerts, and pinging all nodes
mentioned in the nCerts received in these steps. Altogether,
4l nodes will be contacted,2l of which should have nCerts
listing each node in the neighborhood ofn. Thus any node
in the local neighborhood can only be obscured if2l consec-
utive nodes are faulty or the nCert signature scheme admits
forgeries. By assumption, the probability of the latter is neg-
ligible; by our model, the probability of the former, when
fractionf of nodes are faulty,4 is at mostf2l. Thus with high
probability theNA discovers all neighbors ofn and issues a
correct nCert to each affected node at timet + 1. A similar
argument establishes the correctness of nCerts after joins.

5.2 Security of Root Verification
Let us assume that nCerts are unforgeable, and consider

the circumstances under which a nodeR may falsely claim
responsibility for a key. Since nCerts are unforgeable, and
the NA is trusted,R may only fraudulently claim or dis-
claim responsibility after a change in membership. Node
R’s range may change in one of four ways. (1) A new node
J joins the DHT and becomesR’s predecessor.R loses part
of its previous range. (2)R’s predecessor left andR’s new
range includes both its old range and its old predecessor’s
range. (3)R left and lost all its range. In these three cases,
NA runs the nCert update protocol and new nCerts are dis-
tributed to all witnesses. To use a revoked nCert, a malicious
node must collude with all “current” witnesses. LetT be the
lifetime of a nCert, and letf include the percentage of nodes
leaving duringT . Assuming malicious nodes do not leave,
the probability that a revoked nCert can be used isf2l, i.e.
the probability that all2l neighbors ofR are faulty. (4)R is
relocated. A node may be relocated only when its nCert has
expired and it is trying to obtain a new one. In this case,R
cannot claim responsibility for its previous range becauseof
the expired nCert.

5.3 Security of Iterative Routing
Let δ be a “security parameter” for secure DHT routing,

e.g. the probability of routing failure we are willing to toler-
ate.5 Here we show how to set the Myrmic parameterl (as a
function ofn andf) so that with probability at least1 − δ,
the expected number of steps for any query is12(1−f) log n.

First, we note that whenQ contacts the nodetry in the it-
erative routing step,Q requests nodetry’s closest preceding
finger tok and the nCert of the finger. ThusQ can check
if the finger returned bytry is in fact the node responsible
for the keynodeId(try) + 2i where2i < k − try < 2i+1.
If it is not, the nodetry can be regarded as faulty and ig-
nored. Thus without loss of generality we can treat faulty

4for purposes of correctness, we treat faulty nodes and adversarial
nodes identically, i.e., a node that goes offline during the duration
of an nCert with probabilityf is considered to be faulty.
5Here we define a routing failure as the event that after some fixed
number of stepsf(n) = Ω(log n) a lookup query has failed to
identify the correct mapping between a key and a node.

nodes as “black holes” that do not respond to queries, when
considering the query protocol.

Now, we define thechord next hopfrom noden to keyk
to be the next hop ofn that (iterative) Chord would query
in a fault-free environment. Notice that thechord pathof
chord next hops always has length at mostlog n and has ex-
pected length12 log n. We say that a Myrmic lookupfollows
the chord pathif at each step it contacts a node in the neigh-
borhood of the chord next hop. A lookup that follows the
chord path will also take on average12 log n “hops” (walk-
ing randomly about the chord hops) but may spend multiple
steps discovering the correct next hop. We will prove that
a Myrmic lookup follows the chord path with probability at
least1 − δ and spends on averageO(1) steps at each hop,
completing the proof.

First, we note that Myrmic only fails to follow the chord
path when some chord next hop and all2l of its neighbors
are faulty. Since there are at mostlog n chord next hops,
and each has a faulty neighborhood with probability at most
f2l+1, by the union bound the probability of such failure is
at mostf2l+1 log n. Thus setting the neighborhood size

2l + 1 =

⌈

1

log(1/f)

(

log log n + log
1

δ

)⌉

(1)

will give the desired probability of following the chord path.
Given that a Myrmic lookup follows the chord path, the ex-
pected number of nodes contacted at each hop is

∑2l+1
i=1 i ·

(1− f)f i−1 ≤ (1− f)
∑∞

i=1 i · f i−1 = 1
1−f

. This gives the
desired bound.

We note that in case the Myrmic lookup does not follow
the chord path, it may still successfully complete in a short
time; thus this analysisunderstatesthe success probability
whenl is set appropriately.

5.4 Bad State Recovery
Our definition of secure routing explicitly allows some

queries to fail due to a neighborhood consisting entirely of
faulty nodes; in particular, we expect that roughlyf2l+1 =
δ/ log n fraction of neighborhoods will be “corrupt” in this
manner. One method of dealing with this would be to setδ =
n− log n, so that the probability of having any corrupt neigh-
borhoods is negligible; this would significantly increase the
cost of Myrmic routing. Instead, we deal with this situation
by periodically relocating each node to a different part of the
ring, so that with high probability a neighborhood that is cor-
rupted in one time period will not be corrupted in the next
period. This “induced churning” [28, 29, 30] allows Myr-
mic to tolerate some corrupted neighborhoods by ensuring
that these failures will be transient.

In order to implement this scheme, two mechanisms are
needed. The first is a way to determine when and to where
a node should be relocated. Whenever a node’s nCert ex-
pires, it must contact theNA and have a new certificate is-
sued. TheNA may then decide to relocate the node based
on some verifiable but unpredictable information; an exam-
ple is anNA signature on the beginning time of the current

7

period. If the hash of this signature and the node’s certifi-
cate exceeds the fraction of time elapsed in the period, the
node is assigned a new nodeID, by hashing the node’s cer-
tificate and IP address with the unpredictable information.
Thus anyone can verify, given the NA signature, that a node
should be relocated and what its new nodeID should be.

The second mechanism that is needed is a protocol for
recovery when a node joins (or is relocated to) a corrupt
neighborhood. If the malicious nodeR’s neighborhood is
corrupted, it can effectively prevent a new nodeJ from join-
ing its range until its currentnCertR expires, since no one in
its neighborhood will contradict the revokednCertR. Once
nCertR expires, it will have to be renewed, and theNA
will contact the2l nodes on each side ofR; if one of these
is honest, the newnCert′R will include J . However, there is
a small probabilityf4l+1 that all4l neighbors ofR are cor-
rupted, and in this caseR will continue to be able to prevent
J from joining its range until it is relocated (at which time it
will no longer be issued an nCert for the range coveringJ).
Until all of the 2l corrupted nodes surroundingR are relo-
cated, corrupt nodes will continue to coverJ (because of the
statelessness of theNA). Once all nodes have left the neigh-
borhood, new nodes will be unable to find a valid nCert for
the range. In this case, a recovery protocol can be invoked:
a node joining with IDJ conducts a binary search to the left
and right ofJ for the nearest valid nCerts of a predecessorP
and successorS of J . Once it obtains these, it contacts the
Neighborhood Authority with the nCerts and finger tables of
S andP , and the Neighborhood Authority builds a neighbor-
hood list that extends2l nodes beforeP and2l nodes after
S before issuingnCertJ . The expected number of hosts
contacted is4l + 2/(1 − f), and theNA should refuse to
repair a neighborhood of size larger thanl2 (the probability
of a neighborhood of this size being compromised is negli-
gible). Finally, in order to allow other nodes to find the fresh
nCertJ , J uses lookups to identify theO(log n) nodes that
should haveJ as a finger and sends themnCertJ .

Thus, with probability at least1− f4l+1, a corrupt neigh-
borhood can be repaired in at most two time periods; the ex-
pected load on theNA from the repair protocol is less than
the cost of a node leaving and then joining again, and never
more thanl2.

6. IMPLEMENTATION AND EVALUATION
Our implementation of Myrmic consists of two indenpen-
dent components: the DHT node and theNA. Both com-
ponents are implemented in C and use Openssl 0.9.8 [31]
for RSA digital signatures with the SHA-1 hash function.
Myrmic’s DHT node component is based on the i3-Chord
implementation [32]. We evaluated the performance of our
prototype implementation 1) on PlanetLab [21] to evaluate
its performance on a wide-area network and 2) on a local
testbed to assess the robustness of Myrmic under attack.

6.1 Parameter Selection
To select timeout values, we measured the pairwise ping

time of PlanetLab nodes. Each node sent 10 pings to ev-
ery node in our experimental setup. The average, median,
75th- and99th-percentile ping times were 54, 50, 78, and
177ms. Based on these results, we chose 2000ms for the
hard timeout value, 200ms for the nCert verification time-
out, and 78ms for the soft timeout. The long hard timeout
and nCert verification timeouts ensure that the querier does
not miss replies from intermediate hops and neighbors of the
root, while the shorter soft timeout prevents wasted time in
iterative queries, as explained in section 4.3 and appendixA.

To selectTncl, the life time of a nCert, we studied the
relationship betweenTncl, median node session times, and
nCert size. The session time of a node is the difference be-
tween the time when it joins the network and the time when
it leaves the network. Median node session times of a typical
file-sharing P2P application can be found in published stud-
ies (e.g. [33]). We assume that node joins and leaves both
follow a Poisson process, with the same event rateλ, result-
ing in a stable network size. Under this model, the event rate
for median session timeTms is

λ =
n × ln 2

Tms

(2)

Hence the fraction of nodes that join or leave the DHT during
a period of lengthTncl is

α =
n × ln 2

Tms

×
Tncl

n
=

ln 2 × Tncl

Tms

. (3)

Given f , α, n, andδ, we can compute nCert size using
equation 1. For example, iff = 10%, n = 5000, δ = 0.005,
then we obtain the nCert size2l + 1 = 7 by settingTncl

Tms
=

0.1. Note that smaller values ofTncl

Tms
require more frequent

renewal of nCerts. Appendix B discusses this issue in detail.

6.2 Wide-area Evaluation
Expermental setup. Each of our wide-area experiments
was run using a set of approximately 120 PlanetLab ma-
chines6 as Myrmic nodes, without using the Sirius calendar
service [21], and a single machine in our local testbed as
the NA, running Ubuntu Linux (2.6 kernel), with a 3GHz
Pentium IV CPU and 1GB RAM. Due to space limitations,
we only show the results of experiments using the single set
of parameters selected in section 6.1. In each of the experi-
ments, we first join every node to the network using theNA,
and then a simple test program built on top of a DHT node is
used to periodically send random queries. Each node sends
500 queries, one query every 3 seconds, making the total
number of query messages about 60,000.
Overall PerformanceFigure 6 (a) shows thequery response
time, defined as(tf − tr) wheretr is the time when the DHT
layer of nodeQ receives the query request from the test pro-
gram andtf is the time when the DHT node reports the
query result to the test program after completing the nCert
verification. The 97th and 90th percentiles are 346ms and
6All of these nodes were located in North America, to ensure rela-
tively uniform delay, which simplifies the analysis of the prototype
implementation.

8

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Query Response time (ms)

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty

0

281
346

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

40

45

P
er

ce
n

ta
g

e
o

f
Q

u
er

y
M

es
sa

g
es

Q
u

er
y

R
es

p
o

n
se

 t
im

e
(m

s)

Number of NH Messages

0

100

200

300

400

500

600

700

800

900

(a) (b)
Figure 6: Overall performance

281ms. About 6% of the queries are finished immediately.
This happens whenroot(k) is the querier nodeQ or one
of its neighbors innCertQ. For these cases, the correct-
ness of theroot(k) was verified at the time thatQ received
nCertroot(k). In a network withN nodes, each node can
handlew

N
fraction of queries locally.

For the rest of the queries,Q sends one or moreNH re-
quests. We categorize the queries based on the number of
NH requests and show both the response time of queries and
percentage of queries in each category. Compared to Chord,
which approximately follows a normal distribution for the
number of hops, Myrmic has a distribution shifted to the
left. As shown in figure 6 (b),93% of messages are deliv-
ered within 6NH requests (not including the root verification
message). Figure 6 (b) also shows the min, median, and 97th
percentile of query response time in each category. As ex-
pected, the medians are approximately linear in the number
of NH requests.
Evaluation of the NA. To determine the capacity of our
NA, we ran a set of experiments with increasing churn rates.
For each experiment, we recorded the average join time, and
we determined the capacity of the NA by finding the churn
rate that caused this join time to increase significantly. In
each of these experiments, we start with 1000 DHT nodes
on 100 planetlab hosts. Then on each machine, a node is
killed periodically and a new node joins the network im-
mediately, causing both a leave and a join event. The re-
sults of this evaluation suggest that our NA (running Ubuntu
Linux with a 3GHz Pentium IV CPU and 1GB RAM) can
handle as many as 34 events (17 joins and 17 leaves) per
second, for a “Churn rate” of 17 [33]. Since the crypto-
graphic computations required for an nCert update – 7 sig-
natures and 14 verifications – take about 25.3ms on the
testbed NA, 34 events require around 860ms of compu-
tation, which supports this conclusion. Plugging the me-
dian session times reported in [33] (1 minute to 1 hour) into
Eq. 2, we find that oneNA can handle a total number of
nodes ranging from 1472 to 88299. Note that these exper-
iments were performed using an ordinary desktop machine
rather than a high-performance server, and our threaded im-
plementation has not been optimized for performance. Thus
we expect that on multicore or multiprocessor systems an
optimized NA should be capable of handling a significantly
higher workload. Finally, we note in Appendix C that it is
possible to replicate the NA to further increase scalability.

6.3 Local Network Evaluation
One of the most salient features of Myrmic routing is its ef-
ficiency and robustness even with a significant fraction of
adversaries. To validate this claim, we ran a series of ex-
periments, in a local lab with 34 PCs, with a 1000 node
DHT and varying fractions of “black hole” adversaries that
dropped allNH requests. Each node sends 1,000 queries
resulting in 1,000,000 queries for each experiment. The re-
sults of the experiment are shown in Figure 7. The graph
shows the cumulative distribution of the number ofNH re-
quests for each experiment (when the size of nCerts is 7),
while the table shows the percentage of failed queries for
nCerts of size 7 and 11, compared with the failure bounds
(in parentheses) computed in Section 5.3. As expected, the
failure rates andNH counts are both improvements on our
worst-case bounds. For example, withw = 7, even when
40% of nodes drop all requests, less than 1% of queries fail,
and 95% of queries are delivered within 10 hops.

0 2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
u

m
u

la
ti

ve
 P

ro
b

ab
ili

ty
Number of NH Messages

0%
20%
30%
40%

Attacker (%) 0 20 30 40 50
size of nCert = 7 0 (0) 0.011 (0.013) 0.128 (0.218) 0.781 (1.626)
size of nCert = 11 0.001 (0.002) 0.025 (0.042) 0.22 (0.49)

Figure 7: Dropping Test

6.4 Optimization
In this section, we discuss how to reduce the latency of

Myrmic queries by using recursive routing. Recursive rout-
ing has lower delay than iterative routing because fewer mes-
sage are sent; in addition, recursive routing can utilizeprox-
imity neighbor selection(PNS), which allows a node to se-
lect neighbors (fingers, in Chord’s terms) with lowRTT, re-
sulting in low stretch, the ratio of query delay to the network
delay between the querier and the root. This technique can
significantly reduce the query delay, for example Dabeket
al. [22] show that DHTs using PNS can deliver queries
with constant stretch, independent of the network size.

Figure 8: Hybrid routing

We can adapt Myrmic’s iterative routing protocol to take
advantage of recursive routing. Figure 8 (b) illustrates the
basic idea. When an intermediate hopHi receives a query
message from the querierQ, it 1) delivers the message to the

9

next hopHi+1 according to recursive routing, and 2) sends
nCertHi+1

back toQ. Q monitors the query, verifying that
each hop makes progress as described in Section 4.3 and ver-
ifying the root at the conclusion of the query. If a query ever
fails to make progress,Q can pick another node in the nCert
of the current next hop, and restart the process. Note that
the security analysis of the iterative routing protocol also
applies to this optimized protocol because of the progress
verification and root verification. This optimization can also
utilize PNS, where a node’s candidate fingers are limited to
the nodes that are close (in the ID space) to the Chord next
hop. In case the size of a nCert is large, e.g.2l + 1 = 15,
a nCert provides enough candidates [22]. With a smaller
nCert, intermediate hops may need to return adjacent nCerts
(one of which lists the chord next hop) for progress verifica-
tion. More work is needed to understand the interaction of
nCert size, PNS and performance of this optimization.

7. RELATED WORK
Sit and Morris [34] present a taxonomy of possible attacks
on DHTs and applications built on them. They further pro-
vide several design principles to prevent them. One of the
identified denial-of-service attacks, the so calledRapid Joins
and Leavesattack, which is also referred to asChurn, was
studied by several groups [35, 33, 36]. Lynchet. al. [37]
propose to use a Byzantine Fault Tolerance replication al-
gorithm to maintain state information for correct routing –
even though this solution is quite elegant, it is too expen-
sive to be used in practice since it requires an agreement be-
tween the replicas at each routing step. The Sybil attack has
been studied by several groups [38, 25]. Two Sybil-resistant
schemes based on social links were recently proposed in [39,
40]. None of these works consider the problem of root veri-
fication, leaving them vulnerable to root-spoofing attacks.

The seminal work on DHT routing security is by Castro
et al. [23]; they propose but do not implement a DHT where
each node maintains an optimized finger table for fast rout-
ing and a constrained table for “secure routing.” When per-
forming a lookup onk, a node first makes an “optimized”
query, and performs a test of the result (that involves com-
municating with all neighbors ofroot(k)). If the test fails,
the querier launches many parallel recursive queries using
the constrained finger table; if any of these queries reaches
any honest replica root, it is broadcast to all other replica
roots. Assuming disjoint paths are taken by all queries, the
number of queries sent should benO(log(1

1−f
)), that is, poly-

nomial in the number of nodes. Thusasymptotically, Myr-
mic is exponentially more efficient than this scheme while
including a proof of security. Concretely, the authors report
on simulations showing that when adversaries do not per-
form certain known attacks, the scheme can deliver queries
to 99.9% of keys in a node with 100,000 nodes and 30%
compromised nodes using 32 parallel lookups. Using 32
parallel lookups and assumingf = 0.25 fraction of adver-
saries, [23] report that the expected number of messages sent

per query is 451, compared to 11 for Myrmic; the reported
bit complexity of a query in [23] is 5.6KB + 22KB + 12KB
or about 39KB, plus 32 copies of the value stored underk;
when optimized for bandwidth (by only sending the nCert
of the next hop rather than the entire finger table), Myrmic
sends 11 + 7 nCerts, each of which has a 128B certificate, 7
24B (nodeID, IP) pairs, and a 128B signature or 7.6KB; the
correct root sends only 1 copy of the value stored fork.

Fiat and Saia [41, 42] give a protocol for a “content-addressable”
network that is robust to node removal. Kubiatowicz [43]
make Pastry and Tapestry robust usingwide paths, where
they add redundancy to the routing tables and use multiple
nodes for each hop. Fiatet. al. [20] define aByzantine join
attack model where an adversary can join Byzantine nodes
to a DHT and put them at chosen places. All of these re-
sults require a DHT node to maintainO(log2(n)) links to
other nodes, haveO(log(n)) latency andΩ(log2(n)) mes-
sage complexity per query. [20] makes use of a protocol of
Scheideler [28] to rotate nodes when they join the network,
providing strong guarantees about the density of adversarial
nodes without need of a certified identity; this protocol does
not, however, defend against Sybil attacks.

In the Eclipse attack [23, 34], or routing table poisoning
attack, malicious nodes conspire to fool honest nodes to in-
clude the malicious nodes into their routing tables. Singhet.
al. [44] observe that a malicious node launching an eclipse
attack has a higher in-degree than honest nodes. They pro-
pose a method of preventing this attack by enforcing in-
degree bounds through periodic anonymous distributed au-
diting. Nodes that fail the test are dropped from the testing
node’s routing table. Condieet. al. [29] mitigate eclipse
attacks using induced churn. The main idea includes three
components: periodically reset routing tables to constrained
ones [23], limit routing table update rate, and periodically
change nodes’ nodeIDs. We note that the Eclipse attack is
not possible against Myrmic because we employ a Chord-
style constrained routing table.

8. CONCLUSION
Recently, a significant amount of effort has been devoted to
making DHTs more robust against environmental interfer-
ence, but there has been considerably less work on imple-
menting DHTs that are secure against adversarial behavior.
With increasing use of these protocols in economically at-
tractive applications, ensuring correctness and availability of
DHT routing is a fundamental requirement. To address prob-
lem, we introducedMyrmic, a novel DHT routing protocol
in this paper. To the best of our knowledge, Myrmic provides
the first implementation of a DHT routing protocol that al-
lows root verification (by internal as well as external entities)
as well as efficient (comparable to Chord) message delivery
even in the presence of a significant fraction of faulty nodes.
In many applications, it can be used as a drop-in, secure re-
placement for other existing DHT routing protocols.

10

9. REFERENCES

[1] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker, “A Scalable Content-Addressable
Network,” in SIGCOMM, 2001.

[2] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and
H. Balakrishnan, “Chord: A peer-to-peer lookup
service for internet applications,” inSIGCOMM, 2001.

[3] A. Rowstron and P. Druschel, “Pastry: Scalable,
distributed object location and routing for large-scale
peer-to-peer systems,” inMiddleware, 2001.

[4] S. Rhea, B. Godfrey, B. Karp, J. Kubiatowicz,
S. Ratnasamy, S. Shenker, I. Stoica, and H. Yu,
“Opendht: A public dht service and its uses,” in
SIGCOMM, 2005.

[5] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D.
Joseph, and J. D. Kubiatowicz, “Tapestry: A Resilient
Global-scale Overlay for Service Deployment,”JSAC,
vol. 22, no. 1, 2004.

[6] A. Muthitacharoen, R. Morris, T. M. Gil, and B. Chen,
“Ivy: A read/write peer-to-peer file system,” inOSDI,
2002.

[7] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea,
H. Weatherspoon, W. Weimer, C. Wells, and B. Zhao,
“OceanStore: An Architecture for Global-Scale
Persistent Storage,” inASPLOS, 2000.

[8] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
I. Stoica, “Wide-area cooperative storage with CFS,”
in SOSP, 2001.

[9] A. Rowstron and P. Druschel, “Storage Management
and Caching in PAST, A Large-scale, Persistent
Peer-to-peer Storage Utility,” inSOSP. ACM, 2001.

[10] B. Cohen, “Incentives Build Robustness in
BitTorrent,” in Workshop on Economics of
Peer-to-Peer Systems, Berkeley, CA, 2003.

[11] S. Iyer, A. Rowstron, and P. Druschel, “SQUIRREL:
A decentralized, peer-to-peer web cache,” inACM
PODC, 2002.

[12] M. J. Freedman, E. Freudenthal, and D. Mazires,
“Democratizing Content Publication with Coral,” in
USENIX/ACM NSDI, 2004.

[13] M. Castro, M. B. Jones, A.-M. Kermarrec,
A. Rowstron, M. Theimer, H. Wang, and A. Wolman,
“An Evaluation of Scalable Application-level
Multicast Built Using Peer-to-peer overlays,” in
Infocom, 2003.

[14] M. Castro, P. Druschel, A.-M. Kermarrec, A. Nandi,
A. Rowstron, and A. Singh, “Splitstream:
high-bandwidth multicast in cooperative
environments,” inSOSP, 2003.

[15] K. Park, V. S. Pai, L. L. Peterson, and Z. Wang,
“Codns: Improving dns performance and reliability
via cooperative lookups,” inOSDI, 2004.

[16] V. Ramasubramanian and E. Sirer, “The design and
implementation of a next generation name service for

the internet,” inSIGCOMM, 2004.
[17] A. Stubblefield, J. Ioannidis, and A. D. Rubin, “A key

recovery attack on the 802.11b wired equivalent
privacy protocol (wep),”ACM Trans. Inf. Syst. Secur.,
vol. 7, no. 2, pp. 319–332, 2004.

[18] D. Bleichenbacher, “Chosen ciphertext attacks against
protocols based on the rsa encryption standard pkcs,”
in Crypto, 1998.

[19] R. J. Anderson and R. M. Needham, “Programming
satan’s computer.” inComputer Science Today, 1995.

[20] A. Fiat, J. Saia, and M. Young, “Making chord robust
to byzantine attacks,” inESA, 2005.

[21] B. Chun, D. Culler, T. Roscoe, A. Bavier, L. Peterson,
M. Wawrzoniak, and M. Bowman, “Planetlab: an
overlay testbed for broad-coverage services,”Sigcomm
Comput. Commun. Rev., 2003.

[22] F. Dabek, J. Li, E. Sit, J. Robertson, M. Kaashoek, and
R. Morris, “Designing a dht for low latency and high
throughput,” inNSDI, 2004.

[23] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. S. Wallach, “Secure routing for structured
peer-to-peer overlay networks,” inOSDI, 2002.

[24] A. Singh, M. Castro, P. Druschel, and A. Rowstron,
“Defending against eclipse attacks on overlay
networks,” inEW11, 2004.

[25] J. R. Douceur, “The sybil attack,” inProc. of the
IPTPS02, 2002.

[26] P. Maymounkov and D. Mazı́eres, “Kademlia: A
peer-to-peer information system based on the xor
metric,” in IPTPS, 2001.

[27] S. Crosby and D. Wallach, “Denial of service via
algorithmic complexity attacks,” inUSENIX Security,
2003.

[28] C. Scheideler, “How to spread adversarial nodes?
Rotate!” inSTOC, 2005.

[29] T. Condie, V. Kacholia, S. Sankararaman,
J. Hellerstein, and P. Maniatis, “Induced churn as
shelter from routing table poisoning,” inNDSS, 2006.

[30] I. Osipkov, P. Wang, N. Hopper, and Y. Kim, “Robust
Accounting in Decentralized P2P Storage Systems,” in
ICDCS, 2006.

[31] OpenSSL Project Team, “Openssl,”
http://www.openssl.org/, 2006.

[32] “Berkeley chord library,” http://i3.cs.berkeley.edu/.
[33] S. C. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz,

“Handling churn in a dht,” inUSENIX Annual
Technical Conference, 2004.

[34] E. Sit and R. Morris, “Security Considerations for
Peer-to-Peer Distributed Hash Tables,” inIPTPS,
2002.

[35] M. Castro, M. Costa, and A. Rowstron, “Performance
and dependability of structured peer-to-peer overlays,”
Microsoft Research, Tech. Rep. MSR-TR2003 -94.

[36] J. Li, J. Stribling, T. M. Gil, R. Morris, and M. F.
Kaashoek, “Comparing the performance of distributed

11

hash tables under churn.” inIPTPS, 2004.
[37] N. Lynch, D. Malkhi, and D. Ratajczak, “Atomic data

access in content addressable networks,” inIPTPS,
2002.

[38] E. Friedman and P. Resnick, “The Social Cost of
Cheap Pseudonyms,”J. of Economics and
Management Strategy, 2001.

[39] S. Marti, P. Ganesan, and H. Garcia-Molina, “DHT
Routing Using Social Links,” inP2PDB, 2004.

[40] G. Danezis, C. Lesniewski-Laas, M. F. Kaashoek, and
R. Anderson, “Sybil resistant DHT routing,” in
ESORICS, 2005.

[41] A. Fiat and J. Saia, “Censorship resistant peer-to-peer
content addressable networks,” inSODA, 2002.

[42] J. Saia, A. Fiat, S. Gribble, A. Karlin, and S. Saroiu,
“Dynamically fault-tolerant content addressable
networks,” inIPTPS, 2002.

[43] K. Hildrum and J. Kubiatowicz, “Asymptotically
efficient approaches to fault-tolerance in peer-to-peer
networks,” inDISC, 2003.

[44] A. Singh, T.-W. J. Ngan, , P. Druschel, and D. S.
Wallach, “Eclipse attacks on overlay networks:
Threats and defenses,” inInfocom, 2006.

APPENDIX

A. TIMEOUT VALUES
During a query, the current hop may be malicious, dead,

or having long RTT. All the three cases may result in a time-
out. When considering all of them, the expected number of
steps a query take is 1

2(1−f−x−y) log n wherex is the prob-
ability that the current hop is dead andy is the probability
that the current hop having long RTT than the timeout value.
The value ofx is usually small since it is the probability that
a node dies between twofix routing tablemessages send to
it from another node. Hence we only considerf andy. De-
noting the timeout value asto, the query delay is bounded
by 1

2(1−f−y) log n × to. On the other hand, a small time-
out value may need more bandwidth. Converting malicious
nodes to blackholes, the extra bandwidth overhead due to a
specific timeout value is 1

(1−y) − 1.

B. LIFETIME OF NCERTS
The life time of a nCert, denoted asTncl, represents a

tradeoff between security and efficiency. Intuitively, a longer
Tncl gives improved efficiency since less nCerts need to be
renewed. On the other hand, a shorterTncl is more secure
since less (honest) nodes leave during this period. Supposea
node listed in a nCert left, then the nCert is revoked. In this
case, from both security and efficiency points of view, we
prefer that the nCert expires soon after its revocation since it
needs not be renewed. The same argument applies for joins
too. We compute the probability of the evente that some
nodes in a nCert leave or some nodes join in the range cov-
ered by the nCert during its life time: (Note that this is also

the percentage of nCerts revoked before they expire.)

P (e) = 1 − (1 − α)2l+1 × (
n − (2l + 1)

n
)n×α (4)

After selecting system parameters (i.e.,α and 2l + 1) as
shown in section 6.1, one can compute the percentage of
nCert update operations (renewing nCerts) due to these pa-
rameters using equation 4. For example, supposen = 5000,
Tncl

Tms
= 0.1, and2l+1 = 7, the percentage of nCerts revoked

before they expire is63%. I.e.,63% of nCerts are renewed
due to network churning and37% of nCerts are renewed due
to the parameter we selected.

C. NA REPLICATION
To increase availability and remove the single point of

failure, one may replicate theNA. This task is easy in most
cases, since the replicas of theNA only need to share a pri-
vate key to sign nCerts. In case when two nodes,X and
Y , join the same neighborhood at the same time and their
join requests are sent to two differentNA replicasNA1 and
NA2, there exists a subtle synchronization issue. IfNA2

is not aware ofX andNA1 is not aware ofY , then nCerts
issued by the twoNAs may have conflicting ranges.

TheNA replication works as follows. The ID ring is di-
vided into pieces, called zones, and eachNA replicas is re-
sponsible to one zone. All theNA replicas shares a MAC
key to authenticate messages among them. A node’s nCert
update request can be sent to any of theNA replicas. Re-
ceiving a request, theNA replica, sayNA1, forwards the re-
quest to the one responsible to the nodeID, sayNA2. NA2

processes the request following the nCert update protocol
shown in section 4.2. If the neighbor listNA2 built includes
nodes in an otherNA replica’s zone, sayNA3’s, NA2 no-
tifies NA3 to lock the border between them.NA2 releases
the lock after processes the request. BeforeNA2 releases
the lock, NA3 processes requests to which it is responsi-
ble as usual, except that it holds the process of a request if
the neighbor list it built for this request includes a node in
NA2’s zone. The messages sent amongNA replicas are ac-
knowledged. If a acknowledge, e.g. fromNA1 to NA2, is
missing,NA2 pingsNA1 to find out if NA2 is offline. If
so, NA2 notifies othersNA replicas and redivides the ID
space. Similar procedure is followed if aNA replica holds a
lock for too long. Note that since ID space is a ring, the zone
of a NA replica has two borders. As long as a neighbor list
built for a nCert update request does not cross both of the
borders, the locking scheme does not cause a deadlock. I.e.,
A deadlock does not happen if every zone has at least4l + 1
honest nodes. Hence deadlock is not a problem in practice,
since4l+1 is much smaller than the number of nodes aNA
server can support even with a extreme high churn rate.

12

